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Abstract

Filamins are long, flexible, multi-domain proteins composed of an N-terminal actin-binding domain (ABD) followed by
multiple immunoglobulin-like repeats (IgFLN). They function to organize and maintain the actin cytoskeleton, to provide
scaffolds for signaling components, and to act as mechanical force sensors. In this study, we used transcript sequencing and
homology modeling to characterize the gene and protein structures of the C. elegans filamin orthologs fln-1 and fln-2. Our
results reveal that C. elegans FLN-1 is well conserved at the sequence level to vertebrate filamins, particularly in the ABD and
several key IgFLN repeats. Both FLN-1 and the more divergent FLN-2 colocalize with actin in vivo. FLN-2 is poorly conserved,
with at least 23 IgFLN repeats interrupted by large regions that appear to be nematode-specific. Our results indicate that
many of the key features of vertebrate filamins are preserved in C. elegans FLN-1 and FLN-2, and suggest the nematode may
be a very useful model system for further study of filamin function.
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Introduction

Filamins are long, flexible, multi-domain proteins composed of an

N-terminal actin-binding domain (ABD) followed by multiple

immunoglobulin-like repeats (IgFLN). The best-characterized fila-

mins are Dictyostelium discoideum filamin (ddFLN) and human filamins

(hsFLNA/B/C). Dictyostelium filamin has an ABD followed by six

IgFLN repeats, whereas the human orthologs have 24 IgFLN repeats

arranged into two rod domains separated by a flexible hinge. FLNA,

FLNB, and FLNC are more than 70% identical at the amino acid

sequence level and have overlapping expression patterns. Although

FLNA and FLNB are ubiquitously expressed, FLNC is found

primarily in cardiac and striated muscle [1]. Filamins are involved in

diverse cellular processes including anchoring, organizing and

maintaining the actin cytoskeleton, providing a scaffold for signaling

components, and acting as molecular sensors for mechanical forces

[1]. Due to the pleiotropic functions of filamins in humans, mutations

cause a wide variety of developmental defects in the skeleton, brain,

heart, and smooth muscle [2].

Although no complete structure of a filamin molecule is

available, biochemical and structural studies have provided

important insights into the function of filamins [3,4,5]. The best-

studied role of filamin is in the organization of actin filaments into

branched three-dimensional networks [1]. Filamin binds F-actin

using the N-terminal ABD, although some IgFLN repeats and

hinge regions may also contribute to actin binding [6]. The filamin

ABD consists of two calponin homology (CH) domains that are

well conserved among filamins and other actin binding proteins,

such as alpha-actinin, spectrin, and fimbrin [7]. In filamin, the

primary actin-binding site is hydrophobic and is located in the first

CH domain (CH1) [8,9,10]. The second CH domain (CH2) has a

lower affinity for actin, but is required for a fully functional ABD

[10,11]. Although CH2 is less conserved across filamins than

CH1, disease-related mutations suggest that CH2 may regulate the

actin-binding activity of CH1 [12]. For example, gain-of-function

mutations in the CH2 domain of FLNA lead to developmental

disorders of the skeleton by increasing filamin affinity for F-actin,

which perturbs actin cytoskeleton dynamics [13].

Individual IgFLN repeats are ,96 amino acids in length and

are comprised of seven b-strands (A–G) arranged into two b-

sheets, which together form a b-sandwich. Filamins are predicted

to interact with more than fifty different proteins, many of which

interact with the CD strands of the IgFLN domains [14]. The

majority of these interactions involve IgFLN domains in the

second rod domain (IgFLN16–24). For example, filamin binds

transmembrane proteins such as integrins [15], transmembrane

receptors [16], and many signaling proteins, including the Rho-

family of GTPases [17,18]. The cytoplasmic tail of b7 integrin

binds to the CD face of FLNA IgFLN21 [5], which links the actin

network physically with the extracellular matrix (ECM). FLNA

IgFLN24 binds RhoA, Rac1 and Cdc42, all of which regulate

actin dynamics. In addition, the final repeat also mediates

dimerization of filamins [6,19,20]. FLNB has also been shown to

serve as a scaffold for signaling pathway components, for example,

the Rac1, MEKK1, MKK4, and JNK cascade in interferon-

induced apoptosis [1,21,22].

We are using the nematode C. elegans as a model system to study

the conserved functions of filamin in vivo. C. elegans provides many
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advantages for the study of cytoskeletal regulation, including a

translucent body, good visualization tools, and freely available

genomic resources [23]. The C. elegans genome encodes two

filamin homologs, fln-1 and fln-2. In addition to filamins, many

other cytoskeletal regulators are well conserved, including integrin

[24], talin [25], vinculin [26], and the Rac GTPases [27]. We have

recently shown that FLN-1 is required for maintenance of actin

and for proper function of the spermatheca, a somatic tissue of the

nematode reproductive system that undergoes dramatic shape

changes during the ovulation and fertilization of oocytes [28]. The

second C. elegans filamin ortholog, FLN-2, has not been studied,

but large-scale RNAi studies suggest it may play a role in molting

[29,30]. In this study, we characterize the gene structures and

expression patterns of fln-1 and fln-2, use homology modeling to

determine the structure of the conserved IgFLN domains in these

molecules, predict the conservation of function between C. elegans

and other filamins, and demonstrate that the ABD of FLN-1 and

FLN-2 can co-localize with actin in vivo.

Results

The C. elegans genome encodes two filamin genes, fln-1
and fln-2

In order to identify filamin-like genes in C. elegans, we performed

a BLAST search of the C. elegans genome (WormBase release

WS190) using human FLNA. At the time, this search identified a

cluster of predicted open reading frames (ORF) on chromosome

IV (Y66H1B.2, Y66H1B.5, and Y66H1B.3; Figure 1A) and

another on chromosome X (C23F12.1 and C23F12.2; Figure 1B).

These ORFs lack one or more of the characteristic features of

filamin, the ABD or IgFLN repeats, but taken together appeared

to encode proteins with a domain structure similar to other

filamins. To determine which transcripts are produced from these

loci, we performed RT-PCR on total RNA extracted from mixed-

stage wild-type (N2) nematodes, and sequenced the resulting

cDNAs (Figure S1). Sequencing of cDNAs derived from the fln-1

and fln-2 loci allowed us to identify three fln-1 isoforms and four

fln-2 isoforms (Figures 1 and S1, Table 1). Sequences spanning

Y66H1B.2, Y66H1B.3 and Y66H1B.5 were readily detected,

suggesting these three ORFs are transcribed together and

represent a single filamin locus. Similarly, C23F12.2 and

C23F12.1 were found to comprise a second filamin locus. The

names fln-1 and fln-2 have been assigned to the Y66H1B and

C23F12 filamin loci, respectively, and the amended gene models

are available in WormBase.

To identify the 59 ends of the transcripts we took advantage of

SL1 trans-splicing in nematodes. The majority of transcripts in C.

elegans are trans-spliced to a 22-nucleotide splice leader sequence,

SL1 [31]. The SL1 sequence is commonly used in C. elegans to

identify the 59 ends of transcripts [32]. We performed RT-PCR

using SL1 and gene-specific primers, and sequenced the resulting

amplicons. Y66H1B.3, Y66H1B.2, C23F12.1, and two indepen-

dent C23F12.2 transcripts, are trans-spliced to SL1, which

suggests that each of these ORFs can be transcribed indepen-

dently (Figures 1 and S1). The predicted ORF Y66H1B.5 is not

trans-spliced to SL1, and is probably only found as part of full-

length fln-1.

fln-1a, b, and c are the three major fln-1 transcripts, with fln-1a

representing a full-length filamin that includes an actin-binding

domain and 20 Ig-like filamin repeats (Figures 1A and S1A). We

are able to readily detect the full-length (6.7 kb) transcript from

wild-type nematodes using RT-PCR. The structure of the FLN-1A

isoform is similar to that that predicted by Heikkinen, et al. [33].

The fln-1b and fln-1c transcripts are the result of alternative

splicing and an alternate transcriptional start site, respectively. fln-

1b includes an exon that is not a part of the full-length fln-1a

(Figure 1A and S1A). We also detected rare transcripts spanning

Y66H1B.3 and Y66H1B.2, but did not include Y66H1B.5, some

of which contained stop codons at the beginning of Y66H1B.2 due

to alternative splicing (Figure S1). Analysis of GFP reporter

constructs (Figure 1A) suggests fln-1a, and likely fln-1b, are

predominantly expressed in the somatic gonad, including the

spermatheca, sheath, and uterus (Figure 2A). We have shown

previously that a full length, functional FLN-1A::GFP fusion

protein is expressed and co-localizes with actin filaments in these

tissues [28]. In contrast, the fln-1c construct is expressed in the

body wall muscle, vulval muscle and hypodermis (Figure 1E,F).

fln-2a represents the longest predicted transcript from the fln-2

locus based on cDNA sequencing (Figure 1B and S1B); however,

we were unable to detect the full-length fln-2a transcript by PCR,

likely because of the transcript size (.11 kb). fln-2b is the result of

alternative splicing in the final exon of C23F12.2, which

introduces a stop codon, while fln-2c and d are the result of

alternative transcriptional starts (Figure 1B). In addition to the fln-

2 SL1 sites we identified, the modENCODE consortium has

identified numerous SL1 sites within C23F12.2 [34]. This suggests

that fln-2 may have many transcriptional start sites. These

additional SL1 sites would produce transcripts similar to fln-2c

and d. Based on RNA-seq expression data from modENCODE it

seems likely that fln-2a and b are only expressed during

embryogenesis, while fln-2c and d are expressed throughout the

life stages. In addition, five exons near the 39 end of fln-2, colored

light gray in Figure 1B, are usually excluded, suggesting that most

transcripts are lacking these five exons. Analysis of a series of GFP

reporter constructs (Figure 1B) suggests the various isoforms of fln-

2 are expressed broadly, with strong expression in the hypodermis,

pharynx, intestine, anal depressor muscle and distal tip cell

(Figure 2C–D, G–J). The modENCODE data suggests that the

FLN-2C isoform might be the most strongly expressed version of

FLN-2. To determine the expression pattern and subcellular

localization of FLN-2C, we constructed a translational GFP fusion.

FLN-2C::GFP localizes in small puncta at the cell membranes of

vulval (Figure 2G) and hypodermal cells (Figure 2H,I) and to the

intestinal lumen (Figure 2I). Lacking a mutant allele of fln-2 with

an overt phenotype, we are unable to determine the functional

significance of these expression patterns.

To visualize evolutionary relationships between the C. elegans

filamins and well-studied filamins from humans, Drosophila and

Dictyostelium, we constructed a phylogenetic tree using the neighbor

joining method [35]. Human filamins, Drosophila filamin cheerio, C.

elegans filamin FLN-1, and Dictyostelium filamin cluster together

(Figure 1E). There is insufficient homology to indicate to which

human filamin FLN-1 is most similar. In contrast, FLN-2 is a less

well-conserved filamin, distant even from the divergent Drosophila

ortholog jitterbug.

Domain identification of C. elegans filamins
In order to identify the actin-binding and IgFLN domains in

FLN-1 and FLN-2, we used the sequence feature scan in SWISS-

MODEL Workspace [36], the Simple Modular Architecture

Research Tool (SMART) [37,38], and searched the protein

sequence for conserved SPF motifs near the ends of IgFLN repeats

[39]. (See figure S2 for an alignment of FLN-1 IgFLN repeats).

The full-length form, fln-1a, is predicted to encode a 2255 amino

acid protein composed of an N-terminal ABD, followed by

20 IgFLN repeats (Figure 1C, Table 1). The fln-1b transcript

encodes the ABD and 8 IgFLN repeats, two of which are

alternatively spliced and not found in fln-1a. Finally, the fln-1c

Structure of C. elegans Filamins
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transcript is predicted to encode only the final 9 IgFLN repeats

(Table 1). The full-length isoform, fln-2a, encodes a 3747 amino

acid protein composed of an N-terminal ABD followed by at least

23 IgFLN domains (Figure 1D, Table 2). The FLN-2B protein

consists of an ABD followed by a 300 amino acid low-homology

region and two IgFLN repeats. FLN-2C and FLN-2D proteins

contain IgFLN repeats, but do not have an ABD (Figure 1,

Table 2).

Homology modeling of IgFLN repeats in FLN-1 and FLN-2
We performed homology modeling of the C. elegans filamins

using the SWISS-MODEL Workspace [36,40]. The human

filamin actin-binding domain and many of the IgFLN repeats

have structures available in the Protein Data Bank (PDB). We

identified templates, and used ClustalW [41], as well as manual

adjustments, to refine template alignment to the target sequence

before modeling. We used stringent criteria for homology

modeling, retaining only those models with a sequence identity

greater than 30% and a QMEAN score greater than 0.500 [42].

For FLN-1, 13 of the 21 domains met these criteria (Table 3,

Figure 3), while 11 of the 24 FLN-2 domains possessed sufficient

homology for modeling (Table 4, Figure 4). The QMEAN analysis

indicates that experimentally determined IgFLN structures for

FLN-1 and FLN-2 are statistically likely to be similar to these

predicted models [42].

In full-length FLN-1, 20 IgFLN repeats follow the N-terminal

ABD (Figure 1C, Figure 3). We were able to model three IgFLN

domains from the first rod domain, and all of the second rod

Figure 1. Gene structure of FLN-1 and FLN-2 filamin. A schematic representation of the fln-1 (A) and fln-2 (B) loci. Light grey boxes indicate the
genomic region of the predicted ORFs. Exons determined by cDNA sequencing are shown in black, and introns are shown as thin lines. SL1 trans-
splice acceptor sites are indicated with arrowheads. Green exons in fln-2a indicate exons that are predominantly spliced out. Schematic
representation of the domain structure of FLN-1A (C) and FLN-2A (D) as determined by sequence alignment with human FLNA. The first and second
rod regions of FLN-1 are colored blue and orange, respectively. (E) C. elegans FLN-1 clusters with human filamins, the Drosophila filamin cheerio, and
Dictyostelium filamin, while C. elegans FLN-2 most closely resembles Drosophila filamin jitterbug.
doi:10.1371/journal.pone.0022428.g001

Table 1. Splice variants of fln-1.

Isoform Former Sequence IDs* New Sequence ID Size (aa) Domains

FLN-1A Y66H1B.2, Y66H1B.3, Y66H1B.5 Y66H1B.2a 2257 ABD, 20 Ig-FLN

FLN-1B Y66H1B.3 Y66H1B.2b 1084 ABD, 8 Ig-FLN

FLN-1C Y66H1B.2 Y66H1B.2c 836 9 Ig-FLN

*Former sequence IDs are based on WormBase WS205, while the new sequence IDs are based on WormBase WS210.
doi:10.1371/journal.pone.0022428.t001

Structure of C. elegans Filamins
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Figure 2. Expression of fln-1 and fln-2. Merged DIC and GFP images of a young adult hermaphrodite carrying (A) a transcriptional fln-1a::gfp
fusion expressed in the uterus, spermatheca and sheath cells. Images (B-D) depict a transcriptional fln-2a::gfp fusion expressed in the (B) hypodermis
(arrowhead) but not muscle cells (asterisk), (C) pharynx, (D) intestine and anal depressor muscle. Images (E, F) depict a transcriptional fln-1c::gfp fusion
expressed in (E) body wall muscle and (F) hypodermis and vulval muscle. Images (G–J) depict a translational fln-2c::gfp fusion. Images (G) and (G’) are
two different focal planes of fln-2c::gfp expressed in the vulva. Images (H) and (H’) depict fln-2c::gfp in hypodermal cells of a comma stage embryo.
Image (I) depicts fln-2c::gfp in hypodermal cells, intestine and pharynx of an L1 larva. Image (J) depicts fln-2c::gfp in the DTC (arrowhead) of an L2
larva. Scale bar is 25 mm.
doi:10.1371/journal.pone.0022428.g002

Table 2. Splice variants of fln-2.

Isoform Former Sequence IDs* New Sequence ID Size (aa) Domains

FLN-2A C23F12.1, C23F12.2 C23F12.1a 3747 ABD, ,23 Ig-FLN

FLN-2B C23F12.2 C23F12.1b 861 ABD, 2 Ig-FLN

FLN-2C C23F12.1 C23F12.1c 2851 ,20 Ig-FLN

FLN-2D C23F12.1, C23F12.2 (partial) C23F12.1d 3128 ,23 Ig-FLN

*Former sequence IDs are based on WormBase WS205, while the new sequence IDs are based on WormBase WS210.
doi:10.1371/journal.pone.0022428.t002
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IgFLN domains (Figure 3, Table 3). Importantly, each IgFLN

repeat in the second rod domain maps to a specific IgFLN repeat

in human FLNA (Figure 3, Table 3), suggesting that the domains

are not just interchangeable modules, but may mediate specific

and conserved interactions. In order to predict how the IgFLN

domains in C. elegans filamins might interact with each other, we

used multi-domain structures 2K7P (FLNA 16–17), 2K7Q (FLNA

18–19), and 2J3S (FLNA 19–21) as scaffolds to arrange our

domain models (Figure 3). The resulting models suggest that the

IgFLN repeats in the FLN-1 second rod domain would adopt an

arrangement similar to those found in human FLNA.

FLN-2 is composed of an N-terminal ABD followed by at least

23 IgFLN domains, interspersed with long regions for which no

structures were available (Figures 1D and 4). It is possible the low

homology regions in FLN-2 encode additional IgFLN repeats.

This lower overall homology resulted in fewer high-quality IgFLN

domain models, and the mapping of five FLN-2 IgFLN repeats to

a single PDB model 2J3S (Figure 4, Table 4). Despite these

caveats, the model quality estimation parameters for the FLN-

2 IgFLN repeat models are similar to those of the FLN-1 IgFLN

repeats (Table 3), suggesting FLN-2 is likely to be composed

primarily of filamin-like repeats. We were unable to perform

Figure 3. Homology modeling of FLN-1. The spliced fln-1a sequence is illustrated by the gray rectangles (introns are not shown). IgFLN domains
determined by sequence alignment with human FLNA are shown as green rectangles, hinge regions are shown as orange rectangles, and CH
domains are shown as dark gray rectangles. Structural templates are indicated by thick black lines, and labeled with the PDB ID. The modeled ABD
and the IgFLN structures are shown below. The structures are colored to reflect average B-factor, with red regions being more flexible than blue
regions.
doi:10.1371/journal.pone.0022428.g003

Table 3. Modeling statistics for FLN-1.

FLN-1
Domain Region (aa) AA PDB Template Identity

QMEAN
Model

QMEAN
Template Z-score Model Z-score Template

CH1-CH2 15–252 236 2WA5A (hsFLNB ABD) 54.0% 0.683 0.756 20.071 0.060

IgFLN04 545–635 91 2D7OA (hsFLNC Ig17) 43.5% 0.707 0.739 20.280 0.110

IgFLN06 736–828 93 2DJ4A (hsFLNB Ig13) 38.9% 0.797 0.862 0.480 1.260

IgFLN08 926–1019 94 2BP3A (hsFLNA Ig17 GPIBa) 45.2% 0.636 0.724 20.900 20.140

IgFLN12 1396–1474 79 2D7NA (hsFLNC Ig16) 34.6% 0.882 0.863 1.090 1.040

IgFLN13 1476–1568 93 2AAVA (hsFLNA Ig17) 46.7% 0.846 0.818 0.890 0.720

IgFLN14 1569–1654 86 2DMCA (hsFLNB Ig18) 37.2% 0.902 0.677 1.360 20.480

IgFLN15 1655–1752 98 2J3SA (hsFLNA Ig19) 49.0% 0.804 0.651 0.600 20.900

IgFLN16 1754–1874 94 2E9IA (hsFLNB Ig20EX) 31.9% 0.814 0.834 0.610 0.980

IgFLN17 1848–1941 94 2J3SA (hsFLNA Ig21) 56.5% 0.706 0.651 20.290 20.900

IgFLN18 1942–2039 97 2EEBA (hsFLNB Ig22) 31.6% 0.770 0.924 0.260 1.830

IgFLN19 2040–2131 92 2D7QA (hsFLNC Ig23) 55.3% 0.787 0.840 0.380 1.100

IgFLN20 2162–2254 89 2EEDA (hsFLNB Ig24) 43.0% 0.706 0.719 20.270 20.140

average: 43.6% 0.772 0.774 0.297 0.349

Only repeats with a sequence identity greater than 30% to an available structure in the PDB are shown. AA is number of amino acids. Average sequence identity,
QMEAN, and Z-scores are shown at the bottom.
doi:10.1371/journal.pone.0022428.t003
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multi-domain modeling for FLN-2 due to poor sequence identity

with the available multi-domain templates.

Homology modeling of the FLN-1 and FLN-2 actin
binding domains

We identified actin-binding domains (ABDs) near the N-termini

of FLN-1 and FLN-2 (Figures 3, 4, and 5). Alignment of the ABDs

of FLN-1, FLN-2, and human FLNA indicates the filamin ABDs

are composed of well-conserved CH domains (Figure 5D). The

CH1 and CH2 domains of FLN-1 and FLN-2 were modeled using

the FLNB ABD structure (PDB ID 2WA5) [43]. The resulting

FLN-1 and FLN-2 ABD models are very similar to the FLNB

structure (Figure 5A–C). Both the degree of homology and

statistical analysis of the models suggest the structure and function

of the C. elegans ABDs are likely to be extremely well conserved

(Tables 2 and 3). Interestingly, the FLN-2 ABD contains a third,

more divergent, CH domain. No PDB structures were available

with sufficient homology for modeling the FLN-2 CH3 domain. In

addition, the linker region between CH1 and CH2 is absent in

FLN-2, suggesting that interaction of the CH1 and the CH2

domain, and hence the actin binding activity of FLN-2 may be

regulated differently (Figure 5C) [10].

FLN-1 and FLN-2 actin binding domains colocalize with
actin in vivo

Because of the significant homology between the C. elegans and

human filamin ABDs, and the results of our homology modeling,

we predicted that FLN-1 and FLN-2 would colocalize with actin in

vivo. We tagged the FLN-1 and FLN-2 ABD with green fluorescent

protein (GFP), generated transgenic nematodes by microinjection,

and used fluorescence microscopy to determine the co-localization

of the GFP fusions with actin filaments in body-wall muscle cells.

FLN-1 and FLN-2 ABD localization was compared to animals

expressing a VAB-10/spectraplakin ABD GFP fusion protein.

VAB-10, like filamin, has an ABD consisting of tandem CH

domains and has been used to label actin filaments in C. elegans

[44]. F-actin was visualized in the transgenic nematodes by

staining with Texas red-conjugated phalloidin. We observed

colocalizaiton of the FLN-1 and FLN-2 ABDs with F-actin

(Figure 6E–J) in a manner indistinguishable from the VAB-10

Table 4. Modeling statistics for FLN-2.

FLN-2
Domain Region (aa) AA PDB Template Identity

QMEAN
Model

QMEAN
Template Z-score Model Z-score Template

CH1-CH2 16–226 211 2WA5A (hsFLNB ABD) 43.3% 0.787 0.756 0.360 0.060

IgFLN01 641–717 77 2E9IA (hsFLNB Ig20EX) 31.6% 0.868 0.834 0.990 0.980

IgFLN02 722–821 100 2DI9A (hsFLNB Ig9) 29.1% 0.869 0.668 0.990 20.630

IgFLN03 823–915 93 2D7PA (hsFLNC Ig22) 32.3% 0.681 0.923 20.480 1.940

IgFLN06 1108–1196 89 2J3SB (hsFLNA Ig19) 30.4% 0.705 0.651 20.290 20.900

IgFLN12 2418–2497 80 2J3SA (hsFLNA Ig21) 30.0% 0.755 0.651 0.160 20.900

IgFLN18 3073–3163 91 2E9JA (hsFLNB Ig14) 32.3% 0.787 0.749 0.400 0.240

IgFLN19 3164–3255 92 2J3SA (hsFLNA Ig19) 31.2% 0.731 0.651 20.080 20.900

IgFLN21 3390–3484 95 2J3SB (hsFLNA Ig19) 33.7% 0.640 0.651 20.860 20.900

IgFLN22 3486–3578 93 2J3SA (hsFLNA Ig19) 38.0% 0.672 0.651 20.580 20.900

IgFLN23 3580–3675 96 2DI8A (hsFLNA Ig19) 39.6% 0.783 0.769 0.390 0.400

average: 33.8% 0.753 0.723 0.091 20.137

Only repeats with a sequence identity greater than 30% to an available structure in the PDB are shown. AA is number of amino acids. Average sequence identity,
QMEAN, and Z-scores are shown at the bottom.
doi:10.1371/journal.pone.0022428.t004

Figure 4. Homology modeling of FLN-2. The spliced fln-2a sequence is illustrated by the gray rectangles (introns are not shown).
IgFLN domains determined by sequence alignment with human FLNA are shown as green rectangles, and the CH domains are shown as dark gray
rectangles. Structural templates are indicated by thick black lines, and labeled with the PDB ID. The modeled ABD and the IgFLN structures are shown
below. The structures are colored to reflect average B-factor, with red regions being more flexible than blue regions.
doi:10.1371/journal.pone.0022428.g004
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fusion protein (Figure 6B–D). To determine if the third CH

domain in the FLN-2 ABD is necessary for localization to actin,

we generated transgenic animals in which the two most highly

conserved domains (CH1 and CH2) of FLN-2 were fused to GFP.

The localization pattern (Figure 6 K–M) was indistinguishable

from the other ABD constructs, indicating the third CH domain is

not required for localization. These data suggest that the CH1 and

CH2 domains of C. elegans filamins can direct the localization of

GFP to actin filaments, likely through direct binding to actin.

IgFLN repeats are conserved in FLN-1
IgFLN domains are composed of two beta-sheets that combine

to form a beta sandwich. The first sheet contains four beta strands

(A, B, E, and D) and the second is composed of three strands (C, F,

and G). Human IgFLN repeats have been classified into four

distinct groups: A, B, C, and D [14]. Using sequence alignments

and phylogenetic trees, we identified six group A repeats (4, 8, 13,

15, 17 and 19), five group B repeats (12, 14, 16, 18, and 20), and

one group D repeat (6) (Figure 7A, S2, and S3). Group C and D

repeats are located in the first rod of filamin and have a lower

conservation compared to group A and B repeats. Importantly,

not all repeats in the first rod domain are poorly conserved;

namely repeats 4 and 8, which belong to group A.

Group A repeats have a conserved ligand-binding motif on the

CD face and are responsible for most of the known filamin

interactions [14]. Although other Group A repeats bind integrin

with lower affinity, the hsFLNA IgFLN21 is the primary site of

integrin binding [4,5]. The overall structure, position in the second

rod domain, and key integrin binding residues present in FLN-1

IgFLN17 very closely resemble FLNA IgFLN21, suggesting that

the nematode filamin may also bind integrin in this region

(Figure 7B–C). In contrast, while our modeling studies indicate

FLN-2 IgFLN12 will fold similarly to FLNA IgFLN21, substitu-

tions exist in several key residues on the CD face that would make

integrin binding unlikely (Figure 7B–C) [4,5].

In vitro studies of Dictyostelium and human filamins indicate that the

C-terminal Group B repeat mediates homo- and hetero-dimeriza-

tion between filamin monomers [9]. Our homology modeling

results predict that the C-terminal IgFLN repeat of FLN-1

(IgFLN20) is structurally similar to that of the final human filamin

repeat IgFLN24 (PDB structure 2EED), including the hydrophobic

dimerization signature [45,46] (Figure 8A–B). In contrast, the final

repeat of FLN-2 does not show specific structural homology to the

dimerization domain, or possess the residues predicted to mediate

dimerization (Figure 4, Table 4). These modeling results suggest

FLN-1 and FLN-2 may differ in their ability to form dimers. In the

future, it will be important to determine if FLN-1 and FLN-2 can

form hetero- or homodimers in vivo.

Discussion

In this study, we use transcript sequencing and bioinformatics to

identify and describe the gene structure of the C. elegans filamin

orthologs, encoded by fln-1 and fln-2. In addition, we use

comparative homology modeling to predict the structures of the

filamin repeats and the actin-binding domains. Taken together,

our results suggest that the C. elegans filamin FLN-1 contains all

features of the human filamins, including a well conserved actin-

binding domain and 20 Ig-like filamin (IgFLN) domains separated

into two rod regions. In contrast, FLN-2 is more divergent with an

unusual ABD composed of three CH domains, and at least 23 Ig-

like repeats interspersed with large regions of low homology. These

results will help inform and validate future genetic and

biochemical studies of filamin function, particularly those using

C. elegans as a model system.

Figure 5. Actin-binding domain modeling of FLN-1 and FLN-2. Human FLNA ABD structure 2wa5 (A) was used to model the FLN-1 (B) and
FLN-2 (C) ABDs. Arrowhead in (C) indicates missing linker region between CH1 and CH2 of FLN-2. The third CH domain of FLN-2 was not modeled. (D)
Sequence alignment of human FLNA, and C. elegans FLN-1 and FLN-2 ABDs. CH1 and CH2 domains are indicated with blue and green, respectively.
The linker region is indicated with gray. Highlighted region in (D) indicates the main actin-binding site in CH1.
doi:10.1371/journal.pone.0022428.g005
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The gene structures of the two C. elegans filamins are quite

divergent from each other. fln-1 is smaller and is comprised of

comparatively few large exons (Figure 1A), while fln-2 has many

small exons and is considerably longer (Figure 1B). Exons in fln-1

appear to be modular units that contain one or more complete

IgFLN repeats (Figure 3). Due to the smaller exon length,

domains in fln-2 are usually encoded by multiple exons (Figure 4).

In both fln-1 and fln-2, a few small exons appear to be

alternatively spliced, but all are in frame and are not predicted

to have much effect on the overall structure of the protein. It is

likely that we have not detected all splice variants of fln-1 and fln-

2. C. elegans filamins appear to be extensively regulated through

alternative splicing, and alternative transcriptional starts. Human

filamins are also alternatively spliced, with consequences for

ligand binding in the second rod domain [47]. These events are

not known to produce large N- and C-terminal truncations like in

C. elegans and D. melanogaster. Determining the function of these

alternative filamin isoforms will be an interesting area for future

research.

FLN-1 is structurally very similar to vertebrate filamins,

particularly in the actin-binding domain and the second rod

region. FLN-1 and Drosophila filamin cheerio both contain

20 IgFLN domains [33,48–50]. The second rod region and the

dimerization domain appear to be extremely well conserved

between the worm, fly, and human filamins. In each case, the

second rod domain consists of 8 IgFLN domains in the same

order. The first rod domains of FLN-1 and cheerio lack four repeats,

and have a lower overall conservation. It is possible that FLN-1

and cheerio represent ancestral filamins, which gave rise to

vertebrate filamins through gene duplication events and modular

expansion of the first rod domain [12]. We predict FLN-1 is likely

to fold, interact and function in a manner similar to that of human

filamins.

FLN-2 is a divergent form of filamin with low homology to

vertebrate filamins. The closest homolog of FLN-2 outside of

nematodes is the Drosophila filamin jitterbug. jitterbug shares many

of the features of FLN-2, including an unusual actin-binding

domain composed of three CH domains, and poorly conserved

filamin repeats with long intervening sequences. jitterbug muta-

tions cause seizures in affected flies, suggesting that jitterbug may

have a role in the development or functioning of the nervous

system [48,49,50]. Additionally, jitterbug is required for the

mechanical response of notum tendon cells [51]. In the

nematode, previously published transcript profiling data suggests

full-length fln-2a is only expressed during embryogenesis, and the

predominant larval form may be fln-2e, which lacks the ABD

[34]. FLN-2 has not been investigated, but large-scale RNAi

studies suggest it may play a role in molting [29,30]. Consistent

with this, we find FLN-2C localizes in punctate structures at the

membrane of hypodermal cells, where it might play a structural

or attachment role.

FLN-1 and FLN-2 colocalize with F-actin in vivo
Filamins are an important class of actin crosslinking proteins

that contribute to the stability of the actin cytoskeleton. We

identified the actin binding domains of FLN-1 and FLN-2, and

showed that they are highly conserved and structurally similar to

mammalian filamins, particularly in areas critical for actin binding

(Figure 5A–C). Importantly, we demonstrated that these putative

ABDs co-localize with F-actin in vivo. This work is consistent with

previous results which demonstrate that both FLN-1 and cheerio

are required for integrity of the actin cytoskeleton in the

reproductive system [28,52,53,54].

Human disorders such as otopalatodigital syndrome (OPD)

[55], periventricular heterotopia (PVH) [56], and boomerang

dysplasia (BD) [57] can be caused by mutations in the filamin

ABD, which modulates the affinity of filamin for F-actin.

Therefore, a greater understanding of how the actin binding

activity of filamin is regulated could be clinically relevant.

Although biochemical experiments have shown in vitro binding of

the filamin ABD by calmodulin [10] and phosphatidylinositol 4,5-

bisphosphate (PIP2) [58], further studies are needed to determine

how actin binding is regulated physiologically. Because the

structural features of the ABD are preserved in C. elegans, the

nematode may be a tractable model system to study this feature of

filamin function.

Figure 6. FLN-1 and FLN-2 ABD mediates co-localization with
actin in vivo. (A) Diagrams of ABD::GFP constructs used. (B, E, H and K)
Body-wall muscle cells are stained for F-actin with phalloidin. (C,F,I and
L) VAB-10, FLN-1, FLN-2, and FLN-2* (CH1 and CH2) ABDs fused to GFP,
and expressed in muscle cells. (D, G, J and M) Merged F-actin and GFP
images show co-localization. Scale bar indicates 5 mm.
doi:10.1371/journal.pone.0022428.g006
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Figure 7. Alignment of group A CD binding interface. (A) Alignment of selected group A repeats C-D faces of human FLNA and C. elegans FLN-
1. Residues critical for integrin-binding are indicated with orange arrowheads. FLNA IgFLN21 and FLN-1 IgFLN17 are highlighted in blue. (B)
Alignment of the FLNA IgFLN21 and FLN-1 IgFLN17 C–D faces with FLN-2 IgFLN12. (C) Structure of hsFLNA IgFLN21 complexed with the b7 integrin
tail, and the homology models of FLN-1 IgFLN17 and FLN-2 IgFLN12. Arrowheads indicate critical residues for integrin binding.
doi:10.1371/journal.pone.0022428.g007

Figure 8. FLN-1 dimerization domain. (A) Alignment of FLNA and FLN-1 dimerization domains, with the hydrophobic dimerization interface
indicated in red. Blue line denotes the hinge region between the dimerization domain and the preceding domain. (B) Structural comparison of the
solution NMR structure of FLNB IgFLN24 (PDB ID 2EED) with the nearly identical homology model of FLN-1 IgFLN20. The conserved hydrophobic
dimerization signature is in red. The hinge region is not shown.
doi:10.1371/journal.pone.0022428.g008
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Homology modeling suggests FLN-1 may form dimers
Dimerization has long been considered critical for the actin-

crosslinking function of filamin. Biochemical studies have

identified the most C-terminal IgFLN domain as the primary

dimerization domain [6,9,20,45,59,60,61]. Our homology model-

ing suggests that FLN-1 may form dimers in an orientation akin to

vertebrate filamins, rather than in the manner of ddFLN, which

lacks the hydrophobic dimerization interface [45]. FLN-1

dimerization could be important for its role in actin crosslinking

in the nematode somatic gonad, especially in the uterus and

spermatheca, where fluorescence microcopy reveals what appear

to be V-shaped filamin clusters co-localized with branching actin

filaments [28].

Force sensation in the second rod domain of FLN-1
Filamin molecules can function as mechanical force sensors and

have been shown to engage in distinct interactions depending on

conformational state. The arrangement of filamin repeats has

functional relevance and provides insight into how filamin may

respond to mechanical stimuli [4,33]. For example, studies using

atomic force microscopy have demonstrated that the IgFLN

repeats can withstand different amounts of force before unfolding

[62,63], and that this unfolding can interrupt or reveal binding

sites. In particular, in the FLNA group IgFLN19–21, the N-

terminal b-strand A of IgFLN20 is extended away from the rest of

the sandwich, and participates structurally as a part of IgFLN21,

which is nestled between IgFLN19 and IgFLN21 [4]. In this

orientation, the N-terminus of IgFLN20 occupies the site where

integrin preferentially binds. When this auto-inhibition is disrupt-

ed, the binding site is revealed, integrin binding affinity increases,

and the length of the filamin molecule increases [4]. Structural

data suggest that other IgFLN repeats in Rod 2 also interact with

one another and may have similar effects on ligand binding and

the cellular response to mechanical stress [33]. Our analysis

suggests that the second rod domain of FLN-1 is well conserved,

and that the domains are physically arranged as in the human

filamins. The significant sequence and structural conservation

suggests that FLN-1 may also exhibit differential interactions and

auto-inhibition in response to changing mechanical conditions.

Ongoing studies are testing the hypothesis that FLN-1 functions as

a stretch-sensitive signaling scaffold in vivo [28].

Materials and Methods

Gene structure and sequencing of fln-1 and fln-2
Wildtype N2 nematodes were obtained from the Caenorhabditis

Genetics Center (Minneapolis, MN). Total RNA was extracted

from mixed-stage N2 animal populations as described previously

[25]. cDNA was prepared using SuperScript Reverse Transcrip-

tase (Invitrogen; Carlsbad, CA, USA) and random hexamers as

primers. cDNA sequencing was accomplished by amplifying

regions of fln-1 and fln-2 by PCR, and subsequently cloning the

amplicons into pGEM T-vector (Promega; Madison, WI, USA).

Vector-specific primers (SP6 and T7) were used to sequence the

inserts. Vector and poor quality sequences were trimmed, and the

sequences were aligned to C. elegans genomic sequences using CLC

bio Main Workbench version 5.2 (CLC bio; Cambridge, MA,

USA). Tables S1A and S1B provide complete lists of primers used

for sequencing fln-1 and fln-2 respectively. The amended C. elegans

filamin gene names and structures have been submitted to

WormBase (http://www.wormbase.org/) and are available as of

the WS210 release [64]. Previous gene structure data is available

in the referential WormBase WS205 release (http://ws205.

wormbase.org/) and earlier releases.

fln-1 and fln-2 expression
Sequences 59 of each filamin transcript were amplified by PCR

using N2 genomic DNA as a template. Each fragment was flanked

by engineered HindIII and BamHI restriction sites to facilitate

cloning into the GFP expression vector pPD95.77 (Fire Vector

Kit). Plasmids were isolated from E. coli and used for microinjec-

tion at an approximate concentration of 100 mg/mL. Transgenic

strains were created by standard germline transformation [69] of

wild type animals to create strains UN0824 xbEx0824[fln-1c::gfp;

ttx-3::rfp] and UN0816 xbEx0816[fln-2a,b::gfp]. Strain UN1066

xbEx0816[fln-2c::gfp] was created by co-injection of fln-2c amplified

from N2 genomic DNA using the high-fidelity Phusion polymerase

(NEB, Ipswich, MA) and GFP and unc-54 39 UTR sequences from

pPD95.77. Strain UN0811 xbEx0811[fln-1::gfp] is previously

described [28]. All primer sequences and cloning details available

upon request. For visualization, transgenic animals were mounted

on 1.5% agarose pads and imaged using differential interference

contrast and epifluorescence microscopy with a Nikon Eclipse 80i

microscope equipped with a SPOT RT3 CCD camera (Diagnostic

Instruments; Sterling Heights, MI, USA).

Phylogenetic trees
Filamin sequences from C. elegans [ACY40014.1 (ceFLN-1);

ACY39993.1 (ceFLN-2)], Drosophila melanogaster [NP_524383.3

(dmCHER); NP_726234.3 (dmJBUG)], human [NP_001447.2

(hsFLNA); NP_001449.3 (hsFLNC); NP_001157789.1 (hsFLNB)],

and Dictyostelium discoideum [XP_646669.1 (ddFLN)] were

aligned using the ClustalW program [41]. A phylogenetic tree

was constructed using the Neighbor Joining algorithm [35] and

the BLOSUM62 matrix [65]. The phylogenetic tree of FLNA and

FLN-1 repeats was constructed using CLC bio Main Workbench

version 5.2.

Domain identification
The assembled full-length sequences encoding FLN-1 and FLN-

2 were used to identify the number and location of structural

domains within the protein. IprScan, a PERL-based InterProScan

utility [66], integrated into the SWISS-MODEL Workspace [36]

was used to predict domains and functional features in the

sequence. We also used SMART (Simple Modular Architecture

Research Tool) [37,38] to search for evolutionarily conserved

protein domains, and scanned the sequences for SPF motifs that

are often found near the end of IgFLN repeats [39].

Homology modeling
For homology modeling of FLN-1 and FLN-2, the predicted

amino acid sequences were divided into individual domains for

alignment and template identification. We started with the

Template Identification Tool incorporated into the SWISS-

MODEL Workspace (http://swissmodel.expasy.org/), which uses

BLAST to identify homologs in the SWISS-MODEL Template

Library (SMTL) [40], and selects the best template structure based

on sequence similarity, experimental quality, and secondary

structure predictions. Domain sequences with less than 50%

sequence identity to their selected template were realigned outside

of the SWISS-MODEL Workspace using ClustalW [41] and

visually inspected to ensure proper alignment prior to modeling.

Modeling was accomplished using the SWISS-MODEL Work-

space Alignment Mode, which is recommended for target and

template sequences with 50–30% sequence identity [67]. Target-

template pairs with less than 29% sequence identity were

discarded. The resulting models and their templates were assessed

globally for quality using the QMEAN server (http://swissmodel.
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expasy.org/qmean/) [42], and homology models scoring less than

0.500 were discarded. Molecular graphics images were produced

using the UCSF Chimera package from the Resource for

Biocomputing, Visualization, and Informatics at the University

of California, San Francisco (supported by NIH P41 RR001081)

[68].

In vivo actin colocalization assay
To generate the myo-3P::VAB-10ABD::GFP control construct,

the 2 kb myo-3 promoter was amplified from N2 genomic DNA

and cloned upstream of the cDNA encoding the first 1215 bp

(405 aa) of the known actin-binding protein VAB-10, fusing it to

GFP in the pPD95.77 vector (provided by A. Fire). Similarly, myo-

3p::FLN-1ABD::GFP, the myo-3P::FLN-2ABD::GFP and the myo-

3P::FLN-2ABD(CH1+2)::GFP constructs were produced by inserting

cDNA representing either the first 792 bp of fln-1, 1076 bp of fln-2

for the FLN-2ABD construct or 704 bp of fln-2 for the FLN-

2ABD(CH1+2) construct into the BamHI and KpnI sites of pPD95.77

vector containing the myo-3 promoter. Transgenic lines carrying

extrachromosomal arrays were generated via microinjection into

N2 hermaphrodites as described [69] and given the following

identifiers: UN0935 xbEx0935[myo-3P::VAB-10ABD::GFP], UN0939

xbEx0939[myo-3P::FLN-1ABD::gfp], UN0954 xbEx0954[myo-3P::FLN-

2ABD::gfp] and UN1128 xbEx1128[myo-3P::FLN-2ABD(CH1+2)::gfp]. C.

elegans strains were grown on Nematode Growth Medium (NGM)

plates fed with E. coli strain OP50 at 20uC unless otherwise stated

[70].

To determine if the predicted ABD of FLN-1 and FLN-2 co-

localize with actin in vivo, transgenic worms expressing fluorescent

fusion proteins were fixed with 4% formaldehyde in PBS, placed

on poly-L-lysine coated slides, and fixed in cold methanol and

acetone. Fixed worms were stained with 0.4 U/mL of Texas Red-

X phalloidin (Invitrogen) overnight at 4uC. The slides were

washed, mounted, and viewed on a Nikon Eclipse 80i epifluor-

escence microscope. Images were documented with a SPOT RT3

CCD camera and SPOT Advanced software (Diagnostic Instru-

ments; Sterling Heights, MI, USA.

Supporting Information

Figure S1 Sequencing of FLN-1 and FLN-2 transcripts.
Schematic representation of the gene structure of FLN-1 and

FLN-2 with aligned sequencing results.

(TIF)

Figure S2 FLN-1 IgFLN domain alignments. Sequence

alignment of all IgFLN repeats of C. elegans FLN-1 indicates

strongly conserved regions similar to human filamins. Sequences

are sorted by similarity, and group A repeats are indicated. The

majority of the repeats ends with the SPF motif (black

arrowheads), and contains conserved G, K, F, P, V, and Y

residues. The majority consensus and the conservation level are

indicated below the sequence alignment.

(TIF)

Figure S3 Phylogenetic tree of FLNA and FLN-1 repeats.
Repeat classes are indicated with black bars and the corresponding

letters. C. elegans and human repeats are labeled Ce and Hs,

respectively. FLN-1 repeats are in orange, while FLNA repeats are

in black. FLNA IgFLN24 has been classified as a group B repeat,

and clusters with FLN-1 IgFLN20. FLNA group C repeats do not

cluster with any FLN-1 repeats.

(TIF)

Table S1 Sequencing primers. Primers used for amplifica-

tion of FLN-1 and FLN-2 transcripts for sequence. Vector-specific

primers T7 and SP6 were also used for sequencing.

(XLS)
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