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Abstract

Nonalcoholic fatty liver disease (NAFLD) occurs frequently in a setting of obesity, dyslipidemia and insulin resistance, but the
etiology of the disease, particularly the events favoring progression to nonalcoholic steatohepatitis (NASH) as opposed to
simple steatosis (SS), are not fully understood. Based on known zonation patterns in protein, glucose and lipid metabolism,
coupled with evidence that phosphatidylcholine may play a role in NASH pathogenesis, we hypothesized that phospholipid
zonation exists in liver and that specific phospholipid abundance and distribution may be associated with histologic
disease. A survey of normal hepatic protein expression profiles in the Human Protein Atlas revealed pronounced zonation of
enzymes involved in lipid utilization and storage, particularly those facilitating phosphatidylcholine (PC) metabolism.
Immunohistochemistry of obese normal, SS and NASH liver specimens with anti-phosphatidylethanomine N-
methyltransferase (PEMT) antibodies showed a progressive decrease in the zonal distribution of this PC biosynthetic
enzyme. Phospholipid quantitation by liquid chromatography mass spectrometry (LC-MS) in hepatic extracts of Class III
obese patients with increasing NAFLD severity revealed that most PC species with 32, 34 and 36 carbons as well as total PC
abundance was decreased with SS and NASH. Matrix assisted laser desorption ionization - imaging mass spectrometry
(MALDI-IMS) imaging revealed strong zonal distributions for 32, 34 and 36 carbon PCs in controls (minimal histologic
findings) and SS that was lost in NASH specimens. Specific lipid species such as PC 34:1 and PC 36:2 best illustrated this
phenomenon. These findings suggest that phospholipid zonation may be associated with the presence of an intrahepatic
proinflammatory phenotype and thus have broad implications in the etiopathogenesis of NASH.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common

form of liver disease in Western countries with an estimated 80%

of cases in the morbidly obese population and approximately 20–

30% in the general population [1]. Hepatic fat accumulation in

the absence of other liver diseases is manifest as simple steatosis

(SS) in most individuals with NAFLD, although concomitant

necroinflammatory changes may result in a minority (3–5%); these

histologic features are termed nonalcoholic steatohepatitis

(NASH). The relationship between steatosis and the pathogenesis

of NASH is controversial, with data suggesting lipid quality and

quantity may be important in the pathogenesis of NASH [2,3].

Since pure overabundance of lipid is not sufficient for the

development of NASH, it seems reasonable to hypothesize that

a regional oversupply of a particularly noxious lipid species, or

likewise the depletion of a protective lipid species, could have

important mechanistic and clinical consequences. However, the

identity and regional distribution of these lipid species, prior to

speculation regarding their noxious or protective roles, must be

described.

Hepatic lipid mobilization and storage is a highly dynamic and

tightly regulated process influenced by physiologic, hormonal and

nutrient cues. The dual supply of hepatic blood flow establishes

structured environments, defined as zone 1 (periportal) to zone 2

(midzonal) to zone 3 (perivenular) within the liver acinus. This

organization results in cellular adaptations manifest at enzymatic,

metabolic and structural levels. Most extensively studied has been

the zonation of enzymes facilitating carbohydrate, ammonia,

glutamine and xenobiotic metabolism and it is generally appre-

ciated that the zonation of lipid metabolism is much less

pronounced [4,5]. Most in situ information on the metabolic

zonation of lipids comes from gene expression measurements of

proteins regulating lipid metabolism such as acetyl-coA carboxyl-

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e57165



ase [6], b-hydroxy-butyryl-CoA dehydrogenase [7], 3-hydroxy-3-

methylglutaryl-CoA (HMG-CoA) synthase [8], and carnitine

palmitoyltransferase I [6,9]. Lipogenesis, inferred by increased

acetyl-CoA carboxylase mass and activity measurements, occurs

primarily in periportal (zone 1) hepatocytes [10]. Fatty acid

oxidation, on the other hand, has been reported to occur

preferentially in perivenular (zone 3) zones as suggested by the

mildly increased expression of phosphatidate phosphatase and

apolipoprotein C2 [6,11,12]. The distributional differences of

specific lipid molecules within the liver lobule may bear strong

associations with the metabolic and histologic changes observed

between unique disease states as in SS and NASH. Few of these

findings have been demonstrated directly in humans and little is

known regarding how lipid zonation changes with disease, diet or

environmental challenge.

The most abundant lipids aberrantly stored in the liver in

NAFLD are triglycerides (TAGs). Lesser known, but likewise

partly composed of fatty acids are phospholipids. While TAG

storage in the liver is associated with clinical consequences such as

impaired glucose tolerance, little is known about other lipid

fractions and disease development. Several studies have implicated

changes in phosphatidylcholine (PC) species and abundance to be

critical in promoting NASH. PCs account for as much as 65% of

triglycerides in the normal murine liver [13] and evidence suggests

that PC content is reduced in SS and NASH [14]. Furthermore,

metabolism of PC species has been linked to NASH pathogenesis:

hepatic deletion of phosphocholine cytidylyltransferase (PCYT1)

and knockdown of LPCAT3, two enzymes involved in PC

metabolism, results in marked reductions in VLDL secretion,

a key factor in the development of NASH in humans [15]. PCs are

synthesized in mammals by two predominant pathways (Figure 1).
In the first pathway, CDP-choline, generated by the sequential

actions of choline kinase (CHK) and phosphocholine cytidylyl-

transferase (CEPT) on dietary choline, reacts with sn-1,2

diacylglycerols (DAGs) to form PC [16,17]. A second pathway,

accounting for 30% of hepatic PCs, involves sequential methyl-

ation of phosphatidylethanolamine (PE) with S-adenosylmethio-

nine catalyzed by the enzyme phosphatidylethanolamine N-

methyltransferase (PEMT) [18,19,20]. The PCs synthesized by

either pathway are readily converted into TAG.

Insight into the distribution of some hepatic lipid species was

recently established by Debois et al. in normal and SS human liver

specimens using cluster TOF-SIMS imaging [21]. They demon-

strated periportal enrichment of a-tocopherol and cholesterol,

along with a macrovesicular enrichment of TAGs, DAGs and FAs.

However, the TOF-SIMS is a hard ionization technology resulting

in significant lipid fragmentation, thus hampering the detection

and discrimination of intact phospholipids. In the present study we

investigated hepatic phospholipid abundance by quantitative

lipidomic profiling and phospholipid localization by MALDI-

IMS, a ‘‘soft’’ technique more conducive to intact lipid ionization.

We determined the zonal distribution of various intact phospho-

lipid species in situ in human liver specimens of control, SS and

NASH using MALDI Imaging Mass Spectrometry (MALDI IMS).

In addition, we examined the in situ hepatic localization of an

important enzyme in the phosphatidylcholine biosynthetic path-

way, PEMT, to investigate if altered zonation of PC biosynthetic

enzymes may additionally contribute to NAFLD progression.

Materials and Methods

Ethics Statement
Subjects gave their informed written consent before participat-

ing in this study, which was approved by the Institutional Review

Figure 1. Schematic representation of major phosphatidylcho-
line (PC) biosynthetic pathways in human liver. Dietary choline is
converted to phosphocholine by the actions of choline kinase (CHK),
and then reacted with cytidine triphosphate (CTP) to form cytidine
diphosphocholine (CDP-choline). Choline/ethanolaminephosphotrans-
ferase (CEPT) catalyzes the final step in PC biosynthesis by reacting sn-
1,2-diacylglycerols (DAGs) with CDP-choline to form PCs. The second
major pathway for PC biosynthesis involves three sequential methyl-
ation reactions of phosphatidylethanolamines (PE) with S-adenosyl-
methionine (SAM) by the actions of phosphatidylethanolamine N-
methyltransferase (PEMT). The acyl distribution and composition of
fatty acids (FAs) within each PC is continually modified by the actions of
multiple phospholipases (primarily A1 and A2 isoforms) and lysopho-
sphatidylcholine acyltransferases (LPCAT1-4). The PCs synthesized by
either pathway are readily converted into TAG.
doi:10.1371/journal.pone.0057165.g001

Table 1. Subject Characteristics.

n 11 11 11

Mean age (years) 40.662.1 32.761.8 48.562.1a

Gender (F/M) 11/0 11/0 11/0

Caucasian/African American 9/2 9/2 11/0

Weight (kg) 125.765.1 123.466.1 116.764.1

BMI (kg/m2) 46.461.9 46.262.2 45.261.8

Glucose (mg/dl) 93.663.8 115.1611.8 108.3610.7

AST (normal range: 0–65 U/I) 20.561.8 20.964.6 28.867.7

ALT (normal range: 0–65 U/I) 22.762.8 24.466.9 42.0617.9

Alkaline phosphatase (U/I) 53.268.8 98.769.1 b 92.265.9b

AST/ALT ratio 0.9860.08 1.0160.14 0.8860.07

Total bilirubin (mg/dl) 0.660.1 0.460.0 0.860.3

Albumin (g/dl) 4.160.1 4.160.1 4.160.1

Platelets (1000/mm3) 266.1621.8 288.3617.0 275.4614.9

Steatosis (0–3) 0.160.1 1.560.2c 2.160.2c

Ballooning (0–3) 0.460.2 0.560.2 1.760.1ab

Inflammation (0–3) 0.160.1 0.160.1 1.560.2cd

Fibrosis (0–2) 0.160.1 0.260.1 0.660.2

NAFLD Activity Score (0–8) 0.560.2 1.860.3 5.460.3cd

Data presented as mean 6 SEM. ALT, alanine aminotransferase; AST, aspartate
aminotransferase, BMI, body mass index; SS, simple steatosis; NASH,
nonalcoholic steatohepatitis.
aP,0.01 vs. SS;
bP,0.01 vs. normal;
cP,0.001 vs. normal;
dP,0.001 vs. NAFL (Kruskal-Wallace analysis of variance with Dunn’s post-test).
doi:10.1371/journal.pone.0057165.t001

Phospholipid Zonation in SS and NASH
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Board of Vanderbilt University and registered at ClinicalTrials.-

gov (NCT00983463).

Human Subjects
Class III obese women (n= 33, ages 26–59 years old) were

recruited from the Center for Surgical Weight Loss at Vanderbilt

University Medical Center prior to their scheduled bariatric

procedures. Exclusion criteria included a history of previous liver

disease (e.g. viral or autoimmune hepatitis, or hemochromatosis),

significant alcohol use, concurrent infections, a cancer diagnosis

within the previous 5 years, hemoglobin A1C .7.0, and the use of

anti-diabetic drugs. All subjects underwent Roux-en-Y gastric

bypass procedures. Wedge liver biopsies (200–1,000 mg) of the left

lateral lobe were collected at the time of surgery. The tissue

samples were immediately prepared and stored at 280uC for

further histopathologic and mass spectroscopic analyses shown

below.

Reagents
Ammonium formate and lithium chloride were purchased from

Sigma Chemicals (St. Louis, MO). Water, acetonitrile, 2-propanol,

ethanol and methanol were purchased from EMD Chemicals

(Gibbstown, NJ) and were of the highest analytical grade. 2,5-

dihydroxybenzoic acid (DHB) was purchased from Acros Organics

(Plans, NJ). Synthetic lipid standards were purchased from Avanti

Polar Lipids (Alabaster, AL).

Immunohistochemistry
Five-micrometer sections of formalin-fixed and paraffin-embed-

ded liver tissue were baked at 60uC for 30 min, then de-

paraffinized in xylene and hydrated in a graded ethanol to

distilled water series. Antigen retrieval was performed in citrate

buffer, pH 6.0 for 15 min. Slides were cooled then rinsed in

distilled water and PBS, respectively, for 5 min. Endogenous

peroxidases were blocked of endogenous peroxides with 0.3%

hydrogen peroxide (Dako) for 20 min at RT prior to blocking

overnight at 4uC in Protein Block. Sections were exposed to anti-

PEMT antibody (HPA042375, Sigma-Aldrich, St. Louis, MO)

diluted 1:50 in Dako antibody diluent at 4uC overnight. PBS-

washed sections were subsequently incubated with alkaline-

phosphatase conjugated secondary antibody for 15 min at RT

prior to development with chromagen substrate. Sections were

counterstained with hematoxylin for 30 sec, prior to dehydration

in 75% ETOH for 5 min.

Lipid Quantification by HPLC ESI-MS
We utilized a MSe rapid profiling screening strategy that

enabled lipid quantifications in a total time of 18 min [22,23].

Lipids extracted from liver specimens were resolved by HPLC and

eluting peaks were analyzed by collision induced dissociation

(CID) in a tandem quadrupole time-of-flight (Q-TOF) mass

spectrometer (MS). This acquisition strategy permitted the

untargeted identification of PC and PE species (Figures S1, S2)
[23]. Lipids are denoted by a simplified nomenclature wherein the

number of carbons and double-bonds in the side-chains are

Figure 2. Comparison of lipid molecular species abundance by nano-LC MS. Hepatic lipid composition in controls (white), SS (black) and
NASH (gray), for individual lipid species or for total PC or PE mass (far right) for (A) PC and (B) PE, respectively; n = 8 individuals per group. PEs are
included here given their role as substrates for PC biosynthesis as mentioned in Figure 1. Only the most abundant lipids per class are shown (left).
Total PC was normalized to the internal standard PC 17:0/14:1 while total PE was normalized to PE 12:0/13:0 (right). All values are expressed as the
mean 6 SEM. Testing of the null hypothesis by 1-way ANOVA with Bonferroni correction for multiple comparisons between cohorts is denoted by *
P,0.05.
doi:10.1371/journal.pone.0057165.g002

Phospholipid Zonation in SS and NASH
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designated. For example, PC 36:2 refers to a PC species with a total

of 36 carbons in the 2 acyl chains and the total number of double

bonds in the two acyl chains is 2; the assignment does not delineate

side-chain species. Lipid identifications were made upon querying

masses observed in precursor and matching fragmentary ion

spectra against a predefined database using software packaged

with the instrument. Lipid quantification relied on area under the

curve (AUC) measurements of extracted ion chromatograms

generated from precursor ion scan information.

Phosphatidylcholines were discriminated based on the presence

of m/z 184.07 product ions corresponding to a phosphocholine

polar head group [C5H15NPO4]
+. PEs were discriminated based

on spectra containing product ions of a phosphoethanolamine

head group ([M+H2140]+ and m/z 186.22) (Table S1). Detailed

description of lipid extraction is provided in Methods S1.

MALDI Imaging Mass Spectrometry (MALDI IMS) Data
Acquisition and Analysis
For each specimen, tissue substructures were first established in

co-registered H&E-stained cryosections serial to those analyzed by

MALDI IMS. Regions of interest identified in DHB-sublimated

sections were subsequently sampled at 20 mm spatial resolutions

Table 2. Lipid Molecular Species Identified in Human Livers by MALDI IMS.

Lipid
FA side chains (major{,
minor{) Possible Species m/z observed m/z theoretical Ion

FT-ICR
Dm (ppm)

PC 32:0 16:0, 16:0 PC 16:0/16:0 756.5516 756.5514 [M+Na]+ 23.23

772.5258 772.5253 [M+K]+ 26.30

PC 34:1 16:0, 18:1 PC 16:0/18:1 760.5854 760.5851 [M+H]+ 24.58

782.5671 782.5670 [M+Na]+ 21.07

798.5407 798.5410 [M+K]+ 3.29

PC 34:2 16:0, 18:2 PC 16:0/18:2 758.5694 758.5694 [M+H]+ 0.00

780.5518 780.5519 [M+Na]+ 1.60

796.5251 796.5259 [M+K]+ 9.69

PC 36:1 18:0{, 20:1 PC 18:0/18:1; 788.6165 788.6164 [M+H]+ 21.50

PC 16:0/20:1 810.5828 810.5827 [M+Na]+ 21.16

826.5723 826.5723 [M+K]+ 20.44

PC 36:2 18:0{, 18:2{, PC 18:0/18:2; 786.6012 786.6007 [M+H]+ 26.46

16:0{ PC 16:0/20:2 808.5828 808.5827 [M+Na]+ 21.16

824.5566 824.5566 [M+K]+ 0.17

PC 36:3 18:1{, 16:0{, PC 18:1/18:2; 784.5854 784.5851 [M+H]+ 24.56

18:2{, 20:3{ PC 16:0/20:3 806.5671 806.5670 [M+Na]+ 21.41

822.5412 822.5410 [M+K]+ 22.88

PC 36:4 16:0, 20:4 PC 16:0/20:4 782.5690 782.5694 [M+H]+ 5.78

804.5515 804.5514 [M+Na]+ 22.04

820.5251 820.5253 [M+K]+ 2.59

PC 38:3 18:3, 16:1 PC 16:1/22:2; 850.5729 850.5723 [M+K]+ 27.48

PC 18:3/20:0

PC 38:4 18:0, 20:4 848.5564 848.5566 [M+K]+ 2.52

PC 38:5 18:3, 16:0 PC 18:3/20:2; 846.5411 846.5410 [M+K]+ 21.62

PC 16:0/22:5

PC 38:6 16:0, 22:6 PC 16:0/22:6 844.5261 844.5253 [M+K]+ 28.85

PA 32:0 14:0{, 10:0{ PA 14:0/18:0 649.5170 649.5167 [M+H]+ 25.88

PA 10:0/22:0

PA 38:3 18:3, 20:0 PA 18:3/20:0 749.5092 749.5092 [M+Na]+ 20.31

PA 38:5 16:1{, 18:3{, PA 18:3/20:2 761.4522 761.4518 [M+K]+ 25.52

20:2{ PA 16:1/22:4

PA 38:6 16:0, 18:2 PA 16:0/22:6 759.4369 759.4362 [M+K]+ 29.20

PA 18:2/20:4

PA 40:4 18:3, 22:1 PA 18:3/22:1 775.5248 775.5248 [M+Na]+ 20.29

PA 40:5 18:1, 22:4 PA 18:1/22:4 773.5097 773.5097 [M+Na]+ 0.00

789.4825 789.4831 [M+K]+ 7.78

PA 44:6 22:1, 22:5 PA 22:1/22:5 827.5574 827.5561 [M+Na]+ 215.4

Abbreviations: PC 2 phosphatidylcholine, PA – phosphatidic acid, FT-ICR – Fourier transformed ion cyclotron resonance MS, m/z - mass/charge.
doi:10.1371/journal.pone.0057165.t002
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using a TOF mass spectrometer equipped with a MALDI source.

From a third set of serial sections, mass spectra were collected at

50 mm spatial resolution using Fourier transformed ion cyclotron

resonance (FT-ICR) MALDI-IMS to establish species accurate

mass. From the mass spectra acquired at each pixel position in

both datasets, the abundance of an ion of interest was recorded

and colored heat maps for regions within each liver specimen were

generated.

Liver biopsies warmed to 220uC were mounted on cryostat

chucks and then sectioned with a Leica CM 1900 cryotome.

Twelve micron-thick sections of human livers were thaw-mounted

onto gold-coated MALDI target plates. The organic matrix, 2, 5-

dihydroxybenzoic acid (DHB) was applied to liver sections [24].

Serial sections were collected on glass slides and stained with

hematoxylin and eosin (H&E). Magnified photomicrographs of

each H&E stained liver section were obtained after scanning the

slides using a Mirax Desk microscope slide scanner (Zeiss,

Thornwood, NY) at a pixel resolution of 0.23 mm. Digital

photomicrographs were exported using the Mirax Viewer software

and used in FlexImaging as a registration image.

A MALDI TOF mass spectrometer with reflectron geometry

(AutoFlex Speed, Bruker Daltonics, Billerica, MA) equipped with

a SmartBeam laser (Nd:YAG, 355 nm) was operated in positive

ion mode to acquire spectra data across 262 mm regions of all

liver specimens. Full scan mass spectra were collected between 400

and 1800 m/z. Lipid images were acquired at 20 mm pixel size

(spatial resolution), averaging 80 laser shots per pixel. [25] Images

were visualized using BioMap software (3.8.0.3, Novartis, Basel

Switzerland). Raw spectra from hepatic zones identified in each

image were extracted and pre-processed using a modified Wave-

spec package [26].

Calibration. All spectra were individually calibrated against

abundant lipids (PC 34:2 [M+K] – m/z 796.52; PC 34:2 [M+H] –

m/z 758.56; PC 36:2 [M+K] – m/z 824.55; PC 38:4 [M+K] – m/z

848.55; DAG-O 34:4 [M+H] – m/z 575.50) unifying the m/z

scales. Spectra were denoised using undecimated discrete wavelet

transformation with hard thresholds empirically determined

through a feedback loop [26,27]. Spectra were normalized by

the total ion current (TIC) method to enforce the constraint of

equal TIC for each spectrum in the dataset [28]. AUCs were

derived from the contents of each bin and these values were

transformed onto log10 scale for the normality assumption of

statistical analysis. Analysis of variance (ANOVA) with Bonferroni

correction for multiple comparisons was used to compare

differences in intensities across normal, SS and NASH groups.

Results

Anthropomorphic Measurements
The presence of steatosis, ballooning, inflammation and fibrosis

was determined by a hepatopathologist using two independent

histologic specimens for classification and subsequent scoring by

the NAFLD Activity Score (NAS) [29]. This resulted in

categorizing the obese subjects into three cohorts (n = 11 in each):

Figure 3. Multiple phospholipid distribution patterns in human liver as revealed by MALDI IMS. Representative photomicrographs of
H&E sections (left panels, A–D) are marked to indicate locations of zone 1 (Z1) or zone 3 (Z3) hepatocytes. MALDI IMS images (right panels, A–D) of
m/z 820.57, corresponding to PC 36:4 [M+K]+, in (A) obese normal and (B) SS specimens, m/z 758.56, corresponding to PC 34:2 [M+H]+ in SS
specimens (C), and m/z 772.52, corresponding to PC 32:0 [M+K]+ in (D) NASH specimens reveal distinct phospholipid patterning. An ion intensity
color scale applicable to all images is shown at the top of figure. Scale bar = 500 mm.
doi:10.1371/journal.pone.0057165.g003

Phospholipid Zonation in SS and NASH
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(a) a cohort of subjects with normal histopathologic findings

(referred to as ‘‘normal’’); (b) a cohort with non-NASH NAFL

(referred to as simple steatosis or ‘‘SS’’), and (c) a group with

established NASH histology.

Given the difficulties in obtaining sufficient material for both

quantitative LC-MS/MS and MALDI IMS analyses we elected to

study small, but well defined cohorts (Table 1). Cohorts (n = 8 in

each) were similar in terms of ethnicity, BMI, fasting blood glucose

and weight. Subjects with NASH were slightly older than the

obese normal (mean 6 SD: 48.562.1 in NASH vs. 40.662.1 in

obese normal; P,0.01). Liver biochemistries including AST, ALT,

AST/ALT ratios, bilirubin, albumin and platelets were not

different among the three groups, however alkaline phosphatase

levels (U/I) were elevated (P,0.01) by nearly two-fold in both SS

(98.769.1) and NASH (92.265.9) vs. the obese normal

(53.268.8). Obese normal specimens were almost uniformly void

of steatosis, inflammation and fibrosis in comparison to both SS

and NASH specimens. The mean NAS was highest (5.460.3) for

NASH specimens (P,0.001 vs. SS or obese normal).

Figure 4. Lipid MALDI ion images reveal differences in PC zonation across the liver lobule. Representative MALDI IMS images of selected
liver specimens obtained from obese subjects with normal liver histology (A–D), SS (E–H), and NASH (I–L). (A, E, I) Photomicrographs of H&E stained
sections from each specimen (far left column) indicate lobular zones (zone 1 - Z1; zone 3 - Z3). Comparison of selected PCs by disease state: MALDI
images of m/z 796.52 PC 34:2 [M+K]+ in obese normal (B), SS (F), and NASH (J) specimens. MALDI images of m/z 820.52 PC 36:4 [M+K]+ in obese
normal (C), SS (G), and NASH (K) specimens. MALDI image of m/z 782.54 PC 34:1 [M+K]+ in obese normal (D), SS (H), and NASH (L) specimens. Ion
intensity color scale for all ion images is shown at the top of panels B and C. Scale bar = 500 mm.
doi:10.1371/journal.pone.0057165.g004

Phospholipid Zonation in SS and NASH
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Histopathologic Assessment of NAFLD in Wedge Liver
Biopsies
Traditional histology-based assessments of H&E stained slides

revealed hallmark patterns of injury in NASH specimens that were

clearly different from the frank steatosis that helps to delineate

lobules with SS and strikingly dissimilar from the uniform and

hexagon portal tract arrangements that define obese normal

specimens. In contrast to obese normal specimens that were

largely devoid of visible micro- or macrosteatosis, SS specimens

displayed numerous large lipid droplets, most prominent in

hepatocytes surrounding the central vein (zone 3 hepatocytes).

Portal tracts, comprised of bile ducts, hepatic arteries and portal

veins were arguably the most identifiable features in all specimens.

In SS and NASH, zone 1 hepatocytes surrounding portal tracts

typically displayed less steatosis and tended to be mononucleate. In

NASH samples, steatosis was accompanied by hepatocyte

ballooning and inflammation most evident in zone 3, although

these defining characteristics were also observed on occasion in

zone 1.

Measurements of Relative Abundance of Hepatic
Phospholipids
PCs are a class of phospholipids particularly amenable to

analysis by ESI given their abundance and ease of ionization [30].

A comprehensive list of all lipids identified is available in Table
S2. The most abundant PCs in all specimens, accounting for

nearly half of all PCs detected, were PC 34:1 (m/z 860.58), PC

34:2 (m/z 758.56), PC 36:2 (m/z 786.60) and PC 36:4 (m/z

782.57). Nine of the nineteen quantified PCs (all [M+H+] adducts)

were significantly different (P,0.05) among the three cohorts

(Figure 2A). The most distinct differences in lipid species of the

PC class were PC 34:2 (m/z 758.56) and PC 36:2 (m/z 786.60),

which were decreased in both SS and NASH, and PC 40:0 (m/z

846.70) which was significantly increased in SS and NASH

compared to obese normal. Others such as PC 36:4 (m/z 782.57)

and PC 34:1 (m/z 760.58) were decreased in SS and increased in

NASH relative to obese normals. Lesser abundant PCs (#10% of

class) exhibited different patterns. PC 38:4 (m/z 810.60), PC 40:0

(m/z 846.70) and PC 38:3 (m/z 812.61) were greater in SS and also

Figure 5. Phosphatidylethanolamine methyltransferase (PEMT) localization differs with progression of NAFLD.Monoclonal antibodies
were used to localize PEMT in liver specimens of bariatric subjects sampled intra-operatively at the time of bariatric surgery. (A) The in situ localization
of PEMT in an obese normal control subjects was primarily in hepatocytes surrounding the central vein (zone 3; black arrows). (B) PEMT in a SS
specimen was localized throughout the liver acinus in zones 1–3. (C) PEMT in NASH specimen accumulated at sites of inflammation (white arrows), as
well as in zones 1–3.
doi:10.1371/journal.pone.0057165.g005

Figure 6. Diagram depicting loss of phospholipid zonation in NASH. (A) In obese normal liver tissue the PCs with 34 and 36 carbons, were
most abundant and localized to zones 2 (Z2) and 3 (Z3). PC 32:0 localized exclusively to portal tracts in all specimens. PEMT localized exclusively to
zone 3 hepatocytes. (B) In SS specimens, there were increased amounts of PC 34 and 36 carbon PCs in zone 3 and zone 2 but a decrease in their
abundance in zone 1. (C) In NASH, the zonation of most lipid molecular species was reduced with few exceptions. In both SS and NASH, PEMT
expressions were panlobular, but with NASH, additional staining was observed at sites of inflammation.
doi:10.1371/journal.pone.0057165.g006
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increased in NASH. When considered in aggregate, total PC mass

was significantly reduced in SS and NASH compared to controls.

Several PEs are found in human liver in minor quantities

[14,31]. Four PEs, all [M+H+] species, comprised the majority of

hepatic PE content by class; PE 38:4 (m/z 768.55), PE 38:6 (m/z

764.52), PE 36:2 (m/z 744.55) and PE 34:6 (m/z 708.47)

represented ,58% of the PEs detected. Five of the nine identified

species (indicated by asterisks in Figure 2B) were significantly

different among cohorts, and all were decreased in NASH

compared to SS specimens. Only PE 40:6 (m/z 792.55) was

increased in SS and NASH compared to obese normal controls.

For certain PEs such as PE 38:6 (m/z 764.52) and PE 34:2 (m/z

716.52), species abundance decreased with disease severity. In the

case of a few PE species, such as PE 40:6 and PE 28:1, SS

specimen possessed a greater PE species content than did NASH

or obese normal specimens. Total PE mass was not significantly

different among cohorts.

Phospholipid Zonation Analysis by MALDI IMS
MALDI revealed a remarkable diversity of PCs identified across

the spectrum of all liver specimens with localizations ranging from

diffuse to conspicuous depending upon the lipid molecular species.

It is known that MALDI IMS using DHB as a sublimation matrix

yields predominantly alkali metal adducts [M+Na]+ and [M+K]+

as well as lesser [M+H]+ species [32,33]. Four general patterns

characterized lipid species distributions (Figure 3). The first

pattern was azonal where ion intensities for a particular lipid

varied little across the acinus. H&E photomicrographs and

MALDI IMS images of an obese normal specimen, shown in

Figures 3A, designate zone 1 (arrows) and zone 3 hepatocytes

where m/z 820.56 PC 36:4 [M+H]+ intensities were relatively

similar. A second lipid distribution pattern, one characterized by

increased zone 1 vs. zone 3 intensities, is illustrated by m/z 820.57

PC 36:4 [M+K]+ in Figures 3B for a SS specimen. A third

pattern, describes lipid ion intensities greatest in zone 3

hepatocytes surrounding the central vein, was most often observed

in SS but not NASH or obese normal specimens. MALDI images

for m/z 758.56 PC 34:2 [M+H]+ best illustrate this pattern

(Figure 3C). A fourth major pattern, one where ion intensities

were robust over portal tracts alone (Figure 3D and Figure S4),
was observed in all specimens irrespective of pathologic classifi-

cation and was unique for m/z 772.53 PC 32:0 [M+K]+. A listing

of all lipids identified by MALDI IMS is provided in Table 2.

In liver specimens obtained from histologically normal obese

subjects (exemplified in Figure 4A–D), the most abundant species

observed both by HPLC-ESI-MS/MS and MALDI IMS, namely

m/z 796.52 PC 34:2 [M+K]+, displayed an azonal distribution

(pattern 1; Figure 4B). The second most abundant PC in normal

obese subjects, m/z 820.52 PC 36:4 [M+K]+, consistently

displayed a zone 1 enriched distribution (pattern 2; Figure 4C).
Another lipid expression pattern emerged, that of m/z 782.54 PC

34:1 [M+K]+, showed limited zone 1 accumulations (pattern 3;

Figure 4D). In the SS cohort (exemplified in panels Figure 4E–
H), PC 34:2 [M+K]+ showed zonation different from that

observed in obese normal subjects; distributions were zone 3

dominant (pattern 3, Figure 4F). Interestingly, PC 36:4 [M+K]+,

which accumulated almost exclusively in zone 1 (pattern 1;

Figure 4G) displayed similar zonation to its histologically normal

counterpart. The zonation of PCs with the linoleate fatty acid

replaced by oleate, e.g. PC 34:1 [M+K]+ (pattern 2; Figure 4H),
was similar to their less saturated counterparts (PC 34:2 [M+K]+

shown in Figure 4F). In NASH specimens (Figure 4I–L) the
detected phospholipid distributions were mostly azonal, as

illustrated by PC 34:2 [M+K]+, (pattern 1; Figure 4J) and PC

34:1 [M+K]+, 3L (pattern 1). Similar to SS specimens, NASH

specimens displayed strong zone 1 intensities for PC 36:4 relative

to zone 3 (Figure 4K). The zonation of most other lipids was

minor and there was no discernible correlation between the

respective pattern of lipid distribution and NAS score in NASH

specimens.

Immunohistochemistry of PEMT in Obese Human Livers
To understand some of these observed zonal differences

between lipid-rich states, we queried the human protein atlas

portal (www.proteinatlas.org) for 87 different proteins described to

be involved with phospholipid, fatty acid and triglyceride

metabolism (Table S3). These proteins were localized in situ in

normal human liver tissue with 99 different antibodies in a 54 year

old female. We identified pronounced zonation for at least 16

different enzymes mediating lipid metabolism (Figure S3) and
mild zonation for at least 12 others. In this histologically normal

liver (M-0100), strong perivenular staining was observed for

carnitine palmitoyltransferase 1B (CPT1B; Figure S3A), carnitine
acyltransferase (CRAT; Figure S3B) and the carnitine/acylcar-

nitine transporter (SLC25A20; Figure S3C), all facilitating fatty

acid transport. Zonation was similarly observed for the mitochon-

drial fatty acid oxidation enzymes, acyl-CoA dehydrogenase and

very long chain (ACADVL; S3D) and 2,4-dienoyl CoA reductase

1 (DECR1; S3E), the cytoplasmic enzymes acetyl-CoA carboxyl-

ase (ACACB; Figure S3F) and diacylglycerol O-acyltransferase 2

(DGAT2; Figure S3G) as well as the lipid droplet associated

protein perilipin 1(PLIN1; Figure S3H). In particular, several

proteins facilitating phospholipid metabolism also displayed zonal

expression. Preferential perivenular (zone 3) zonation was clearly

evident for choline kinase a (CHKA; Figure S3I), phosphocho-
line cytidylyltransferase 1 (PYCT1A; Figure S3J), phosphatidyl-
ethanolamine N-methyltransferase (PEMT; Figure S3K), glycer-

ol-3-phosphate acyltransferase 2 (GPAT2; S3M) as well as the

phospholipases A2 G15, A2 G4F and B1(PLA2G15, PLA2G4F

and PLA2B1 Figure S3N-S3P, respectively). Only phosphocho-

line cytidylyltransferase 2 (PCYT2; Figure S3L) displayed

a perivenular dominant (zone 1 to zone 3) expression pattern.

To gain insight into what, if any, changes may exist with regard

to PC biosynthetic enzymes commensurate with NAFLD pro-

gression, we examined in situ the localization of PEMT, a primary

PC biosynthetic enzyme. Figure 5A illustrates the strong

perivenular localization of this enzyme in a histologically normal

obese liver. This contrasts with panlobular distribution of the

enzyme in SS (Figure 5B) and NASH, and with notable

localization in necroinflammatory sites in NASH specimens

(Figure 5C).

Discussion

Aberrant hepatic lipid metabolism has long been proposed to be

central in the pathogenesis of NASH, but the exact mechanism(s)

underlying necroinflammatory changes on background steatosis

remain to be fully understood. The differential abundance of

phospholipids, particularly PCs and PEs, has been studied

quantitatively but these studies have largely been either in mice

[34,35,36,37], in anthropomorphically-diverse cohorts [30], or

with destructive analytical methods such as methylation or acid/

alkaline digestion that provide information on fatty acid compo-

sition within a lipid class but do not identify a specific PC

[31,38,39]. The current study identifies, quantifies and localizes

specific choline-containing lipids in human liver and reveals

a previously unappreciated zonation of specific molecular PCs that

are either lost or preserved in association with NAFLD severity.

Phospholipid Zonation in SS and NASH
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Given these ostensibly protein-mediated changes, we further

demonstrated the zonation pattern of one hallmark PC metabolic

enzyme, PEMT.

PCs account for nearly two-thirds of TAGs in liver [13] During

normal conditions, the liver is the predominant site of PC

biosynthesis; reductions in intra-hepatic and circulating PC levels,

either by genetic [34,35] or dietary means [36,37], stimulates

nascent VLDL particle recycling with simultaneous compensatory

hepatic uptake of circulating PC-poor VLDL. Both phenomena

have been described to occur with NASH. Our findings that many

PCs such as PC 34:2, PC 36:2, PC 38:4, PC 40:0 and PC 38:3

showed altered abundance with increasing histologic severity while

others (PC 34:1, PC 36:3. PC 38:5) did not suggest species-specific

effects (Figure 2A). Thirty-six and 34 carbon PCs were the most

abundant and total PC mass was reduced in both SS and NASH

compared to controls. PE content also was changed in a species

specific manner, however trends in abundance changes were

subtle and most significant differences were in lesser abundant

PEs.

Similar to our observations, other investigators have also found

significant alterations in lipid abundance with NAFLD [31]; they

differ, however, in the subclasses with detectable differences in

disease states. Allard et al. demonstrated significant reductions in

n26 and n23 polyunsaturated fatty acids (PUFAs) in SS and

NASH in Class I obese subjects [38]. Araya et al. found that the

fatty acid composition of liver phospholipids in a cohort of Class

III obese subjects had similar proportions of total PUFAs and

monounsaturated (MUFAs) in SS and NASH [39]. Puri et al.

detected significant decreases in total PC content in Class II obese

subjects (BMI=35–38 kg/m2) and demonstrated decreased eico-

sapentanoic acid (20:5n23) and docosahexanoic acid (22:6n23) in

hepatic TAGs in NASH [14]. However, in each of these studies

the destructive analysis of PCs permitted compositional determi-

nations of fatty acids cleaved from the PC glycerol backbone, but

precluded determination of intact PCs.

Hepatic zonation was first described in 1963 by Elias et al [40].

This was based on observations of functional hepatocyte

heterogeneity along the porto-central axis of the liver-cell plate.

This concept, referred to as ‘‘metabolic zonation’’, was later

refined by Katz and Jungermann [41] and proposed to explain

how differing and occasionally opposing functions could coexist in

the liver [42]. Thus far, several studies have identified metabolic

zonation for glucose metabolism [43], ammonia detoxification

[44,45,46] and metabolism of drugs and xenobiotics [5]. However,

there is lesser and more conflicted information, related to hepatic

zonation of lipids [4,5]. Using MALDI-IMS we observed zonal

distributions for several different PC species in liver specimens

identified as histologically normal, SS or NASH.

In conjunction with the altered phospholipid distributions, we

also identified in situ differential zonation and abundance of an

important enzyme governing PC biosynthesis, PEMT. In SS,

increased zone 3 steatosis was coincident with a redistribution of

PEMT from perivenular sites to that of a non-descript panlobular

pattern. With NASH, the panlobular distribution of PEMT

pervaded and was accompanied by additional localized expres-

sions at necroinflammatory sites. This loss and, at times, reverse

zonation of lipids appears strongly linked to the disarray of

enzymes related to PC biosynthesis. These microenvironmental

changes suggest enzymatic differences in localization with

potential alterations in function.

A summary of our findings related to the changes in abundance

and mass of PCs in relation to disease severity is provided in

Figure 6. In normal obese liver, 36 and 34 carbon PCs are most

abundant and localized primarily to zones 2 and 3 (Figure 6A).

PEMT expression (brown) was greatest in hepatocytes surrounding

the central vein. PC 32:0 expression was robust at portal triads

(Z1, yellow and white checkered area). In SS, zone 3 accumulation

of these 34:x and 36:x PCs, especially PC 34:1 and PC 34:2, was

increased (Figure 6B). In NASH, the intrahepatic zonation of PC

34:1 and PC 34:2 was lost, but that for PC 36:4 (zone 1. zone 3)

was preserved. The strong zonation of PEMT in perivenular

hepatocytes was lost in SS and NASH (Figure 6C).
Our findings are from a rather small cohort of morbidly obese

subjects that are representative for one of the dominant, but not

only, groups at risk for developing NASH. Some of the more

subtle zonation patterns we observed in normal, SS and NASH

specimens may require profiling a larger number of specimens to

establish clarify lipid specific and protein-mediated effects with

regards to aberrant lipid storage and metabolism.

Supporting Information

Figure S1 Calibration curves for lipid standards were
determined at the concentration range indicated. In-

creasing amounts of A) 1-heptadecanoyl-2-(9Z-tetradecenoyl)-sn-
glycero-3-phosphocholine (PC 17:0–14:1) and B) 1-dodecanoyl-2-
tridecanoyl-sn-glycero-3-phosphoethanolamine (PE 12:0–13:0)

were analyzed by LC ESI-MS/MS and the area under the curve

(AUC) recorded. Phosphatidylcholines were normalized against

PC (17:0–14:1) internal standard. Phosphatidylethanolamines

were normalized with PE (12:0–13:0).The linearity was de-

termined from 4 different concentrations. At each concentration,

3 replicates were analyzed and the mean value is reported.

(DOCX)

Figure S2 Total ion chromatogram (A) and extracted ion

chromatogram (B) of 874.78 m/z from a NASH hepatic extract.

(DOCX)

Figure S3 Immunohistochemical (IHC) staining pat-
terns in normal human liver for various enzymes
involved in lipid metabolism. IHC images available at the

Human Protein Atlas were interrogated for the zonal expression of

87 different enzymes mediating fatty acid oxidation and transport,

triglyceride metabolism and phospholipid metabolism. Shown are

representative IHC images for enzymes displaying the most

pronounced zonation. A–F) Fatty acid oxidation and transport

proteins such as CPT1B, CRAT, SLC25A20, ACADVL, DECR1

displayed strong perivenular (zone 3) to periportal (zone 1)

expression patterns while ACACB (F) displayed the converse

pattern (zone 1 to zone 3). G–H) Proteins involved in triglyceride

metabolism such as DGAT2 and PLIN displayed zone 3 to zone 1

distributions. I–P) Several proteins facilitating phospholipid

metabolism, specifically CHKA, PCYT1B, PEMT, PCYT2,

GPAT2, PLA2G15, PLA2G4F and PLA2B1 all displayed strong

zonation. In each instance, except for PCYT2, the strongest

staining was in zone 3.

(DOCX)

Figure S4 Portal tracts imaged by MALDI-IMS display
robust levels of PC 32:0. Photomicrographs of H&E stained

sections from each specimen (A, C, E) and corresponding MALDI

IMS images of selected liver specimen obtained from subjects with

normal (A–D) and NASH (E–F) histologies. (B, D, F) MALDI

image of m/z 772.52 PC 32:0 [M+K]+. Ion intensity color scale for

all ion images is shown at the top of the figure. Scale

bar = 500 mm.

(DOCX)

Table S1 Fragmentation and LC retention time information.

(DOCX)
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Table S2 Lipids Identified and Quantified in Hepatic Extracts

by LC ESI-MS/MS.
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Table S3 List of proteins identified in normal human liver and

their expression profile in the Human Protein Atlas.
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