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Abstract

Malignant Peripheral Nerve Sheath Tumors (MPNSTs) represent a group of highly aggressive soft 

tissue sarcomas that may occur sporadically, in association with neurofibromatosis type I (NF1-), 

or after radiotherapy1–3. Using comprehensive genomic approaches, we identified loss-of-function 

(LOF) somatic alterations of the Polycomb repressive complex 2 (PRC2) core components, EED 

or SUZ12, in 92% of sporadic, 70% of NF1-associated and 90% of radiotherapy-associated 

MPNSTs. MPNSTs with PRC2 loss showed complete loss of H3K27me3 and aberrant 

transcriptional activation of multiple PRC2-repressed homeobox master regulators and their 

regulated developmental pathways. Introduction of the PRC2 component in a PRC2-deficient 

MPNST cell line restored H3K27me3 and decreased cell growth. Additionally, we identified 

frequent somatic alterations of CDKN2A (81% of all MPNSTs) and NF1 (72% of non-NF1-

associated MPNSTs), and they significantly co-occur with PRC2 alterations. The highly recurrent 

and specific inactivation of PRC2, NF1, CDKN2A posits their critical and potentially cooperative 

roles in MPNST pathogenesis.

MPNSTs arise from peripheral nerves and associated cellular components and represent a 

highly aggressive subtype of soft tissue sarcoma1. MPNSTs metastasize early and are often 

resistant to radiotherapy and chemotherapy. Conventional MPNSTs present in three distinct 

clinical settings: sporadically, in association with neurofibromatosis type I (NF1-associated) 

or prior radiotherapy (radiotherapy-associated), respectively accounting for approximately 

45%, 45% and 10% of cases2,5. Histologically, MPNSTs are characterized by intersecting 

fascicles of monotonous spindle cells with hyperchromatic nuclei and high mitotic counts 

with focal areas of necrosis, but accurate diagnosis remains challenging due to the lack of 

specific immunohistochemical (IHC) and molecular biomarkers5,6. Among NF1-patients, 

loss of the non-mutant allele is thought to be the key driver in benign NF1-associated 

neurofibromas7. Little is known of the genetic alterations that mediate progression from 

neurofibromas into MPNST in NF1-patients or of the molecular pathogenesis of sporadic 

and radiotherapy-associated MPNSTs.
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To investigate the molecular basis of MPNSTs, we performed whole-exome sequencing 

(WES), DNA copy-number and loss-of-heterozygosity (LOH) profiling and whole-

transcriptome sequencing (RNA-seq) of a discovery cohort consisting of normal-tumor 

paired tissues of 15 MPNSTs from 12 patients (6 NF1-associated, 4 sporadic, 4 

radiotherapy-associated and 1 epithelioid MPNSTs) (Supplementary Table 1, 2). Epithelioid 

MPNST is a rare histological variant of MPNST, composed of exclusively epithelioid 

malignant cells with diffuse immunoreactivity for the S100 protein, and is not associated 

with NF16.

We identified 4 frame-shift and 1 splice-site mutations in EED (Fig. 1a, c and 

Supplementary Fig. 1). RNA-seq validated aberrant EED splicing in the splice-site mutated 

sample (Supplementary Fig. 2a). All five samples showed LOH of the EED locus, three 

samples (11T, 12T, 14T) by heterozygous deletion of the normal allele (Supplementary Fig. 

1b) and two samples (15T, 16T) by copy-neutral LOH (Supplementary Fig. 2b). This data 

suggests that samples with EED mutation have complete loss of EED function.

We further identified 2 homozygous (Hom deletion) and 5 heterozygous (Het loss) deletions 

of SUZ12 (Fig. 1a, c and Supplementary Fig. 1 and 3a). We examined RNA-seq profiles of 

the SUZ12 transcript among the 5 Het loss samples. Two samples, 9T and 12T (with EED 

H213fs) expressed full-length SUZ12 transcript (Supplementary Fig. 1b, not shown). 

Remarkably, the other 3 samples display structural alterations of SUZ12 transcript, starting 

at exon 6, exon 10 and exon 4 in 2T, 7T and 13T, respectively (Supplementary Fig. 3b–d). 

These are likely due to local genomic rearrangements of the remaining copy, which were not 

identified by standard WES analysis. Indeed, for 7T and 18T, derived from two tumors from 

the same patient, there is a DNA break in exon 10 upon manual examination of WES data 

(Supplementary Fig. 3c). We designated these cases as structural variation (SV) and Het loss 

at the SUZ12 locus, and intriguingly they all occurred in radiotherapy-associated MPNSTs 

(Fig. 1a).

EED and SUZ12 are the core components of PRC2, and together with EZH1/EZH2, 

establish and maintain the di- and tri-methylation of Lys27 of histone H3 (H3K27me2/3)8. 

EED and SUZ12 genetic alterations are mutually exclusive and are collectively found in 

80% (12/15) of all MPNSTs (Fig. 1a, c). We did not observe any genetic alterations in other 

PRC2 core members including EZH1 and EZH2 (Supplementary Table 3).

We found recurrent nonsense mutations and Hom deletion in NF1 in 87.5% (7/8) of sporadic 

and radiotherapy-associated MPNSTs (Fig. 1a and Supplementary Fig. 1). This data 

combined with the germline mutations in NF1 in NF1-associated MPNSTs suggest that NF1 

is a uniquely important tumor suppressor in MPNSTs. Alterations of the CDKN2A locus and 

of TP53 have been reported in MPNSTs9–12. We observed Hom deletion and Het loss of the 

CDKN2A locus in 73% (11/15) and 13% (2/15) of MPNSTs, respectively. We also observed 

non-synonymous mutations and Het loss in TP53 in 13% (2/15) and 20% (3/15) of 

MPNSTs. We did not identify other recurrent somatic alterations with relatively high 

frequency (Supplementary Table 3).
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Next, we used a targeted sequencing approach (IMPACT13, Supplementary Table 4) to 

characterize a validation cohort of formalin-fixed paraffin-embedded (FFPE) samples 

consisting of 37 MPNSTs and 7 neurofibromas from 32 patients (Fig. 1b and Supplementary 

Table 1). Combining the discovery and validation cohorts, we observed PRC2 mutations in 

70% (19/27) of NF1-associated, 92% (12/13) of sporadic and 90% (8/9) of radiotherapy-

associated MPNSTs (Fig. 1a–d). Genetic alterations in NF1 were identified in 82% (18/22) 

of sporadic and radiotherapy-associated MPNSTs. Genetic alterations in CDKN2A and TP53 

were found in 81% (42/52) and 42% (22/52) of all MPNSTs respectively (Fig. 1a,b). There 

is a significant co-occurrence of NF1, CDKN2A and PRC2 genetic alterations (Fleiss’ Kappa 

statistics, Kappa=0.21, p=0.001)14, suggesting that these are three critical pathways in 

pathogenesis of conventional MPNSTs. In the 7 NF1-associated neurofibromas, we 

observed few PRC2 and CDKN2A alterations suggesting they may be associated with 

malignant progression to MPNST. None of the three epithelioid MPNSTs had genetic 

alterations in the three critical pathways, suggesting that they represent a distinct entity.

To understand the effect of PRC2 loss, we performed gene expression analysis in 16 

MPNSTs (Supplementary Table 1). Principal component analysis (PCA) showed all samples 

with EED mutations or SUZ12 Hom deletion clustered together, and separated from the 

others by the first principal component (PC1) (Fig. 1a and 2a). Among the five samples with 

Het loss of SUZ12, three with SV (2T, 7T, 13T) and one with EED H213fs (12T) clustered 

among the PRC2-loss group and one with intact transcript (9T) clustered with the PRC2 

wild-type group. These observations highlight the complexity of identifying structural 

variations to accurately determine the PRC2 status in cases of Het loss.

To explore the transcriptional consequence of PRC2 loss, we generated a gene set of 

differentially expressed genes between PRC2-loss and PRC2-wt MPNSTs (Supplementary 

Table 5). Hierarchical clustering of these genes robustly separated the PRC2-loss and PRC2-

wt MPNSTs. The vast majority of genes (455/479, 95%) were upregulated in PRC2-loss 

MPNSTs, consistent with the role of PRC2 in transcriptional repression (Fig. 2b). Gene 

ontology (GO) analysis revealed that known PRC2 suppressed targets, including homeobox 

transcription factors and genes associated with development and morphogenesis, are highly 

enriched in genes upregulated in PRC2-loss MPNSTs (Fig. 2c, Supplementary Table 6). The 

gene expression of several prototypical PRC2 suppressed genes confirmed this difference 

(Fig. 2d). Gene Set Enrichment Analysis (GSEA) showed the most significantly enriched 

gene sets downregulated in PRC2-loss MPNSTs include “PRC2 module” defined by genes 

bound by PRC2 components in mouse ES cells15 (Fig. 2e, Supplementary Table 7) and the 

H3K27me3 target genes in neural precursor cells 16 (Fig. 2f) and in brain tissue17 (Fig. 2g). 

These data indicate that loss of function in PRC2 results in activation of developmentally 

regulated master regulators and imprinted genes (i.e. IGF2) that lead to distinct 

transcriptome changes.

We evaluated H3K27me3 levels by IHC in FFPE samples of MPNSTs and neurofibromas. 

While PRC2-wt MPNSTs showed robust staining of H3K27me3, PRC2-loss MPNSTs 

showed complete loss of H3K27me3 in tumor cells and preservation of the H3K27me3 

staining in stromal cells (Fig. 3a). The positive and negative immunostaining for H3K27me3 

are highly concordant with the PRC2 wt and homozygous loss genetic status, respectively 
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(Fig 3b). However Het loss of PRC2 genetic status was not predictive of H3K27me3 IHC 

staining (Fig. 3b). Among the Het loss samples with associated RNA-seq data, the 

transcriptional clustering matched the H3K27me3 IHC. This suggests that DNA sequencing 

(exome or IMPACT) alone cannot predict PRC2 functional status in all MPNSTs and that 

the H3K27me3 IHC may be more accurate.

All neurofibromas (7/7), which are PRC2 wt except for one sample with SUZ12 Het loss, 

retained H3K27me3 immunostaining (Fig. 1b, 3c and 3d). In specimens that contained the 

interface of MPNST arising from pre-existing benign plexiform neurofibromas, we observed 

transition from robust H3K27me3 staining in the plexiform neurofibroma to a clear loss in 

MPNST. These data suggest that PRC2 loss is involved in the malignant progression of 

benign plexiform neurofibroma into MPNST. Indeed, 56% (19/34) of the NF1-associated 

MPNSTs have lost H3K27me3 (Fig. 3d). Curiously, a significantly greater percentage 

(>90%) of sporadic and radiotherapy-associated MPNSTs have lost H3K27me3 staining 

(Fig. 3d), suggesting that the progression of disease and sequence of genetic inactivation of 

NF1, CDKN2A and PRC2 may be different in MPNST that arise in different clinical 

settings. Unlike NF1-associated MPNSTs that universally arise from pre-existing 

neurofibromas, sporadic and radiotherapy-associated MPNSTs rarely have identifiable pre-

existing benign nerve sheath tumors. In one of the sporadic MPNST sample (16T), the 

presence of both NF1 (D1237_splice mutation) and EED (E249fs) non-synonymous 

mutations allowed us to use their prevalence to infer the sequence of genetic events18. The 

largest subpopulation of cells (84%) contains the NF1 mutation whereas a smaller 

subpopulation (57%) contains the EED mutation, suggesting that the NF1 mutation occurred 

first during progression of this sporadic MPNST (Supplementary Fig. 4). The sequence of 

NF1, PRC2 and CDKN2A inactivation described here are largely correlation, the precise 

account requires experimental validation with sequential inactivation of each pathway in cell 

line and mouse models.

To determine whether PRC2 loss is required for MPNST oncogenesis, we screened available 

human MPNST cell lines using H3K27me3 immunoblot. We identified one MPNST cell 

line, ST88-14 derived from an NF1-associated MPNST that has lost H3K27me3. RNA-seq 

identified that ST88-14 has lost expression of SUZ12, and immunoblot confirmed the loss of 

the SUZ12 protein (Fig. 4a, b, Supplementary Fig. 5). We next introduced Flag-HA-tagged 

wild type SUZ12 (FH-SUZ12) or EED (FH-EED) into the ST88-14 cell line and into a 

PRC2-wt MPNST cell line (MPNST724) that maintained H3K27me3 levels (Fig. 4a, b). 

Only the FH-SUZ12, but not FH-EED, restored the H3K27me3 level in ST88-14 cells and 

significantly decreased cell growth (Fig. 4a–c). In MPNST724 cells, there was a mild 

increase of H3K27me3 levels with the introduction of either FH-SUZ12 or FH-EED (Fig. 

4a), but neither had any effect on cell growth (Fig. 4c). These data suggest that PRC2 loss 

contributes to oncogenesis at least in part by promoting cell proliferation and growth in the 

PRC2-loss MPNSTs.

We next examined the transcriptional and chromatin changes in ST88-14 and MPNST724 

cells with introduction of FH-SUZ12, focusing on several known PRC2 regulated genes 

(FOXN4, IGF2, PAX2, TLX1) that are significantly upregulated in PRC2-loss compared to 

PRC2-wt MPNST patient samples (Fig. 2c). At baseline, ST88-14 cells exhibit increased 
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expression of FOXN4, IGF2, PAX2, TLX1 accompanied by loss of PRC2 components 

(SUZ12 and EZH2), the PRC2-repressive mark, H3K27me3, and reciprocal gain of 

H3K4me3 and H3K27ac activation marks at their promoters (Fig. 4d and Supplementary 

Fig. 6). After introduction of FH-SUZ12 in ST88-14 cells, FH-SUZ12 localized to the 

promoters of these genes. This was accompanied by increased levels of EZH2, H3K27me3 

and decreased levels of H3K4me3 and H3K27ac at the promoter regions, as well as 

decreased transcript levels of these PRC2 target genes. These data suggest that the PRC2 

loss has direct impact on transcriptional regulation and introduction of the missing PRC2 

component has the ability to at least partially restore PRC2 function.

MPNSTs often exhibit divergent differentiation including rhabdomyoblasts, glandular, 

squamous and neuroendocrine elements6. Our study revealed a high frequency of LOF 

genetic alterations in NF1, CDKN2A and PRC2 (EED or SUZ12), demonstrating that 

MPNSTs share common molecular pathogenic pathways despite clinical and histological 

diversity. PRC2 loss activates multiple developmentally suppressed pathways, which may 

explain the frequent observation of divergent differentiation in MPNSTs. The high 

frequency of PRC2 loss suggests that the PRC2 mutational status and more accurately 

H3K27me3 IHC can be used as biomarkers for more acute diagnosis of MPNSTs.

PRC2 was initially thought to be oncogenic: PRC2 components have higher expression in 

dividing cells and are important to maintain stemness. EZH2 is overexpressed in a variety of 

cancers19,20, and activating EZH2 mutations are found in a subset of lymphomas21. 

Paradoxically, recent work suggests that PRC2 can be tumor suppressive in distinct contexts 

with LOF genetic alterations found in up to 25% in myeloid disorders and T-cell acute 

lymphoblastic leukemia22–24 and 42% in early T-cell ALL25. Notably the majority of LOF 

alterations are found in EZH222–25. Cellular studies and mouse models show that Ezh1 can 

maintain suppression of Polycomb genes in the setting of Ezh2 loss and combined Ezh1/

Ezh2 or Eed or Suz12 loss derepress Polycomb genes and cause Cdkn2a mediated growth 

arrest26–29. These findings suggest that MPNST is unique in that complete loss of PRC2 

function is important for tumorigenesis and loss of CDKN2A may be a critical cooperative 

event in addition to NF1 loss.

Data access

Exome sequencing, RNA sequencing, and DNA copy number data are deposited in dbGaP 

under accession phsXXXXX.

URLs

GENE-E, https://www.broadinstitute.org/cancer/software/GENE-E; Picard, http://

picard.sourceforge.net; Aroma.affymetrix, http://aroma-project.org/

METHODS

Human tumor tissue collection

Patient selection and consent protocols are described in the Supplementary Note. Sample 

annotation is shown in Supplementary Table 1.
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For the discovery cohort, the goal was to obtain normal DNA and tumor DNA for WES and 

SNP 6.0 array and to obtain tumor RNA for RNA-seq. A total of 15 fresh-frozen paired 

MPNST tumor-normal samples were identified. Tumor and adjacent normal tissue 

specimens were embedded in optimal cutting temperature (OCT) medium and a histologic 

section was obtained for review. Cryomolds of both tumor and normal tissues were 

macrodissected to minimize contamination prior to RNA and DNA preparation. Sample 

processing was designed to secure samples and minimize identifying information. 

Specimens with insufficient tissue amount or severely degraded nucleic acids were 

excluded.

The IMPACT assay is a hybridization capture, next-generation sequencing platform 

amenable for both fresh frozen DNA and FFPE DNA for targeted sequencing. The panel 

includes NF1, SUZ12, EED, and CDKN2A and TP5313. We validated the somatic mutational 

findings from the discovery cohort by performing IMPACT assay on the same DNA isolated 

from tumor tissue. In addition, we performed IMPACT assay on FFPE derived DNA from a 

second cohort of 37 MPNST and 7 neurofibromas from NF1 patients who were diagnosed 

with concurrent MPNST (see Supplementary Table 1).

Sample preparation and quality control

RNA was extracted from tumor and normal tissues using a modification of the DNA/RNA 

AllPrep kit (Qiagen). DNA from fresh-frozen tissues was extracted from tumor and normal 

tissue specimens using the DNeasy blood and tissue kit (Qiagen). DNA from FFPE samples 

was isolated using QIAamp DNA FFPE Tissue Kit (Qiagen). Each specimen was initially 

quantified using the NanoDrop UV spectrophotometer and further quantified with the 

Bioanalyzer assay (Agilent Technologies).

RNA sequencing and analysis

The isolated RNA was processed using the TruSeq RNA sample Prep kit (#15026495, 

Illumina) according to the manufacturers’ protocol. Briefly, the RNA was Poly-A selected, 

reverse transcribed and the obtained cDNA underwent end-repair, A-tailing, ligation of the 

indexes & adapters, and PCR enrichment. The libraries were sequenced on an Illumina 

HiSeq-2500 platform with 51bp paired-end reads to obtain a minimum yield of 40 million 

reads per sample. The sequence data was processed and mapped to the human reference 

genome (hg19) using STAR v2.330. Gene expression levels were quantified with htseq-

count31 and normalized using DESeq32. Variance of expression levels was calculated for all 

genes across samples and the 75th percentile was determined as a cutoff. Principal 

component analysis was performed on the set of genes with variance greater than that cutoff. 

We used ANOVA to define differentially expressed genes between PRC2 loss and wild-type 

samples. Genes that showed >8-fold difference in expression AND corrected FDR <0.05 

(479 genes) were used for clustering and gene ontology analysis. Hierarchical clustering was 

performed using Pearson correlation within the GENE-E software and heatmaps were 

displayed using GENE-E. Gene ontology analysis was performed using DAVID to 

discovery enriched pathways and gene ontologies33. Gene set enrichment analysis to 

discover gene sets enriched among upregulated genes in PRC2 lost samples was performed 

using JAVA GSEA 2.0 program34. The gene sets use were the Broad Molecular Signatures 
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Database gene sets c2 (curated gene sets), c5 (gene ontology gene sets), c6 (oncogenic 

signatures), c7 (immunologic signatures) as well as additional sets “PRC2_Module” and 

“ES_Core”15, totaling 6,886 gene sets.

DNA sequencing and analysis

Whole exome sequencing of DNA from fresh-frozen tissue used 1000ng (or 500ng in select 

cases) of DNA from either tumor or normal samples. DNA was subjected to shearing, end 

repair, phosphorylation and ligation to barcoded sequencing adaptors per manufacturer’s 

guidelines. The ligated DNA was size-selected for fragments between 200–400bp. These 

fragments were multiplexed and underwent exonic hybrid capture with the SureSelect 

V4+UTRs exome bait (Agilent). The captured DNA was sequenced on an Illumina 

HiSeq-2500 platform with 75bp paired-end reads. Raw sequences were aligned to the human 

genome reference sequence (hg19) using BWA35. Total read count and coverage depth are 

shown in Supplementary Table 2. Aligned data were further processed by removing 

duplicates using Picard followed by indel realignment and base quality score recalibration 

with GATK36. Single nucleotide somatic mutations and somatic indels were called by taking 

the union of calls made by MuTect37, Strelka38, and VarScan and applying a set of heuristic 

filters as described in the VarScan 2 paper39. Mutations were further filtered to remove 

variants that are present in dbSNP 137 but not in COSMIC v6440. The data was further 

analyzed and visualized using the cBio Portal41.

For the IMPACT assay, library construction and sequencing was performed by the MSKCC 

genomic core facility. Alignment, SNV, and indel calls were performed as described above. 

Copy number analysis was performed as previously described13.

SNP6.0 array and analysis

500ng of DNA from each tumor or normal tissue sample was hybridized to the Affymetrix 

SNP 6.0 arrays using protocols at the Genomic Core Laboratory at MSKCC. Allele-specific 

copy number for each tumor-normal pair of arrays was calculated using TumorBoost42 in 

the Aroma package.

Histology and immunohistochemistry

Tissue processing, embedding, sectioning, and H&E staining was performed by the MSKCC 

pathology department. Photographs were taken using an Olympus DP21 camera. 

Immunohistochemistry was performed on archival formalin-fixed, paraffin-embedded 

tumors using a standard multimer/DAB detection protocol on a Discovery Ultra system 

(Ventana Medical Systems) with appropriate negative and positive controls. For H3K27me3 

staining, we diluted an anti-trimethyl-Histone H3 (Lys27) antibody (#07-449, Millipore) 

1:250 in SignalStain Antibody Diluent (#8112, Cell Signaling).

Cell lines and in vitro analysis

MPNST724 and ST88-14 human MPNST cell lines were obtained from Jonathan A. 

Fletcher laboratory at DFCI and have been tested mycoplasma free. MPNST 724 was grown 

in RPMI with 10% FBS and ST88-14 was grown in RPMI with 15% FBS. cDNA for wild-

type human EED and SUZ12 in pDONR vectors were obtained from Harvard PlasmidID 
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and cloned into MSCV-based retroviral vector with FLAG-HA (FH) tag (Addgene plasmid 

41033)43 using Gateway technology. To generate stably expressing cell lines, MPNST724 

and ST88-14 were infected with empty vector, MSCV-FH-EED, MSCV-FH-SUZ12 and 

selected using puromycin (2 μg/ml for 72 hours). Growth curve of the infected cells was 

performed using Alamar blue cell viability reagent (Life Technology, DAL1100).

For immunofluorescence of infected cell lines, cells were fixed in 4% paraformaldehyde for 

10 minutes, permeabilized in 0.1% Triton X-100, and blocked for 1 hours using 10% goat 

serum. The cells were then incubated for 2 hours in primary antibody (H3K27me3, #9733, 

Cell Signaling, 1:400) followed by secondary antibody (Alexa-594 conjugated goat-anti-

rabbit, Invitrogen). Slides were mounted using Prolong Gold with DAPI (Invitrogen). 

Photographs were taken on a Nikon microscopy using a Roeper Scientific camera.

Western blotting

Cell lysates were prepared in RIPA buffer (#9806, Cell Signaling) supplemented with Halt 

protease and phosphatase inhibitor cocktail (#78440, Thermo Scientific). Equal amounts of 

protein, as measured by BCA protein assay (#23225, Thermo Scientific), were resolved in 

NuPAGE® Novex® 4–12% Bis-Tris Protein Gels (#NP0321BOX, Life Technologies) and 

transferred electrophoretically onto a Nitrocellulose 0.45 μm membrane (#162-0115, 

BioRad). Membranes were blocked for 1 hour at room temperature in 5% BSA in TBST 

before being incubated overnight at 4°C with the primary antibodies diluted at 1:1000 in 5% 

BSA in TBST. NF1 (#sc-67, Santa Cruz, 1:500), EZH1 (#ab13665, Abcam, 1:1000), EZH2 

(#5246, Cell signaling,1:1000), SUZ12 (#3737, Cell Signaling, 1:1000), EED (#ab4469, 

Abcam, 1:1000), H3K27me3 (#9733, Cell Signaling, 1:1000), H3K27Ac (#ab4729, Abcam, 

1:1000), HRP-conjugated Total H3 (#12648, Cell Signaling, 1:1000), and HRP-conjugated 

Actin(#ab49900, Abcam, 1:5000) antibodies were used.

Choromatin immunoprecipitation (ChIP)-qPCR

Chromatin isolation from MPNST724 and ST88-14 cells with different experimental 

conditions was performed as previously described44. For SUZ12 re-expression with 

associated vector control (Flag-HA-tagged-beta glucuronidase (GUS)), chromatin was 

isolated approximately 2 weeks after lentiviral infection. EZH2 (#5246, Cell signaling), 

SUZ12 (#3737, Cell Signaling), H3K27me3 (#9733, Cell Signaling), H3K27Ac (#ab4729, 

Abcam), H3K4me3 (#39159, Active Motif) antibodies were used for ChIP. The human 

ChIP-qPCR primer pairs sequences are in Supplementary Table 8.

RNA isolation and qRT-PCR

For tissue culture cells, RNA was isolated using E.Z.N.A. total RNA kit (Omega). For qRT-

PCR, RNA was reverse transcribed using High-Capacity cDNA Reverse Transcription Kit 

(ABI) and PCR was run using Power SYBR Master Mix (ABI) on a Realplex machine 

(Eppendorf). Expression was normalized to the ribosomal protein RPL27. The primer pairs 

used are listed in Supplementary Table 8.
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Statistical analysis

Fleiss’ kappa statistic was used to assess the strength of co-occurrence between NF1 

mutation, PRC2 mutation, and CDKN2A mutation. R package irr was used to calculated the 

statistic and the p value 14.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Most frequent genetic alterations in MPNSTs (NF1-associated, sporadic, radiotherapy-
associated and epithelioid) and neurofibromas
(a, b) Non-synonymous single nucleotide variants (SNVs) and copy number variants 

(CNVs) in 15 MPNSTs with matched normal pairs by WES, SNP6.0 and RNA-seq (a), and 

in 37 MPNSTs and 7 neurofibromas by targeted sequencing (IMPACT) (b). Bracket 

indicates two different tumor samples from the same patient. (c) Schematics of the non-

synonymous SNVs observed in the PRC2 core components, EED and SUZ12, in 15 WES 

and 37 custom IMPACT MPNST samples. (d) Schematic of the overlap of mutations 

affecting NF1, PRC2 components (EED or SUZ12) and CDKN2A in all MPNSTs (NF1-

associated, sporadic, radiotherapy-associated and epithelioid). Fleiss’ Kappa statistics, 3 way 

comparison of NF1, CDKN2A and PRC2 (EED or SUZ12) genetic alteration suggested that 

they significantly co-occur, Kappa= 0.21, p=0.001.
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Figure 2. PRC2–loss MPNSTs exhibit distinct gene expression pattern from PRC2 wild-type 
MPNSTs, signifying activation of developmentally suppressed pathways
(a) Principal component analysis of the MPNST whole-transcriptome revealed that the 

PRC2 wild-type (wt) and PRC2-loss (SUZ12 loss and EED loss) samples segregate by 

principal component 1 (PC1). Each sample is color coded based on their corresponding 

PRC2 mutational status derived from WES except for S21 and S22 which are based on 

manual examination of the RNA-seq for mutations in the PRC2 components. Green: PRC2 

wt; blue: SUZ12 loss; red: EED loss. (b) Heatmap of significantly differentially expressed 

genes between PRC2-loss and PRC2-wt MPNSTs identified by RNA-seq. Clustering was 

based on most differentially expressed 479 genes with FDR <0.05 and fold-change >8.0 

(Supplementary Table 2). Samples are color coded based on PRC2 mutational status, green: 

PRC2 wt; blue: SUZ12 loss; red: EED loss. Scale bar, mean normalized fold change by log2. 

(c) Gene Ontology analysis of the differentially upregulated genes in PRC2-losscompared to 

PRC2-wt MPNSTs. (d) Gene expression by RNA-seq of a representative group of 

developmental master regulators and imprinted genes in PRC2-loss and PRC2-wt MPNSTs. 

Error bars +s.e.m. (e–g) GSEA plots of the ranked list of the differentially expressed genes 

between PRC2-loss and PRC2-wt MPNSTs using three gene sets: PRC2 module (e), the 

H3K27me3 targets in brain (g) and neural precursor cells (f).
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Figure 3. H3K27me3 IHC significantly correlates with PRC2 genetic status and H3K27me3 loss 
characterizes progression from neurofibroma to MPNST
(a) Representative H&E and H3K37me3 IHC images of NF1-associated, sporadic and 

radiotherapy associated MPNSTs. Scale bars: 100 μm. (b) Correlation of PRC2 genetic 

status by WES, RNA-seq and custom targeted sequencing and H3K27me3 IHC status. (c) 

Representative H&E and H3K27me3 IHC images of neurofibroma, NF1-associated 

MPNST, and the interface of plexiform neurofibroma transition into MPNST. (d) 

Distribution of PRC2 loss (blue) and PRC2 presence (red) by H3K27me3 IHC in NF1-

associated, sporadic, radiotherapy-associated, and epithelioid MPNSTs, and neurofibromas. 

Fisher’s exact test was used to calculate the p value.
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Figure 4. PRC2 loss promotes cell proliferation and growth in PRC2-loss MPNST
(a) Immunoblots demonstrating SUZ12 loss and corresponding loss of H3K27me3 in 

ST88-14, a NF1-associated human MPNST cell line compared to a sporadic human MPNST 

cell line, MPNST724, with intact PRC2 and retained H3K27me3 expression. Introduction of 

exogenous Flag-HA-tagged SUZ12 (FH-SUZ12), but not Flag-HA-tagged EED (FH-EED) 

in ST88-14 restores the H3K27me3 protein levels. *: exogenous Flag-HA-tagged SUZ12 or 

EED; **: endogenous SUZ12 or EED. (b) Immunofluorescence (IF) of H3k27me3 

demonstrating the restoration of H3K27me3 at the cellular level by introducing FH-SUZ12 

in ST88-14 MPNST cell line with SUZ12 loss. Scale bars: 100 μm. (c) Representative 

growth curves of MPNST724 and ST88-14 demonstrating that introduction of FH-SUZ12, 

but not FH-EED, in the SUZ12-deficient ST88-14 cells leads to significant growth 

retardation, whereas it had no effect in MPNST724 cells. Similar results have been obtained 

in at least 3 independent experiments. (d) ST88-14 and MPNST724 cells were infected with 

vector control (blue) and FH-SUZ12 (green). Plots of the qRT-PCR expression (expressed 

as 2−ΔΔCt) and ChIP-qPCR promoter localization (expressed as % input) of SUZ12, EZH2, 

H3K27me3, H3K4me3, H3K27ac, and IgG control of FOXN4, IGF2, PAX2, and TLX1 

genes are shown. Error bars +s.e.m. n=3.
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