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The photocathodes are essential in photoelectrochemical systems for harvesting solar
energy as green fuels. However, the light-absorbing p-type semiconductor in them usually
suffers from carrier recombination issues. An effective strategy to address it is fabricating
the p-n heterojunction to create an interfacial electric field. However, plenty of deposition
process of the n-type layer for this purpose requires either sophisticated instruments or
subsequent treatments, which may damage the vulnerable p-type structure. Herein, we
report a mild approach for a ready-to-use n-type layer with full functionality. Structural
analyses proved the successful coating of a uniform titania layer (up to 40 nm) over Cu2O
without damaging its structure. Owing to the high Ti3+ content, the layer possesses
excellent charge transport ability and requires no additional annealing. The heterojunction
effectively facilitates the carrier separation and positively shifts the photocurrent onset
potential for 0.2 V. The Mott–Schottky plot and the impedance study reveal an enhanced
carrier collection with reduced charge transfer resistances. Such a nano-heterojunction
can be further loaded with the hydrogen evolution catalyst, which almost doubles the
photocurrent with an extended lifetime than that of the pristine Cu2O nanoarray. This
approach puts forward a potentially scalable and efficient choice for fabricating
photoelectrochemical devices.

Keywords: titanium oxide, electrochemical deposition, heterogeneous nanostructure, cuprous oxide photocathode,
p-n junction

INTRODUCTION

Oxide photocathodes have attracted great attention for the photoelectrocatalytic production of
hydrogen fuels by solar water splitting (Li et al., 2020). Particularly, Cu2O has been demonstrated as
one of the most promising choices among many light-absorbing materials. The intrinsic Cu
vacancies as shallow acceptor levels lead to decent p-type characteristics (Olsen et al., 1982).
However, challenges are limiting the performance of photocathodes. Specifically, many
photoelectrodes suffer from surface redox instability and self-reduction by the interfacial
accumulation of photoelectrons (Tilley et al., 2014). More importantly, the unsatisfactory charge
separation and internal charge transport strongly degrade the practical efficiency from the theoretical
expectation (Wick and Tilley, 2015; Luo et al., 2016). The short diffusion length of charge carriers in
Cu2O restricted the thorough extraction of photoelectrons (Musselman et al., 2010). It has been
demonstrated that various eye-of-sight deposition techniques can be used for the Cu2O structure
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with minor curvatures to address these challenges (Paracchino
et al., 2012; Minguez-Bacho et al., 2015), such as the thermal
evaporation or e-beam deposition, providing a straightforward
and effective solution to load diverse functional layers (Dubale
et al., 2015; Han et al., 2015). The multilayered integration of
desired components greatly enhances both the efficiency and
stability of Cu2O photocathodes (Zhang et al., 2013; João et al.,
2016). For instance, using the rationally designed Ga2O3/TiO2/
RuO2 overlayer, the photocathode exhibited an unprecedented
stable high internal quantum efficiency over 120 h (Pan et al.,
2018).

On the other hand, in recent years, the morphology control of
the p-type light-absorbing layer has been recognized as another
answer to effectively balance the surface area and charge
transport pathways (Chen et al., 2012; Concina et al., 2017).
The state-of-the-art efficiency has been achieved by engineering
Cu2O from flat films into nanowire arrays (NWAs) to facilitate
photocarrier extraction (Qu et al., 2019). By incorporating the
merit of all measures, the Cu2O NWA-based photocathodes were
manifested as the landmark featuring their excellent
photoelectrochemical (PEC) efficiency and stability (Huang
et al., 2013). Unfortunately, these three-dimensional
architectures also drastically increased the difficulty of the
fabrication processes. Given the great curvatures and existing
shaded area on NWAs, only atomic-layer deposition is capable of
realizing the uniform heterojunctions with intimate contact of
components (Luo et al., 2016). Undoubtedly, the realization of the
desired coating is the key to fully eliciting the potential of the
complicated nanostructures.

Specifically, titanium oxide appears to be one of the essential
components in the coating. It does not only prevent corrosions of
Cu2O from the electrolyte solution but also rectifies the flow of
photogenerated carriers (Li et al., 2015). The heterojunction
between Cu2O and titanium oxide via various techniques has
been demonstrated as essential for these high-performance
photocathodes (Siripala et al., 2003; Lumley et al., 2019).
However, as we stated, there are only extremely limited
approaches that can be used for Cu2O NWAs (and certainly
for other p-type nanostructures). Besides, titanium oxide has
other uses (Azevedo et al., 2016; Yang et al., 2018; Wang et al.,
2021). The most well-established yet almost the only route
without post-treatments, the atomic-layer deposition
technique, demands sophisticated instrumentation with
expensive precursors (organometallic complexes) and
experienced selection of conditions that delivers great impacts
to the properties of the coating (Dai et al., 2014). On the other
hand, there are incompatibility issues during the chemical
depositions, whereas many of the bared p-type structures are
instable. For instance, the hydrolysis of Ti alkoxide forms
uniform titania coatings but requires following high-
temperature annealing for the crystallization, which may be
destructive for the bottom nanostructures (Paracchino et al.,
2011). Therefore, a facile and mild titanium oxide deposition
method is highly desired.

Specifically, there is no ready-to-use and uniform coating of
semiconductive titanium oxides on Cu2O NWAs via chemical
room temperature chemical route yet (Jang and Lee, 2019). The

chemical limitation in aqueous electrolytes has been suggested by
the Pourbaix diagram of the Cu element (Yang et al., 2017). The
compatible conditions for Cu2O are restricted to near-neutral
solutions with a narrow redox potential range. Notably, many
previously reported electrodeposition of titanium oxides in harsh
pH and oxidative conditions are not applicable (Eisenberg et al.,
2014), for instance, the cathodic coating using the peroxide-
dissolved Ti complex or anodizing Ti3+ in the strongly acidic
solution (Kavan et al., 1993;Matsumoto et al., 2000). Nonetheless,
titanium oxide layers from oxidizing Ti(III) over other
nanostructures effectively formed various junctions, exhibiting
outstanding photochemical or PEC properties (Toe et al., 2019).
Unfortunately, none of these electrochemical processes is
applicable to Cu2O nanostructures.

In this work, we successfully developed a new electrochemical
route to realize the coating of functional titania over Cu2O
NWAs. Owing to the mild environment and the deliberately
controlled transient anodization, the coating thickness can be
regulated with the well-maintained original NWA morphology.
More importantly, the great portion of Ti3+ in the structure
directly endows the coating’s good charge extraction and
transport ability. Specifically, the almost tripled photocurrent
(from 1.17 to 3.07 mA/cm2, 0.55 V vs. RHE) and the positive
shift of onset potential of the Cu2O–TiOx NWA photocathodes
clearly prove the formation of a heterojunction facilitating the
directional flow of photoelectrons. Moreover, combining its
functionality with the assistance of the HER catalyst further
raises the activity of the photocathodes. These features of the
photocathodes present a new promising route of using a
rationally designed electrochemical process to fabricate
uniform and functioning heterostructure under mild conditions.

RESULTS AND DISCUSSION

Figure 1 schematically illustrates the preparation process of the
Cu2O/TiOx/Ni NWA photocathodes. The bottom Cu2O NWAs
were prepared by a two-step method using our previously
reported anodization process for uniformed Cu(OH)2 NWAs,
followed by a spontaneous thermal conversion to Cu2O in an
inert atmosphere (Cao et al., 2020). Morphologies of the
photocathode at different fabrication stages were shown in
scanning electron microscope (SEM) graphs (Figures 2A–D).
The process was initiated by preparing uniform high-density
Cu(OH)2 NWAs, with an average length of approximately 9 μm.
After annealing in N2, Cu(OH)2 was converted into Cu2ONWAs.
As seen from Figure 2B, the transformed arrays consisted of
twisted and slightly shortened nanowires with an average length
of 6.8 μm. The typical obtained Cu2O/TiOx NWAs are shown in
Figure 2C. The thin layer of amorphous TiOx can barely be seen
on the SEMmicrograph, whereas some of the adjacent NWs were
seized as bundles by the coating. The thickness of the TiOx layer
was estimated using transmission electron microscope (TEM)
(Figure 2E) and high-angle annular dark-field scanning
transmission electron microscope/energy dispersive X-ray
mapping (Figure 2H) as approximately 30–50 nm. The aspect
ratio slightly decreased but still could provide shortened diffusion
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paths for the photoelectron to the solid-electrolyte interface than
the flat structures. Eventually, a thin layer (~3 nm) of Ni was
deposited onto the structure as the hydrogen evolution reaction
(HER) catalyst, with no evident morphological impact
(Figure 2D).

The nature of the electrodeposited titanium oxide coating
layer was revealed by TEM microscopy. Figure 2E shows the

typical structure of Cu2O/TiOx core-shell NWs in the array,
clearly showing that Cu2O NWs were encapsulated by an
amorphous layer. The titania layer was approximately 40 nm
thick and assembled by primary clusters smaller than 5 nm.
Micrographs showed intimate contacts of this coating layer
with the inner Cu2O NW. A minor porosity and notable
roughness can be found as well. The selected area electron

FIGURE 1 | Schematic illustration of synthetic procedure of Cu2O/TiOx/Ni-NWAs heterostructure film.

FIGURE 2 | Morphology of Cu2O/TiOx/Ni composite electrode formation process of a sample (A) Cu(OH)2 NWA, (B) bare Cu2O NWA, (C) Cu2O/TiOx, and (D)
Cu2O/TiOx/Ni (insets are their corresponding cross-section images) NWA; (E) TEM image and (F) selected area electron diffraction pattern of Cu2O/TiOx NWs; (G)
HRTEM high magnification images of Cu2O/TiOx NW with its line-scanned element distribution profile and (H) elemental mapping of O, Ti, and Cu.
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diffraction pattern (Figure 2F) only exhibited rings
corresponding to (111), (200), (220), and (311) d-spacing of
Cu2O, suggesting its polycrystalline nature. No evidence of
crystalized titanium oxides was observed either, which agrees
with the X-ray diffraction (XRD) result (Figure 3A). High-angle
annular dark-field scanning transmission electron microscope/
energy dispersive X-ray mapping (Figure 2H) illustrates the
elemental distribution line profile and mapping across a
typical NW. The signal of oxygen sketches the overall shape of
the NW, whereas Cu and Ti panels clearly confirm the spatial
relationship of a core-shell structure.

The phase composition of the heterostructure was confirmed
by XRD as well (Figure 3A). Despite the diffraction of 43.3 and
50.4° corresponding to (111) and (200) d-spacing of metallic Cu
substrate (JCPDS 58-1326), respectively, all other peaks can be
indexed to the pattern of cubic Cu2O (JCPDS 75-1531). No other
diffraction peaks were found on the XRD pattern, suggesting the
TiOx layer was amorphous. Raman spectroscopy was used to
further study the composition regarding the existence of
amorphous oxides. Figure 3B shows the Raman spectra of
Cu2O and Cu2O/TiOx samples. Common features on both
spectra at 109, 148, 416, 515, and 635 cm−1 can be assigned to
the vibrational modes of Cu2O lattices (Maldonado-Larios et al.,
2020). Different from the XRD technique, TiOx (amorphous) on
the Cu2O surface is visible to the Raman spectroscopic study. The
bands at 568 and 608 cm−1 that emerged on the spectrum of
Cu2O/TiOx sample are associated with the deformation of out-of-
plane rings (Ohsaka et al., 1978; Jumat et al., 2017). Given that no
other peaks were observed, the Raman spectroscopy strongly
supported the existence of titania as an amorphous form.
Moreover, the successful coating was further confirmed by the

ultraviolet–visible diffuse reflectance spectroscopy of Cu2O
NWAs and Cu2O/TiOx NWAs samples (Supplementary
Figure S1). The latter had much stronger light absorption in
ultraviolet, indicating the deposition of the TiOx layer over the
entire sample. The absorption in the visible range slightly
decreased (in K-M expression), which is likely due to the
increased scattering. Nonetheless, from the view of PEC
efficiency, this is negligible on the scale of the reflection rates
(Supplementary Figure S1).

X-ray photoelectron spectroscopy survey was carried out to
collect the valence state and chemical environment information
of elements in the Cu2O/TiOx photocathode. The full spectral
range scans (Supplementary Figure S2) confirmed the elemental
composition of Cu, O, and Ti. The fine scan of the Ti 2p spectrum
(Figure 3C) shows the typical bands of Ti 2p3/2 and Ti 2p1/2 core
levels at 458.5 and 464.9 eV, respectively. The experimental
curves were well fitted with the Gaussian peaks model after
Tougaard background subtraction, whereas the valence states
of Ti can be identified by deconvoluting the fitting result,
consisting of both Ti3+ and Ti4+. To our surprise, the
percentage of Ti3+ is as high as 38% in the coating layer
(Supplementary Table S1). The signal from O1s is slightly
more complicated (Figure 3D), showing three different
chemical environments: metal oxides (Ti-O at 529.1 and Cu-
O 530.7 eV), hydroxyl (535.6 eV), and absorbed water
(532.3 eV). Because the sample was not annealed, the
carboxylic group should be the result of residue oxalate in
the electrolyte. It is worthy to note that the signal from Cu
in Cu2O is stronger and higher than the expectation of having a
screening effect from the titania shell. According to TEM
(Figures 2E–G), this could be from the recrystallized small
Cu2O clusters during the deposition process. In short, the X-ray
photoelectron spectroscopy result confirms the overall
composition of the sample as oxides, but the coating layer
cannot be simply regarded as TiO2, given its extremely high
level of Ti3+. On the other hand, apparently, the coating does not
contain a large number of hydroxyl groups. This can be
beneficial to charge transport by reducing the chance of
recombination (Carp et al., 2004).

The structural analysis discussed earlier proved the realization
of our electrochemical route. Chemical compatibility is the
essential challenge in this deposition process. Given the
vulnerability of Cu2O, the electrolyte solution has to be near
neutral. On the other side, Ti3+ is unstable as well, which
hydrolyzes when pH > 4 and can be easily oxidized into
hydrated TiO2 (Johnson et al., 2017). Hence, all reported cases
were performed under very low pH with relatively stable
substrates. We took several measures to stabilize Ti3+ and
bring it to a workable condition for Cu2O. A water/ethylene
glycol solution was used instead of a typical pure aqueous system.
Hydrolysis of Ti(III) can be notably reduced with the interaction
between high valent ions with the polyol environment. An
optimal composition was experimentally determined as 50%
(Supplementary Figure S3). Chelating/complex agents were
introduced to further stabilize Ti(III) species (Lavacchi et al.,
2021). The oxalic acid was selected based on both the coating
coverage and photocurrent of the product.

FIGURE 3 | (A) XRD pattern of typical Cu2O/TiOx NWA sample; (B)
Raman spectra of Cu2O and Cu2O/TiOx NWA samples; (C,D) X-ray
photoelectron spectroscopy signal of Ti 2p and O 1s from Cu2O/TiOx,
respectively.
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To further achieve the uniform TiOx distribution on the Cu2O,
other important parameters were carefully evaluated as well.
Surfactants have been proved beneficial in many
electrodeposition systems. For this system, we found that
Triton X100 could moderately improve the quality of the
product (Supplementary Figure S4), which likely takes effect
by facilitating the wetting and diffusion of electrolytes in the
NWAs (Liu et al., 2020). Again, the deposition temperature gave
almost no impact on TiOx (Supplementary Figure S5),
indicating that the rate-determining step in the deposition is
dominated by temperature-insensitive factors.

Furthermore, the typical linear sweep voltammetry (LSV)
curve (Figure 4E) of this anodic reaction demonstrates more
details of the process. Despite a minor side reaction from the
substrate (AI peak), anodic signals form one broad peak. Such a
feature suggests the chemical inhomogeneity of Ti(III) species, as
they should be a series of hydroxyl oligomers (Qin et al., 2020).
Indeed, a minor Tindall effect was found with the deposition
electrolyte “solution” (or should be called “sol”), although it is
stable for several hours. The stability of the electrolyte is sufficient
for us to prepare approximately six parallel samples at one time,
so it has high reproducibility. The distance between the quartz
electrolytic cell (10 × 10 cm2) and the light source is 5 cm, which
needs to meet the luminous power of up to 100 mW. The working
area of the electrode is 1 × 1 cm2.

Different electrochemical techniques were considered as well.
Ideally, the electrodeposition can be performed using various
techniques, such as the galvanostatic or potentiostatic process, or
transient methods such as linear potential scans or AC controls.
However, as we tested, none of the galvanostatic or potentiostatic
processes produced reliable and reproducible results. This could
be due to the large surface conductivity change during the
deposition. On the contrary, directly using the LSV scan
worked quite well for the deposition. In addition, the scan rate
can be used as a handy tool to kinetically discriminate reactions,
which reduces the redox corrosion to Cu2O. In our case, severe
destruction to the NWA structure or insufficient deposition was
observed with inappropriate scan rates (Supplementary
Figure S6).

Moreover, fine control of the thickness of TiOx can be
achieved by regulating the anodization charge during the
deposition process (Figure 4). Figure 4A shows the typical
relatively smooth surface of the pristine Cu2O structures
before the deposition of TiOx. After that, as the anodization
progressed, amorphous TiOx was gradually loaded onto the Cu2O
surface (Figures 4B–D) with increasing amounts. At the anodic
charge of 0.5 C cm−1 (Figure 4B), the Cu2O surface was
roughened with the discrete coating of approximately 10 nm,
which is not sufficient to completely hinder the photo-corrosion
of Cu2O yet. Meanwhile, a minor improvement to the
photocurrent was observed (Supplementary Figure S7). As
the charge increased to 0.9 C cm−1, more amorphous TiOx

was loaded onto Cu2O, whereas the thickness was measured as
approximately 20 nm (Figure 4C). In the finishing stage, the
Cu2O NWs were fully covered by the deposited TiOx layer, with
the coating thickness eventually reaching 40 nm (Figure 4D). The
complete deposition notably improved water reduction
photocurrents of the NWA photocathode from 1.35 to
4.15 mA/cm2 at 0.55 V vs. RHE (Supplementary Figure S7).
In principle, further thicker coating might be possible by
optimizing conditions. However, for our current purpose in
the PEC application, coating less than 50 nm is reasonable and
similar to the typical thickness of reported titanium oxide layers
(Musselman et al., 2010).

The PEC performance confirmed the functionality of the
coating layer, as shown in Figure 5. Specifically, LSV scans of
pristine-Cu2O, Cu2O/TiOx, and Cu2O/TiOx/Ni photocathodes
were collected in 0.5-M sodium phosphate buffer under chopping
AM1.5G illumination. The current density–potential curves
clearly show that Cu2O/TiOx photocathode had a significantly
enhanced photoactivity, in which photocurrent density reached
−3.0 mA/cm2 at 0.55 V vs. RHE, whereas the pristine-Cu2O only
had -1.1 mA/cm2 parallelly. Moreover, with Ni cocatalyst loaded
onto Cu2O/TiOx photocathodes, the photocurrent density could
be further enhanced to −4.7 mA/cm2 at 0.55 V vs. RHE, which is
over four times higher than that of pristine Cu2O photocathode,
showing a significant enhancement in photo-response that
resulted from the effective heterojunction formed inside of
Cu2O/TiOx. Furthermore, Cu2O/TiOx/Ni photocathode had a
more positive onset potential of 0.82 V vs. RHE, 0.18 V positive to
the Cu2O photocathode, as shown in Figure 5A. Both of these
phenomena indicate that the Cu2O/TiOx/Ni interface could

FIGURE 4 | Chronology of TiOx formation in potentiodynamic
anodization process: (A) Scanning electron microscope images of bare Cu2O
NWAs; (B–D) Corresponding scanning electron microscope images showing
morphological evolution of amorphous TiOx along with increasing
anodization charge. (E) Typical LSV curve of anodizing a piece of Cu2O foil
with rate of 5 mV/s, data points labeled with charges specifying samples
examined in parts b–d and (F) schematic model to formation of Cu2O/TiOx

NWAs.
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significantly improve the utilization of photocarriers with the
smaller hindrance and the lower activation energy barrier in
comparison with the pristine Cu2O surface.

As is shown in Figure 5B, the TiOx coating and Ni cocatalyst
notably benefited the stability of the photocathodes. The
photocurrent of pristine-Cu2O photocathode decreased by
approximately 60% in 40 min. SEM (Supplementary Figure
S8) image as pieces of evidence that the NWs were seriously
damaged and deformed. Energy dispersive X-ray (EDX) analysis
confirms the decrease of oxygen content, indicating that the Cu2O
was considerably reduced. This agrees with the typical photo-
corrosionmechanism of Cu2O (Toe et al., 2019).With the coating
of the TiOx layer, the stability of the photocathode was notably
improved. The photocurrent density decreased by approximately
40%. It is reasonable to speculate that it was still due to the self-
reduction reaction, according to the EDX result. Metallic Cu
nanoparticles can be distinctly discriminated after the test
(Supplementary Figure S8D), implying the leakage of Cu to
the electrolyte. Furthermore, the location of the speciated Cu
islands indicates that the photoelectrons have been extracted to
the TiOx part. Otherwise, the reduction of Cu2O should not
produce Cu crystallites outside the coating. Nonetheless, HER
was not the favored reaction over the surface due to lacking HER
sites. Once the necessary catalyst (Ni) was integrated, the
photocathodes became much more stable with better PEC
efficiency. SEM and EDX (Supplementary Table S2)
confirmed that the morphology and composition of Cu2O/
TiOx/Ni photocathode were well maintained after the stability
test. Only very few bright metallic Cu islands can be found on the
surface of the photocathode, which validated the functionality of
the cocatalyst. It is worthy to emphasize that the coating of this
single TiOx layer is helpful for the photoelectron collection from
Cu2O but still not the ultimate solution to the system. Clearly, an
additional measure is necessary to fill out the pores, and the
efficiency of the photocathodes can be further improved.
Nonetheless, the deposition of TiOx solved one of the most
important yet challenging steps for the functionalization of Cu2O.

The key advantage of the nanostructure approach is the ability
to improve the charge transport and minimize the recombination
by constructing heterojunction and providing a stable support

structure for the cocatalyst. The incident photon-to-current
efficiency (IPCE) obtained from the LSV measurement was
greatly improved. As shown in Figure 5C, the IPCE for the
Cu2O/TiOx/Ni photocathode is reasonably higher than that of the
pristine-Cu2O across the whole wavelengths, especially in the
visible region between 420 and 470 nm.

To understand the details of the charge transfer in the
photocathodes, we performed an electrochemical impedance
spectroscopy (EIS) study, which is a powerful frequency
domain analysis technique for investigating electrical
characters of interfaces (Chen et al., 2017). Figure 6A shows
the impedance data of parallelly tested samples with complex
coordinates as Nyquist plots. The very high-frequency region on
the lower left corresponds to the series resistance and response
from the counter electrode, which is approximately 5Ω for all
samples. Semicircles on the plots represent the impedance of
interfaces or electrochemical processes, whereas the diameters of
semicircles are equal to the corresponding resistances.
Straightforwardly, a larger semicircle correlates to worse
charge transportation through that interface. The linear
portion of the lower frequency, so-called a Warburg element,
represents the diffusion-controlled impedance (Kecsenovity et al.,
2017). Visually, the charge transfer difference of Cu2O, Cu2O/
TiOx, and Cu2O/TiOx/Ni photocathodes can be clearly addressed
in the plots (Figure 6A). The step-by-step architecting by the
TiOx coating and cocatalyst loading gradually lowered the overall
charge transport impedance. The fitting result (Supplementary
Table S3) indicates that the Cu2O/TiOx samples have a much
smaller Rct2 in comparison with pristine-Cu2O, which benefits
from the promoted charge separation and transport under the
assistance of the Cu2O–TiOx heterojunction. Meanwhile, CPE1
has increased several times, implying a capacitive feature on the
Cu2O–TiOx interface. All interfacial resistances were further
reduced by Ni cocatalyst loading. Particularly, CPE2 is notably
smaller, suggesting less charge accumulation on the
photocathodes because of the expedited HER pathway.

Figures 7A–C show the Mott–Schottky (M-S) measurement
results of the photocathodes. The measurement can be used to
determine the type of semiconductors, flat band potentials, and
carrier densities (Patel et al., 2017; Sivula, 2021). Using the

FIGURE 5 | Current-potential (I–V) characteristics curve, stability, and IPCE test (A) I–V curves under chopping simulated AM 1.5G illumination (B) stability
measurements with constant bias at 0.6 V vs. RHE and under simulated AM 1.5G illumination (C) IPCE of pristine Cu2O NWAs, Cu2O/TiOx NWA, and Cu2O/TiOx/Ni
NWA samples (all tests performed in pH = 6 electrolytes).
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following equation, important semiconductor parameters were
linked together:

1
C2

SC

� 2
eNεεoA2

[(V − Vfb) − TkB
e

]
where CSC is the space-charge capacitance, V is the applied
potential, Vfb is the flat band potential, ε is the dielectric
constant of Cu2O, ε0 is the permittivity of vacuum, A is the
area, N is the carrier density, e is the electron charge, kB is the
Boltzmann’s constant, and T is the absolute temperature.

According to the equation discussed earlier, intercepts of
the curve in M-S plots were used to determine Vfb. For the
TiOx (Supplementary Figure S9) on metal and the bared
Cu2O NWA (Figure 7A, a relatively straightforward result
can be obtained indicating their n-type and p-type
semiconductive nature, respectively. However, in the case

of the possible frequency dispersion caused by nonideal
behaviors of electrode capacitances, their M-S correlations
were plotted using a series of frequencies. The dataset suggests
the Vfb of the Cu2O photocathode as 0.78 V vs. RHE. For
Cu2O/TiOx and Cu2O/TiOx/Ni photocathodes, large
frequency dispersion was observed. A precise determination
of their flat band potentials is unrealistic, although their Vfb

can be speculated to be similar to pristine-Cu2O or with minor
positive shifts. On the other hand, the measurements manifest
the carrier density difference between the three electrodes.
Specifically, the reciprocal of slopes on the tangents are
proportional to N, the carrier densities in the space charge
region. Despite the frequency dispersion, the slopes of Cu2O/
TiOx are an order smaller than pristine-Cu2O, suggesting
more responding charge carriers in the space charge
region. This increment hints at a more efficient extraction

FIGURE 6 | (A) Nyquist plots of different electrodes in 0.5 M phosphate
buffer under light irradiation (λ = 455 nm) with electrochemical impedance
spectroscopy at a DC potential of 0.5 V vs. Ag/AgCl in AC potential frequency
range of 10 to 1 Hz, inset shows zoomed-out view with fewer details; (B)
schematic band diagram of Cu2O/TiOx/Ni photocathode representing internal
charge transfer direction, with inset showing equivalent circuit for
electrochemical impedance spectroscopy analysis.

FIGURE 7 |Mott–Schottky plots (A–C) for bared Cu2O, Cu2O/TiOx, and
Cu2O/TiOx/Ni photocathodes, respectively. Measurements performed from
0.0 to 1.0 V vs. Ag/AgCl in pH = 6.0 0.5 M potassium phosphate buffer using
multi-sine staircase potential impedance technique.
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of photoelectrons and less recombination in the bulk.
According to the structure of the photocathodes, this
beneficial effect shall be attributed to the electric field
formed on the heterojunction interface, which alters the
carrier distribution in Cu2O and subsequently notably
facilitates the carrier extraction.

CONCLUSION

In short, we successfully achieved the aimed titania
electrodeposition in near-neutral conditions for preparing
uniform heterojunction over a vulnerable p-type
semiconductor nanostructure. Due to the existence of a large
portion of Ti3+, this electrodeposited layer directly exhibited a
charge transport ability without any post-treatment. Both the
onset potential and PEC efficiency of the NWA photocathodes
were greatly improved. By further incorporating with Ni-based
HER cocatalyst, the accomplished photocathodes exhibited
a photocurrent approximately four times of the pristine-
Cu2O NWAs, with a much longer lifetime. Electrochemical
impedance spectroscopy and M-S measurements revealed that
the TiOx layer facilitated the charge transport inside the space
charge region. This protocol is reliable and effective but
requires no sophisticated instrumentation. These merits
make it easily applicable to other unstable nanostructures.
Moreover, these results demonstrated the possibility of
electrochemically fabricating cost-effective photoelectrodes
with both earth-abundant materials and affordable preparation
expenditures.
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