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Purpose of review

To review the profile of ETC-1002, as shown in preclinical and clinical studies, including LDL-cholesterol
(LDL-C)-lowering activity and beneficial effects on other cardiometabolic risk markers as they relate to the
inhibition of adenosine triphosphate-citrate lyase and the activation of adenosine monophosphate-activated
protein kinase.

Recent findings

ETC-1002 is an adenosine triphosphate-citrate lyase inhibitor/adenosine monophosphate-activated protein
kinase activator currently in Phase 2b clinical development. In seven Phase 1 and Phase 2a clinical studies,
ETC-1002 dosed once daily for 2–12 weeks has lowered LDL-C and reduced high-sensitivity C-reactive
protein by up to 40%, with neutral to positive effects on glucose levels, blood pressure, and body weight.
Importantly, use of ETC-1002 in statin-intolerant patients has shown statin-like lowering of LDL-C without the
muscle pain and weakness responsible for discontinuation of statin use by many patients. ETC-1002 has
also been shown to produce an incremental benefit, lowering LDL-C as an add-on therapy to a low-dose
statin. In over 300 individuals in studies of up to 12 weeks, ETC-1002 has been well tolerated with no
serious adverse effects.

Summary

Because adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase play
central roles in regulating lipid and glucose metabolism, pharmacological modulation of these two enzymes
could provide an important therapeutic alternative for statin-intolerant patients with hypercholesterolemia.
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INTRODUCTION

Despite recent medical advances in cholesterol man-
agement, cardiovascular disease (CVD) remains a
leading cause of death and disability [1,2]. As elevated
levels of LDL-cholesterol (LDL-C) represent a signifi-
cant modifiable risk factor for CVD, hypercholester-
olemiahasbecomeaprimary target for lipid-lowering
therapies and for reduction of the risk of major
adverse cardiac events (MACE) [1,3,4]. Inhibition
of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA)
reductase with statins remains a leading therapeutic
strategy to treat hypercholesterolemia and to reduce
cardiovascular risk [3]. In addition to LDL-C lower-
ing, statins reduce high-sensitivity C-reactive pro-
tein (hsCRP) levels and to limit chronic low-grade
illiams & Wilkins. Unau
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inflammation, which often coincides with altered
lipid metabolism and represents a hallmark feature
of coronary artery disease [5

&

,6]. Although the bene-
fits of using statins to effectively control LDL-C and
thorized reproduction of this article is prohibited.
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KEY POINTS

� Pharmacological modulation of ACL and AMPK is a
promising therapeutic strategy to lower LDL-C levels in
hypercholesterolemic patients who cannot tolerate, or
are unable to fully benefit from, statin therapy.

� ETC-1002 is an oral ACL inhibitor/AMPK activator
currently in Phase 2b clinical development for treatment
of hypercholesterolemic patients with and without a
history of statin intolerance.

� ETC-1002, as monotherapy or in combination with
a statin, has effectively reduced LDL-C in
hypercholesterolemic patients with and without
type 2 diabetes, including those with documented
statin intolerance.

� In addition to LDL-C-lowering benefits, ETC-1002
has reduced levels of hsCRP and may have positive
effects on blood pressure, glycemic control and body
weight.

Hyperlipidaemia and cardiovascular disease
hsCRP levels and to reduce cardiovascular risk are
well documented, a significant subset of patients is
unable to take full advantage of statin treatment
because of muscle pain or weakness, or the risk of
increased blood glucose levels. Approximately 12%
of patients on statins discontinue therapy, citing
myalgia as the primary reason for discontinuation
[7]. More than two million adults in the USA are
considered to be statin intolerant. Poor statin adher-
ence can lead to worsening of cardiovascular out-
comes and increased risk of MACE [7–9]. Recently,
the Food and Drug Administration has issued a warn-
ing that statins may increase the risk of elevated
blood glucose and new-onset type 2 diabetes [10].
This regulatory warning reinforces the growing need
for new therapeutic options to lower LDL-C levels in
patients with hypercholesterolemia and diabetes or
at risk for developing diabetes.

The present review will focus on adenosine
triphosphate-citrate lyase (ACL) and adenosine
monophosphate-activated protein kinase (AMPK)
as promising targets for the development of novel
lipid-lowering therapies designed not only to yield
statin-like benefits in hypercholesterolemic patients
but also to avoid side-effects associated with statin
treatment. In addition to target justification, we will
describe the mechanism of action [11,12] and review
the most recent clinical data [13,14] for ETC-1002
(8-hydroxy-2,2,14,14 tetramethylpentadecanedioic
acid) – the only dual ACL inhibitor/AMPK activator
currently in Phase 2 clinical development for the
treatment of hypercholesterolemia in patients with
and without a history of statin intolerance or at risk of
worsening glycemic control [15,16].
opyright © Lippincott Williams & Wilkins. Unautho
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ADENOSINE TRIPHOSPHATE-CITRATE
LYASE AND ADENOSINE
MONOPHOSPHATE-ACTIVATED PROTEIN
KINASE: THERAPEUTIC TARGET
JUSTIFICATION
ACL is an extra-mitochondrial enzyme that is highly
expressed in lipogenic tissues such as liver and
adipose [17]. ACL catalyzes the cleavage of mito-
chondrial-derived citrate to cytosolic acetyl-CoA
and oxaloacetate, with acetyl-CoA serving as a com-
mon substrate for de-novo cholesterol and fatty
acid synthesis [18–23]. Transcription of ACL is con-
trolled by the sterol regulatory element-binding
protein-1 (SREBP-1) which is highly responsive to
nutritional status through insulin signaling and
glucose metabolites [24,25]. In the lipogenic state,
ACL expression and cytosolic citrate levels are elev-
ated and serve as a critical link between glycolysis
and lipid synthesis and storage. Because of its
strategic position in cholesterol biosynthetic path-
ways, ACL inhibition is considered to be an attrac-
tive therapeutic strategy for the reduction of
elevated LDL-C levels.

Inhibition of de-novo hepatic cholesterol
synthesis by statins, highly potent and selective
inhibitors of HMG-CoA reductase, represents an
effective therapeutic approach to reduce LDL-C
[26–28]. The primary mechanism linking inhi-
bition of hepatic sterol synthesis to reductions
in LDL-C involves compensatory upregulation
of sterol regulatory element-binding protein-2
(SREBP2)-dependent gene transcription in res-
ponse to reduced intracellular cholesterol levels
[29]. Induction of SREBP-2 activity triggers a trans-
criptional program aimed to restore intracellular
cholesterol via a concurrent increase in cholestero-
genic enzymes and upregulation of LDL receptor
expression [29]. As a consequence, elevated LDL
receptor activity increases the fractional catabolic
rate of LDL particles in the blood, thus reducing
LDL-C [29]. Similar to the mechanism described for
statins, pharmacological inhibition of ACL limits
de-novo cholesterol synthesis and increases LDL
receptor activity [30]. Unlike statins, however, this
occurs without direct inhibition of HMG-CoA.
Furthermore, inhibition of ACL also reduces
de-novo fatty acid synthesis, resulting in decreased
malonyl-CoA levels, and subsequent enhancement
of CPT-1-dependent mitochondrial transport
of long-chain fatty acids for b-oxidation. This
switch from fatty acid synthesis to b-oxidation
limits the fatty acid availability for synthesis of
cholesteryl esters, triglycerides, and VLDL secretion
[20]. Consequently, reduced VLDL production in
response to ACL inhibition may even further con-
tribute to LDL-C lowering because VLDL serves
rized reproduction of this article is prohibited.
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as the main metabolic precursor for LDL particle
formation.

AMPK is a heterotrimeric complex of an a-cata-
lytic and bg-regulatory subunits that modulates
lipid and carbohydrate metabolism, immune
response, protein synthesis, and cell growth [31].
As a key regulator of energy homeostasis [32,33],
AMPK controls cellular metabolism by phosphory-
lating key enzymes, transcription factors, and coac-
tivators which results in a metabolic shift from
anabolic processes, including gluconeogenesis and
lipid synthesis, to catabolic processes such as fatty
acid b-oxidation [31]. Although acute regulation of
lipid metabolism by AMPK is linked to inhibitory
phosphorylation of the rate-limiting enzymes of
fatty acid and cholesterol synthesis [34–36], the
more sustained control of lipid homeostasis by
AMPK is mediated via transcriptional program
which combines inhibition of SREBP1-dependent
fatty acid synthase expression, and upregulation
of mitochondrial fatty acid oxidation through the
activation of peroxisome proliferator-activated
receptor-g coactivator 1a (PGC1a) [37]. Similarly,
the long-term regulatory role of AMPK in carbo-
hydrate metabolism involves complex transcrip-
tional control of the gluconeogenic enzymes
phosphorenol pyruvate carboxykinase (PEPCK)
and glucose-6-phosphatase (G-6-Pase) [38–41]. In
tandem, these acute and chronic mechanisms are
expected to reverse elevated triglyceride storage,
Copyright © Lippincott Williams & Wilkins. Unau
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increase insulin sensitivity, and improve glycemic
control in the liver [42].

As inception and propagation of the immune
response is a highly energy-demanding process
[43

&

,44], AMPK activation also limits inflammation
by directly suppressing the anabolic events in
immune cells and restricting energy availability
for protein biosynthesis [43

&

,44]. This occurs largely
through the complex overlapping networks of the
sirtuin family of protein deacetylases, PGC1a and
PGC1b, as well as mTOR signaling [43

&

,44,45,46
&

]
and leads to transition into the Th2/M2 anti-inflam-
matory phenotype [47–49], inhibition of NF-kB,
RelA/p65, and MAP kinase signaling, and reduced
production of soluble mediators of inflammation by
the immune cells [11,46

&

,50,51].
ETC-1002: MECHANISM OF ACTION

ETC-1002 is a novel, small molecule, dual ACL
inhibitor/AMPK activator that beneficially modu-
lates lipid, lipoprotein and carbohydrate metab-
olism, and inflammation (Fig. 1). ETC-1002 was
selected from a library of structural analogues based
on its ability to mediate equipotent inhibition of de-
novo cholesterol and fatty acid synthesis in primary
hepatocytes and favorably modify serum lipid vari-
ables in obese female Zucker (fa/fa) rats [52].

In a series of in-vitro and in-vivo follow-up
studies aimed at elucidating the underlying
thorized reproduction of this article is prohibited.

te lyase

eductase

terol
sis

CoA

LDC-C

Fatty acid
synthesis

Cholesterol
synthesis

LDL-receptor
upregulation

Glucose

Lipids

Inflammation

Blood pressure

Weight gain

Fatty acid
oxidation

ic acid

erol

ene

Malonyl-CoA

CoA

L inhibitor/AMPK activator that beneficially modulates lipid,
-1002 reduces LDL-C via inhibition of ACL, an enzyme that
thway. Activation of AMPK by ETC-1002 is complementary

metabolic risk markers.

ins www.co-lipidology.com 311



C

Hyperlipidaemia and cardiovascular disease
molecular mechanisms for equipotent inhibition of
lipid synthesis, formation of ETC-1002-Coenzyme A
(ETC-1002-CoA) thioester has been identified as
a required step for ETC-1002-mediated inhibition
of lipid synthesis [12]. Quantitative tracking of
multiple metabolic intermediates of lipid synthesis
provided further insights to the point of inhibition
and identified ACL as a primary target based on
reduction in all metabolites downstream of ACL
coupled with concomitant increase in ACL substrate
– citrate. Consistently, in a cell-free assay, ETC-
1002-CoA directly inhibited recombinant human
ACL via competitive inhibition for coenzyme A,
whereas neither ETC-1002 nor ETC-1002-CoA
inhibited partially purified rat HMG-CoA reductase
activity [52]. Importantly, ETC-1002 treatment was
also associated with a concentration-dependent
increase in LDLR activity in vitro (Esperion’s unpub-
lished data). ETC-1002 was also shown to activate
AMPK in a Ca2þ/calmodulin-activated protein
kinase kinase b (CaMKKb)-independent and liver
kinase b (LKB1)-dependent manner, without induc-
ing detectable changes in adenylate energy charge
(AEC). Furthermore, in primary rat hepatocytes,
ETC-1002 reduced both glucagon-dependent glu-
cose production as well as the expression of PEPCK
and G-6-Pase [12].

In immune cells treated with ETC-1002,
increased levels of AMPK phosphorylation coincided
with reduced activity of JNK and p38 MAP kinases
along withdecreasedproductionof proinflammatory
cytokines and chemokines [11]. siRNA-mediated
gene silencing confirmed that ETC-1002 activates
macrophage AMPK and exerts its anti-inflammatory
effects via a mechanism dependent on the LKB1/
AMPKaxis [11]. Consequently,ETC-1002diminished
opyright © Lippincott Williams & Wilkins. Unautho

Table 1. Summary of LDL-C lowering by ETC-1002 in seven com

Study number Title LD

001 Phase 1a single-dose tolerance, N¼18/18

002, 004 Phase 1b multiple-dose tolerance,
N¼77/57

003 Phase 2a proof of concept in
hypercholesterolemic patients,
N¼177/133

005 Phase 2a proof of concept in patients
with hypercholesterolemia and type
2 diabetes, N¼60/30

006 Phase 2a proof of concept in patients with
hypercholesterolemia and a history of
statin intolerance, N¼56/37

007 Phase 2a in patients with hypercholesterolemia
added on to 10 mg atorvastatin, N¼58/42

Total individuals: 446; Treated Individuals: 317.
aAverage LDL-C % change from baseline.
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homing of neutrophils and macrophages into the
disease site and decreased adipose mass, IL-6 release
as well as macrophage presence in the inflamed
tissue [11].

Thus, inhibition of ACL and activation of
AMPK by ETC-1002 represent a unique tandem of
complementary activities aimed to correct imbal-
ances in lipid and carbohydrate metabolism.
Indeed, in preclinical models of hypercholesterole-
mia, diet-induced and genetic models of obesity/
diabetes, high-fat/high-cholesterol-fed models of
atherosclerosis, and genetic models of hyper-
tension, use of ETC-1002 has lowered LDL-C,
reduced glucose/ insulin levels, decreased body
weight gain without altering food intake, reduced
the progressive development of atherosclerotic
plaques, lowered inflammatory markers linked to
atherosclerosis, and reduced blood pressure [11,12].
Subsequent clinical translation of these benefits
could potentially enable ETC-1002 as an alternative
therapy designed to control LDL-C levels in patients
with dyslipidemia and a history of statin intoler-
ance.
ETC-1002: CLINICAL EVALUATION

ETC-1002 is the only, orally available, once-daily
dual ACL inhibitor/AMPK activator currently in
Phase 2b clinical development. To date, ETC-1002
has been evaluated in seven completed clinical
studies (Table 1).
Hypercholesterolemia

In a multicenter, randomized, double-blind, placebo-
controlled study of 177 patients with elevated LDL-C
rized reproduction of this article is prohibited.

pleted Phase 1 and Phase 2a clinical studies

L-C loweringa Dose range (mg) Treatment duration

ND 2.5, 10, 45, 125, 250 Single dose

Up to 36% 20, 60, 100, 120, 140,
180, 220

2 weeks/4 weeks

Up to 27% 40, 80, 120 12 Weeks

43% 80, 120 4 Weeks

32% 60, 120, 180, 240 8 Weeks

22% 60, 120, 180, 240 8 Weeks
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Table 2. Safety and tolerability of ETC-1002 in patients

with a history of statin intolerance

ETC-1002 PBO

Adverse event occurrence 70% 79%

Muscle-related AEs 27% 32%

Discontinuation rates 14% 16%

Patients discontinuing because of
muscle-related AEs

0 3

AE, adverse event.

LDL-C reduction in hypercholesterolemia Filippov et al.
(130–220 mg/dl), ETC-1002 administered at 40-mg,
80-mg, and 120-mg daily significantly lowered
LDL-C levels in a dose-dependent manner by
�17.9�2.2, �25.0�2.1, and �26.6�2.2%, respec-
tively, versusa reduction of�2.1�2.2% with placebo
(Table 1) [13]. Maximum LDL-C reduction was inde-
pendent of baseline triglyceride levels, occurred
within 2 weeks of treatment, and was maintained
for the remaining 10 weeks of the study [13]. LDL-C
lowering was accompanied by reductions in non-
high-density lipoprotein-cholesterol (non-HDL-C),
apoB, and LDL particle number at all doses. A post-
hoc analysis revealed reductions in plasma levels of
hsCRP of up to 63.5% versus a 7% reduction with
placebo in patients with elevated hsCRP levels
(�2 mg/l) at baseline [13].
Table 3. ETC-1002 overall clinical safety summary

Number of individuals with
drug-related safety findings

ETC-1002
(N¼317)

Overview of serious AEs
Type 2 diabetes

A single-center, double-blind, placebo-controlled,
in-clinic study evaluated the efficacy of ETC-1002
in 60 patients with type 2 diabetes and elevated
LDL-C [14]. Patients discontinued all diabetes and
lipid-regulating drugs and were randomized to
receive ETC-1002 80 mg for 2 weeks followed by
120 mg daily for an additional 2 weeks or placebo
for 4 weeks [14]. At the end of the study, LDL-C was
reduced by 43% in the ETC-1002 group compared
with 11% in the placebo group [14]. Reductions in
LDL-C levels occurred across a broad range of base-
line LDL-C and triglyceride values. The ETC-1002-
treated group also showed significant reductions
in non-HDL-C and total cholesterol. In addition,
ETC-1002 treatment lowered hsCRP by 41% com-
pared with 11% with placebo [14]. Importantly,
ETC-1002 treatment did not result in a worsening
of glycemic control. A nonsignificant reduction
of all prespecified glycemic markers was observed
with ETC-1002 treatment compared with placebo
[14]. A post-hoc analysis of a subgroup of patients
with mild elevations in blood pressure, showed
that treatment with ETC-1002 decreased both
systolic and diastolic blood pressure by �2.4 and
�7.3 mm Hg, respectively, compared with placebo
[14].
Serious AEs 0

Key lab abnormalities (repeated and confirmed)

ALT/AST > 3�ULN 1a

CK > 5�ULN 0

Total bilirubin > 2�ULN 0

Creatinine > 0.5 mg/dl ULN 0

AE, adverse event; ALT, alanine transaminase; AST, aspartate transaminase;
CK, creatine kinase; ULN , upper limit normal.
aThis lab abnormality (ALT/AST 3� ULN in a single patient) was assessed by
the Investigator as probably related to study medication.
Statin intolerance

A proof-of-concept clinical study was designed to
evaluate LDL-C lowering by ETC-1002 in patients
with hypercholesterolemia and a history of intoler-
ance to two or more statins. A total of 56 patients
were evaluated in this study. Three patients in the
placebo group withdrew from the study because of
muscle-related adverse events, whereas no patients
in the ETC-1002 group withdrew for these reasons
Copyright © Lippincott Williams & Wilkins. Unau
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(Table 2). ETC-1002 lowered LDL-C by an average of
32% compared with an LDL-C reduction of 3% in
the placebo group. Consistent with previous studies,
hsCRP was also significantly reduced by 42% after 8
weeks of ETC-1002 therapy (Esperion’s unpublished
results).
Add-on therapy

A multicenter study was designed to evaluate
ETC-1002 for 8 weeks in patients with hypercholes-
terolemia receiving 10 mg of atorvastatin. In this
study, ETC-1002 demonstrated incremental LDL-C
lowering of up to 22% when added to atorvastatin
and was well tolerated (Esperion’s unpublished
results).
Safety

ETC-1002 was generally safe and well tolerated in
all seven clinical studies. Adverse event rates were
comparable between the ETC-1002 and placebo
groups (Table 3). No drug-related serious adverse
events have been observed in patients treated with
ETC-1002 [13,14].
thorized reproduction of this article is prohibited.
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CONCLUSION
With the recently added regulatory warnings, it has
become increasingly clear that a significant subset of
patients is unable to take full advantage of statin
treatment because of muscle pain or weakness and a
risk of increased blood glucose levels. In contrast,
modulation of ACL and AMPK offers an innovative
alternative to standard-of-care lipid management
that may address the growing need for new thera-
peutic options for hypercholesterolemic patients
with and without a history of statin intolerance or
at risk of worsening glycemic control.
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