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Abstract
Artificial intelligence (AI)-aided general clinical diagnosis is helpful to primary clini-
cians. Machine learning approaches have problems of generalization, interpretability, 
etc. Dynamic Uncertain Causality Graph (DUCG) based on uncertain casual knowledge 
provided by clinical experts does not have these problems. This paper extends DUCG to 
include the representation and inference algorithm for non-causal classification relation-
ships. As a part of general clinical diagnoses, six knowledge bases corresponding to six 
chief complaints (arthralgia, dyspnea, cough and expectoration, epistaxis, fever with rash 
and abdominal pain) were constructed through constructing subgraphs relevant to a chief 
complaint separately and synthesizing them together as the knowledge base of the chief 
complaint. A subgraph represents variables and causalities related to a single disease 
that may cause the chief complaint, regardless of which hospital department the disease 
belongs to. Verified by two groups of third-party hospitals independently, total diagnostic 
precisions of the six knowledge bases ranged in 96.5–100%, in which the precision for 
every disease was no less than 80%.
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1  Introduction

AI-aided clinical diagnosis can help clinicians working at primary hospitals and clinics to 
avoid or reduce misdiagnoses and missing diagnoses. The ML models based on processed 
big data are well known, e.g., convolutional neural network (CNN), deep neural network 
(DNN), recurrent neural network (RNN) and Bayesian network (BN) (Fukushima and 
Neocognitron 1982; Lo et al. 1995; Russakovsky et al. 2015; Szegedy et al. 2015; Brosch 
et al. 2016; Shin et al. 2016; Duraisamy and Emperumal 2017; Bardou et al. 2018; Chris-
todoulidis et al. 2017; Lin et al. 2018; Er et al. 2016; Ceccon et al. 2014), etc. However, 
most of them are applied to solve image and speech recognitions. AI-aided general clinical 
diagnosis is really needed in practice but is relatively rare. References (Wu et al. 2018) and 
(Liang et al. 2019) report two deep learning models that can perform general clinical diag-
noses. However, it is not clear whether or not they have the same precisions when being 
applied in different application scenarios as being achieved in the testing dataset, which 
is called the generalization problem, although some comparisons between the models and 
clinicians have been made. The real world (primary level) applications are not qualified to 
judge the precisions, because of lacking the medical check measures, professional knowl-
edge and experience. It is reasonable to doubt the generalization ability of the two models 
described in Wu et al. (2018) and (Liang et al. 2019), because the essence of deep learn-
ing is to establish a nonlinear mapping between the input (combinations of variable states 
including unknown states) and output (diseases) by adjusting the structure and parameters 
of the neural network. When the actual application scenario is different from the dataset in 
terms of sample space, which is common, the precision may drop, leading to the generali-
zation problem.

In the general clinical diagnoses, there are at least 10,000 input variables. Each vari-
able has at least 3 states: negative, positive and unknown. Thus, the number of state com-
binations of input variables are at least 310,000 = 1.6 × 104771, a huge number. The training 
and testing datasets cover only a small part of these state combinations, which is called 
the training and testing sample space (TTSS). The real application sample spaces (RASSs) 
are usually different from TTSS, while different application scenarios may have different 
RASSs. Thus, the mapping in TTSS may be different from that in RASSs. How the trained 
model based on TTSS can be applied in different RASSs needs to be verified. In fact, our 
experience is that the diagnostic precision drops significantly in real applications.

Moreover, how to ensure the model be able to diagnose the rare diseases is another 
problem, where the common diseases are relatively easy to be diagnosed even by primary 
clinicians and the rare diseases are really needed to be differentially diagnosed by the AI-
aided models, which means that we need not only the high precision in total but also the 
high precision for each disease including rare diseases. Note that the common diseases are 
the majority in the training and testing datasets and the rare diseases may be marginal-
ized in ML models, while the high precisions can still be achieved in the testing dataset 
due to the high proportion of common diseases. For the example of arthralgia shown in 
Table 4 in this paper, five common diseases (Gout, SLE, Osteoarthritis, RA and Trauma) 
have 95.8% case records in group 1, which implies that once the five diseases are correctly 
diagnosed, the total diagnostic precision will be 95.8%, even the diagnoses for the other 18 
diseases are all incorrect. In practice, the correct diagnoses for the other 18 diseases are 
really needed.

Furthermore, because of the black box problem of deep learning models, the two mod-
els described in Wu et al. (2018) and (Liang et al. 2019) lack interpretability.
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To solve these problems, the model based on the domain knowledge/causality is needed, 
because domain knowledge has invariance, which is essentially different from ML models 
basing on big data.

DUCG developed in recent years is such a model (Zhang 2012, 2015a, b; Zhang et al. 
2014, 2018; Zhang and Geng 2015; Zhang and Zhang 2016; Zhang and Yao 2018) and 
has achieved promising application results for fault diagnoses of large, complex industrial 
systems (Zhang and Yao 2018; Zhang et al. 2018; Dong et al. 2014a, 2018; Qu et al. 2015; 
Zhao et al. 2014; Geng and Zhang 2014) and general clinical diagnoses (Dong et al. 2014b; 
Hao et al. 2017; Fan et al. 2018; Jiao et al. 2020; Ning et al. 2020; Zhang et al. 2021).

It is noted that the existing DUCG model is entirely based on causalities. However, in 
many practical cases, some non-causal knowledge representations and associated probabil-
istic reasoning are needed. For example, when representing an uncertain causal relation-
ship between a disease and a blood routing test, it is desirable to use the blood routing 
test as an inspection type variable, and to use the results of the test as its consequential 
variables. However, there is no direct causal relationship between the disease and the blood 
routing test itself, because the blood routing test is not the consequence of the disease. 
What actually exists is the uncertain causal relationship between the disease and the blood 
routing test results, i.e. the indicators. On the other hand, such causalities cannot be repre-
sented intuitively without the blood routing test variable, where the test is an action to find 
the consequences/indicators of diseases. In the hierarchical domain knowledge representa-
tion, the action is actually a classifier between the disease and the indicators. To solve this 
problem, the classification type (C-type) variable along with its unit matrix I drawn as its 
input directed arc is introduced as illustrated in Figs. 1 and 2.

It is proved in Sect. 3 that the DUCG without C-type variables is equivalent to that with 
them in the sense of inference. The former is resulted from the latter and is really used in 
the invisible DUCG inference, because the former is obviously easier to compute than the 
latter, while the latter remains as the visible knowledge base for better DUCG construction 
and interpretability.

Six DUCG knowledge bases including C-type variables for clinical diagnoses were con-
structed by clinical experts at Peking Union Medical College Hospital, Beijing Hospital, 
Xuanwu Hospital and Youan Hospital of Capital Medical University, Beijing, China. The 
diagnostic precisions were verified by two groups of third-party hospitals. Group 1 was 
Suining Central Hospital, Sichuan, China, which has a long history of more than 100 years. 
Group 2 was six hospitals officially organized as a whole by Chongqing Science and 

Fig. 1   The case without C-type 
variable Indicator 3
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Fig. 2   The case with C-type 
variable
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blood routing test
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Technology Commission: West-South Hospital, Daping Hospital, The Second Affiliated 
Hospital of Chongqing Medical University, Chongqing Tumor Hospital, Chongqing Tradi-
tional Chinese Medicine Hospital (CTCMH) and Wanzhou Central Hospital, Chongqing, 
China. In which CTCMH was the leading unit. All hospitals are the Grade IIIA (the high-
est grade in China) hospitals and are located in southwest of China, far from Beijing where 
the knowledge bases were constructed. The verification results of the two groups are close 
to each other. Therefore, the generalization ability of DUCG were verified, which means 
that the DUCG-aided general clinical diagnoses can be applied in any application scenario 
without generalization problem that usually exists in ML models.

Section 2 introduces DUCG briefly. Section 3 presents the C-type variable methodol-
ogy. Section 4 applies the C-type variable methodology to the diagnoses of six chief com-
plaints. Two groups of third-party verifications were made. Section  5 summarizes this 
paper.

2 � Brief Introduction to DUCG​

DUCG is a newly developed model that can explicitly and graphically represent causalities 
with uncertainties and perform probabilistic reasoning. In clinical diagnoses, it can eas-
ily represent various complex and uncertain causalities between diseases (root causes) and 
risk factors, symptoms, signs, image findings and laboratory results, etc., namely the obser-
vations or evidences. Conditional on the evidences collected for each patient, DUCG cal-
culates the conditional probabilities of the found possible diseases, and thus performs intel-
ligent diagnoses with clear casual and mathematical meanings (Zhang et al. 2021). To have 
the primary clinicians take responsibilities instead of DUCG, DUCG’s strong interpret-
ability in knowledge bases, diagnostic results and computation process are very important.

DUCG is composed of two sub-models: single-valued DUCG (S-DUCG) and multival-
ued DUCG (M-DUCG). The so called single-valued means that only the causes of the true 
state of a child variable can be specified, while the false state is the complement of the true 
state. The so-called multivalued means that the causes of every state of a variable can be 
specified separately (Zhang 2012). In this paper, only M-DUCG is addressed and therefore 
is abbreviated as DUCG. Figure 3 is an illustrative DUCG. The symbols are described in 
Table 1. The basic idea of the DUCG model is shown in Fig. 4.

For simplicity, the subscript ji in Fig. 3 is abbreviated as j. The rectangular node Bn is the 
basic or root cause event variable, without any input, and Bnj is state j of Bn. The circular node 
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Fig. 3   Illustrative DUCG​
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Xn is the result event variable, Xnj is state j of Xn, and Xn can be both the cause/input and the 
consequence/output of other nodes. The pentagonal node Dn is the default or unknown cause 
event of Xn or Xnj, without any input, and its occurrence probability is defined as 1. The hex-
agonal node SXn is a special X-type event variable, and SXnj is state j of SXn. When SXnj 
occurs, where j ≠ 0 and 0 indicates normal state, a particular disease or variable state must be 
true with a certain confidence  θ, and therefore SXnj is called gold-criterion in clinical 

Table 1   Graphical Symbols Used in DUCG​

Fig. 4   The basic idea of 
M-DUCG model (abbreviated as 
DUCG in this paper), in which 
V ∈ {B, D, G, X, C, SX, BX, RG} ;

= ; + ; + + ;

; ;

: Parent event

: Weighted functional event
Viji

Fnk;iji       (rn;i/rn)Ank;iji
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diagnosis. The double-circle node BXn is a B&X-type variable with both B and X properties. 
Its state division and definition are exactly the same as Bn, and only the state probability distri-
bution of BXn may be different from Bn (affected by the associated risk factors). The logic gate 
variable Gn represents the various state combinations of the input variable and its input is con-
nected with a directed arc . The double line logic gate SGn represents various state 
combinations of the associated risk factors (such as age, gender, etc., represented as X-type 
variables), changing the state probability distribution of Bn as that of BXn. The output of SGn is 
BXn, through a double-line directed arc  that zooms in or zooms out the state probabili-
ties of Bn as that of BXn according to the combinations of risk factors. The reversal logic gate 
RGn drawn as  represents that the input of RGn may cause some combinations of output. 
The single-line directed arc  represents the causality matrix Fn;i = (rn;i/rn)An;i, where 
Ank;ij is the element in the matrix An;i, Ank;ij is the virtual random event that the parent event Vij 
(V ∈ {B, X, D, G, BX, SX}) causes the child event Xnk (including SXnk) directly. rn;i > 0 is the 
strength of the causal relationship between Vi and Xn, rn ≡

∑
i

rn;i . The dashed directed arcs 

 or  is conditional  or  respectively, conditional on condition event 
Zn;i, where n indexes the child/output and i indexes the parent/input. When Zn;i is true,  
or  becomes  or  respectively; otherwise,  or  is eliminated.

In DUCG, the upper-case letter represents event or event variable and the corre-
sponding lower-case letter represents the probability, i.e., bnj = Pr{Bnj}, bxnj = Pr{BXnj}, 
xnj = Pr{Xnj}, sxnj = Pr{SXnj}, gnj = Pr{Gnj}, rgnj = Pr{RGnj}, dn = Pr{Dn}≡1, zn;i = Pr{Zn;i}, 
fnk;ij = Pr{Fnk;ij} = (rn;i/rn)ank;ij, ank;ij = Pr{Ank;ij}, fn;i = Pr{Fn;i}, an;i = Pr{An;i}, etc. The indices 
before “;” are for the child and the indices after “;” are for the parent. The {a-, b-, r-}-type 
parameters are usually given by domain experts based on statistics or their experience. Note 
that the main formulas of DUCG are in the form of numerator divided by denominator (see 
(Zhang et al. 2021) for details). Therefore, only the relative values of parameters are sensi-
tive, not the absolute values, which means that the parameters are easy to be given by clinical 
experts.

The variable index is inside the symbol without the letter of the variable type. The sym-
bol shape represents the variable type. State index 0 denotes the normal/negative state, while 
the other states indicate abnormal/positive states. Moreover, Vnj ∈ {Xnj, SXnj, RGnj}, j ≠ 0, is 
assigned with attention parameter εnj ≥ 1 that quantifies the attention of domain experts to 
explain the cause of Vnj. If no cause can be found, a virtual Dn drawn as dashed pentagon will 
be assigned as the default cause of Vnj according to the DUCG simplification rule 10 listed in 
the Appendix of Zhang et al. (2021), and anj;nD between Vnj and the virtual Dn is defined as 
anj;nD = 1/εnj, in which the index D indicates the invariable state of Dn. In this case, Vnj is called 
the isolated evidence. Also, 0 < θnj ≤ 1 is assigned to SXnj to quantify the confidence that the 
specific disease does exist given SXnj, where j ≠ 0. Ref. (Zhang et al. 2021) gives more details.

As shown in Fig.  4, the above events and probabilities satisfy Eqs.  (1) and (2) 
respectively:

In which, Fn;i≡(rn;i/rn)An;i and fn;i≡(rn;i/rn)an;i. Fnk;ij≡(rn;i/rn)Ank;ij, fnk;ij≡(rn;i/rn)ank;ij and 
ank;ij = Pr{Ank;ij}, where Fnk;ij, fnk;ij, Ank;ij and ank;ij are members of Fn;i, fn;i, An;i and an;i 
respectively. In the case of only one input to Xn, Fn;i = An;i and fn;i = an;i.

(1)Xnk =
∑
i

Fnk;ijVij=
∑
i

(rn;i∕rn)Ank;ijVij

(2)xnk =
∑
i

fnk;ijvij=
∑
i

(rn;i∕rn)ank;ijvij
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Equation (1) can be repeatedly applied until the expression becomes the sum-of-products 
composed of {BX-, D-, A-, r-}-type events and parameters, which is the event expanding pro-
cess, and then the probability of the expression can be calculated by replacing the upper-case 
letters with the corresponding lower-case letters as illustrated in Eqs.  (1) and (2). The state 
probability distribution of BXk can be calculated from bxkm = sakm;kjbkm , where sakm;kj is the 
zoom factor transforming bkm to bxkm (see (7) in Zhang et al. (2021) for details). Then, BX-type 
variables can be treated as root causes/diseases.

The evidences can be written as E =
⋂
i

Xij . The diagnostic inference is to calculate the 

conditional probability Pr{BXkj|E} = Pr{BXkjE}/Pr{E}, BXkj ∈ SH, SH is the possible disease set 
conditional on E. We need to expand E as the sum-of-products composed of {BX-, D-, A-, r-}-
type events and parameters. In which, logic computations such as absorption and exclusion 
and the r-type parameter calculation are applied.

In general, Eq. (3) is satisfied, in which “1” denotes complete set.

Based on Eq. (3), we have the following theorem expressed as Eq. (4).

Theorem 1

 
Which means that the causality chains in DUCG are self-relied. Therefore, we do not need 

to specify all parameters in an;i. For example, we may have Eq. (5).

Which means that we can specify only the parameters in concern. In other words, for a 
variable whose state is normal (indexed by 0), we do not care about the causality and probabil-
ity related to this state. What we are interested in is the causality between abnormal states. For 
example, a certain disease Bij (j ≠ 0) causes a certain abnormal state Xnk (k ≠ 0), where Xn may 
represent a medical check result. We also do not care about the unconditional probability bi0 
(i.e. without disease). That is to say, bi0, an0;ij and ank;i0 in {a-, b-}-type matrices do not need to 
be given. Usually, we express bi0, an0;ij and ank;i0 as “ − ” or blank, which is equivalent to null 
set in expanding E.

The DUCG diagnostic inference is to calculate the probability distribution of BXi affected 
by risk factors observed for a patient and calculate Pr{BXkj|E} = Pr{BXkjE}/Pr{E}, j ≠ 0, in 
which BXkj ∈ SH is composed of the abnormal states of BX-type variables. SH is the set of pos-
sible diseases conditional on E, and is found by the logical expanding and simplification of 
DUCG. The appendix in Zhang et al. (2021) lists the DUCG simplification rules. The detailed 
inference algorithm can be found in Zhang (2012)-(Zhang and Zhang 2016; Zhang et  al. 
2021).

(3)
∑
k

Ank;ij = 1;
∑
j

Bij = 1

(4)
∑
k

Xnk =
∑
k

∑
i,j

Fnk;ijVij=
∑
i,j

(rn;i∕rn)

(∑
k

Ank;ij

)
Vij = 1

(5)a5;3 = Pr{A5;3}=

⎛⎜⎜⎝

a5,0;3,0 a5,0;3,1 a5,0;3,2
a5,1;3,0 a5,1;3,1 a5,1;3,2
a5,2;3,0 a5,2;3,1 a5,2;3,2

⎞⎟⎟⎠
=

⎛⎜⎜⎝

− − −

− − 0.9

− 0.2 −

⎞⎟⎟⎠
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3 � Introducing C‑type Variables to Extend DUCG to Include 
Classification Relationship

3.1 � The basic idea

Consider Fig.  5, where B1 represents pituitary prolactin adenoma, X2 indicates whether 
thyroid function is normal, X3 indicates whether TSH (Thyroid Stimulating Hormone) is 
low, and X4 indicates whether FT3 (free triiodothyronine) is low.

In Fig. 5, the hierarchy and relationships are clearly represented. It also embodies the 
medical knowledge of the disease, that is, pituitary prolactinoma (B1) may cause thyroid 
function abnormal (X2), and these abnormalities are manifested as TSH (X3) and FT3 (X4). 
However, problems are exposed when assigning values to the a-type matrices for each 
directed arc. Since A2;1 is a causal event matrix between pituitary prolactinoma B1 and thy-
roid function X2, a2,1;1,1 should be the probability of thyroid dysfunction caused by pituitary 
prolactinoma. Since A3;2 is a causal event matrix representing the causality from thyroid 
function X2 to TSH (X3), a3,1;2,1 should be the probability that thyroid dysfunction (X2,1) 
triggers low TSH (X3,1). Similarly, a4,1;2,1 should be the probability of thyroid dysfunction 
(X2,1) triggering low FT3 (X4,1). But this is obviously wrong, because the real causal rela-
tionship is: X3,1 and X4,1 are the causes of X2,1, not the opposite. At the same time, there is 
no direct causal relationship between B1 and X2. It is an indirect causal relationship with X2 
through X3 and X4, and the direction is opposite. According to the expression in Fig. 5, the 
inference results of DUCG and the diagnosis results of clinical experts will be inconsistent, 
because the knowledge of the clinical experts is actually as shown in Fig. 6. In other words, 
Fig. 5 is incorrect. This example illustrates how easy the mistake may occur without clas-
sification variables.

To solve this problem, we introduce C-type variable along with I matrix as follows:

Definition 1  The state partition of the classification variable Cn drawn as  is identical 

to its parent variable i, Fn;i is fixed as a unit matrix In;i =

⎛⎜⎜⎜⎝

1 0 ⋯ 0

0 1 ⋯ ⋮

⋮ ⋮ ⋱ 0

0 ⋯ 0 1

⎞⎟⎟⎟⎠
 , and Fm;n is actually 

the causality between cause variable i and consequence variable m.

Equivalently, fn;i = In;i, because fn;i = Pr{Fn;i} = Pr{In;i} = In;i. Note that “1” in DUCG 
stands for both numerical one and complete set. With this definition, Fig. 6 can be better 
represented as Fig. 7.

Fig. 5   The taken-for-
granted expression of pituitary 
prolactinoma 1

3

4
2

Fig. 6   The actual causal relation-
ship about pituitary prolactinoma

1
3

4
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In Fig. 7, according to Definition 1, f2;1 = I2;1, and f3;2 and f4;2 equal to f3;1 and f4;1 in 
Fig. 6 respectively.

Theorem 2  In the sense of inference, the DUCG with C-type variable along with its cor-
responding I matrix is equivalent to the DUCG without C-type variables.

Theorem 2 constitutes the inference algorithm of the DUCG with C-type variables, i.e. 
we can use the C-type variables along with I matrices to construct the DUCG with C-type 
variables, while the corresponding DUCG without C-type variables is really used in the 
DUCG inference. The latter is resulted from the former by (1) the elimination of C-type 
variables along with I directed arcs and (2) the connections between the cause and conse-
quences of the C-type variable in the former. i.e., simplify Fig. 7 as Fig. 6. The inference 
equivalence is proved in follows:

Proof  First, we prove a simple case, i.e. Figures 6 and 7 are equivalent in inference. For 
this, we only need to prove that Pr{B1X3X4} in Fig. 6 and in Fig. 7 are equal. According to 
Fig. 6 and Eq. (1), we have.

In which the operator “*” indicates to multiply the corresponding elements in the two 
matrices as defined in Corollary 151 in Zhang et al. (2014). According to Fig. 7 and Eq. (1), 
we have

(6)

Pr{B1X3X4} = Pr{B1

(
F3;1B1 ⋅ F4;1B1

)
}

= Pr{(F3;1 ∗ F4;1)B1}

=(f3;1 ∗ f4;1)b1

(7)

Pr{B1X3X4} =Pr{B1(F3;2C2 ⋅ F4;2C2)}

=Pr{B1(F3;2 ∗ F4;2)C2}

=Pr{B1(F3;2 ∗ F4;2)I2;1B1}

=Pr{(F3;2 ∗ F4;2)B1}

=(f3;2 ∗ f4;2)b1

=(f3;1 ∗ f4;1)b1

Fig. 7   Using C-type variables to 
express classification relation-
ships in DUCG​ 1

3

4
2

1  Corollary 15: A
nk

n
;i
V
i
A
mk

m
;i
V
i
=
(
A
nk

n
;i
∗ A

mk
m
;i

)
V
i
 , in which 

(
A
nk

n
;i
∗ A

mk
m
;i

)
≡(

Ankn ;i1
Amkm ;i1

Ankn ;i2
Amkm ;i2

… Ankn ;ij
Amkm ;ij

… Ankn ;iJ
Amkm ;iJ

)
  Correspondingly,   ankn ;i ∗ amkm ;i ≡

(
ankn ;i1amkm ;i1 ankn ;i2amkm ;i2 … ankn ;ijamkm ;ij … ankn ;iJ amkm ;iJ

)
   where, “*” is an AND/mul-

tiplication matrix operator specially defined in DUCG.   In format, the * operator is similar to Hadamard 
product.
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The last step in Eq. (7) is because f3;2 in Fig. 7 equals to f3;1 in Fig. 6, and f4;2 in Fig. 7 
equals to f4;1 in Fig. 6. Thus, we have Eq. (7) equals to Eq. (6).

Obviously, the above proof can be applied in the case when the child variables of B1 in 
Fig. 6 and C2 in Fig. 7 are increased, which covers all cases of theorem 2. ■

According to Theorem 2, we can use Fig. 7 to express the medical hierarchical knowledge 
in the DUCG editor, automatically change Fig. 7 as Fig. 6 in the invisible inference, and per-
form the inference according to Fig. 6.

More details are addressed in follows.

3.2 � Single parent

In Fig. 8, C3 has more than one parent, where the real causalities that we want to represent are 
as shown in Fig. 9. However, Fig. 8 may cause some trouble.

Suppose evidence E = X5,1X6,2, and f5;3 and f6;3 are given as follows:

f5;3 =

(
− −

− f5,1;3,1

)
 , f6;3 =

(
− −

− f6,1;3,1

)
.

Based on Fig. 8, we have f3;1 = I3;1 and f3;2 = I3;2 as defined. According to Eq. (1), we have

However, based on Fig. 9, we have

(8)

Pr{E} =Pr{X5,1X6,2}

=Pr{F5,1;3,1C3,1 ⋅ F6,2;3,1C3,1}

=Pr
{(

F5,1;3,1 ∗ F6,2;3,1

)
C3,1

}

=Pr

{(
F5,1;3,1 ∗ F6,2;3,1

)( r3;1

r3
I3,1;1B1 +

r3;2

r3
I3,1;2B2

)}

=Pr

{(
F5,1;3,1 ∗ F6,2;3,1

)( r3;1

r3
B1,1 +

r3;2

r3
B2,1

)}

=
(
f5,1;3,1 ∗ f6,2;3,1

)( r3;1

r3
b1,1 +

r3;2

r3
b2,1

)

Fig. 8   Incorrect expression for 
a C-type variable to have more 
than one parent variable 3

1 5

62

Fig. 9   The real causalities behind 
Fig. 8 1 5

62
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Equation  (9) is not equal to Eq.  (8). To solve this problem, we have the following 
definition:

Definition 2  Each C-type variable can have only one parent variable, while different 
C-type variables may be the same in content.

Thus, Fig. 8 is changed as Fig. 10, in which C3 = C4. As defined, f5;3, f5;4, f6;3 and f6;4 in 
Fig. 10 equal to f5;1, f5;2, f6;1 and f6;2 in Fig. 9 respectively.

Based on Fig. 10, we have Eq. (10).

It is seen that Eq. (10) equals to Eq. (9), which means that Fig. 10 is equivalent to Fig. 9 
in the sense of inference. In conclusion, Fig. 8 is not allowed and Fig. 10 should be used.

(9)

Pr{E} = Pr
{
X5,1X6,2

}

=Pr
{(

F5,1;1B1 + F5,1;2B2

)(
F6,1;1B1 + F6,1;2B2

)}

=Pr

{
F5,1;1B1F6,1;1B1 + F5,1;1B1F6,1;2B2

+F5,1;2B2F6,1;1B1 + F5,1;2B2F6,1;2B2

}

=Pr

{(
F5,1;1 ∗ F6,1;1

)
B1 + F5,1;1B1F6,1;2B2

+F5,1;2B2F6,1;1B1 +
(
F5,1;2 ∗ F6,1;2

)
B2

}

=
(
f5,1;1 ∗ f6,1;1

)
b1 + f5,1;1b1f6,1;2b2

+ f5,1;2b2f6,1;1b1 +
(
f5,1;2 ∗ f6,1;2

)
b2

(10)

Pr{E} = Pr
{
X5,1X6,2

}

=Pr
{(

F5,1;3C3 + F5,1;4C4

)(
F6,1;3C3 + F6,1;4C4

)}

=Pr

{
F5,1;3C3F6,1;3C3 + F5,1;3C3F6,1;4C4

+F5,1;4C4F6,1;3C3 + F5,1;4C4F6,1;4C4

}

=Pr

{(
F5,1;3*F6,1;3

)
C3 + F5,1;3C3F6,1;4C4

+F5,1;4C4F6,1;3C3 +
(
F5,1;4*F6,1;4

)
C4

}

=Pr

{(
F5,1;3 ∗ F6,1;3

)
I3;1B1 + F5,1;3I3;1B1F6,1;4I4;2B2

+F5,1;4I4;2B2F6,1;3I3;1B1 +
(
F5,1;4 ∗ F6,1;4

)
I4;2B2

}

=Pr

{(
F5,1;3 ∗ F6,1;3

)
B1 + F5,1;3B1F6,1;4B2

+F5,1;4B2F6,1;3B1 +
(
F5,1;4 ∗ F6,1;4

)
B2

}

=
(
f5,1;1 ∗ f6,1;1

)
b1 + f5,1;1b1f6,1;2b2

+ f5,1;2b2f6,1;1b1 +
(
f5,1;2 ∗ f6,1;2

)
b2

=
(
f5,1;1 ∗ f6,1;1

)
b1 + f5,1;1b1f6,1;2b2

+ f5,1;2b2f6,1;1b1 +
(
f5,1;2 ∗ f6,1;2

)
b2

Fig. 10   More than one C-type 
variables for more than one par-
ent variable

31 5

62 4
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Figure  11 shows another case that cannot be represented by one C-type variable. 
According to Definition 2, the corresponding DUCG with C-type variables should be as 
shown in Fig. 12. It is easy to prove that Figs. 11 and 12 are equivalent to each other in 
inference.

3.3 � Normalizing paths

In practice, the repeated paths shown in Fig. 13 are possible. These repeated paths can be 
merged, that is, Fig. 13 can be calculated according to Fig. 14.

Figure 14 merges C8 and C9 in Fig. 13 into C10. The calculation of the merged param-
eters is as follows:

First, I8;4 and I9;4 in Fig. 13 are merged as I10;4 in Fig. 14. Next, F5;10 in Fig. 14 is equal 
to the sum of F5;8 = (r5;8/r5)A5;8 and F5;9 = (r5;9/r5)A5;9 in Fig. 13 as shown in Eq. (11).

Theorem 3  Once a group of C-type variables share a same child variable and a same par-
ent variable, this group of C-type variables can be merged as a single C-type variable 
along with its single I matrix. The merged F-type variable as the only output of the merged 
C-type variable is the sum of the group of F-type variables as the outputs of the group of 
C-type variables.

(11)
F5;10 = F5;8 + F5;9

f5;10 = f5;8 + f5;9

Fig. 11   The causalities between 
causes and consequences/indica-
tors 1

5

6

2
7

Fig. 12   The corresponding 
DUCG with C-type variables but 
different indicators 31

5

6

2 4
7

Fig. 13   Illustration for repeated 
paths of C-type variables

5

8

9

4

Fig. 14   Normalized C-type path 
corresponding to Fig. 13 5104
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Proof  Suppose the group of C-type variables are Ci, i ∈ SC. They share a child variable 
Xn and a parent variable Vm. Let Cj be the merged C-type variable, j ∉ SC, and Fn;j be the 
merged F-type variable that is the single output directed arc of the merged C-type variable. 
According to Eq. (1) and based on the original group of C-type variables, we have.

Also, according to Eq. (1) but based on the merged C-type variable, we have

Let Eq. (12) equal to Eq. (13), we have

Of course, the merged DUCG with C-type variable can be replaced in inference by the 
one without C-type variable.

4 � The Third‑Party Verifications

To verify the diagnostic precisions and generalization ability of DUCG, we constructed 
six DUCG knowledge bases according to six chief complaints respectively, in which the 
C-type variables were used.

4.1 � Construction of DUCG with C‑type variables

The construction steps are as follows.
Step 1 Determine the diseases that may cause the chief complaints across hospital 

departments, which means that the diseases are not limited in a specific hospital depart-
ment and the triage may not be necessary, although the DUCG triage methodology has 
been presented in Bu et al. (2020).

Step 2 Construct the subgraph for every disease determined in step 1 as illustrated in 
Figs. 15 and 16 in which the symbols are described in Table 2. In subgraphs, the interpret-
ability of DUCG knowledge bases is well demonstrated.

Step 3 Synthesize the subgraphs under a same chief complaint as a DUCG by fusing the 
same variables in different subgraphs. For example, the synthesized arthralgia DUCG is as 
shown in Fig. 17.

4.2 � Verifications, precisions and comparisons

After the DUCG construction, we tested its correctness carefully by using the case 
records in the hospital information system (HIS) of the knowledge base constructor’s 
hospitals as illustrated in Ref. (Zhang et al. 2021). Then, two groups of third-party veri-
fications for six DUCG knowledge bases were performed independently to verify the 
generalization ability and diagnostic precisions of DUCG. The verifications done by 

(12)Xn =
∑
i∈SC

Fn;iCi =
∑
i∈SC

Fn;iIi;mVm =

(∑
i∈SC

Fn;i

)
Vm

(13)Xn = Fn;jCj = Fn;jIj;mVm = Fn;jVm

(14)Fn;j =
∑
i∈SC

Fn;i
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Fig. 15   The subgraph with C-type variables for lyme disease under chief complaint arthralgia

Fig. 16   The subgraph with C-type variables for polymyositis under chief complaint arthralgia
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Table 2   Descriptions of the symbols in Figs. 15 and 16

Symbol Variable n Description

 and  

Bn and BXn 3 Lyme disease

11 Polymyositis

  
Xn 7 Erythema migrans

12 ECG shows cardiac block
16 Radiculopathy
17 Experience of field travelling
36 ESR
37 CRP
38 Sex
40 Conjunctivitis

ANA58
60 RF
62 WBC
70 HGB
85 Skin rash
89 Splenomegaly
91 Arthralgia (acute or chronic)
92 Arthralgia (large or small joint)
93 Arthralgia (axis or peripheral)
94 Arthralgia (self-limited or aggravating)
95 CSF-WBC
96 CSF-P
99 CSF-PRO
100 Abnormal ultrasonocardiography
101 Headache
102 Nausea
103 Vomit
104 Mental disorders
105 Facial palsy
106 Meningeal irritation sign
110 Lymphadenectasis
111 Hepatomegaly
140 Chest CT shows interstitial pneumonia
144 Testis swelling
145 Borrelia burgdorferi-IgG
146 Fever
147 Cerebellar ataxia
149 AST or ALT
150 TBIL
151 DBIL
158 Myalgia
161 Dysphagia
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Group 1 contain more diseases than Group 2, because Group 2 did verifications earlier 
than Group 1 when less diseases were considered. However, the diseases in Group 2 
are all included in Group 1, so that we can compare the results of them in a comparable 
scale. The verifications were performed as follows:

1.	 Under each chief complaint, search the cases recorded in the HISs of the third-party 
hospitals for each disease.

2.	 For the total cases searched for each disease, randomly select no more than 10 cases for 
test.

3.	 Check the selected case record to ensure that it is in high quality, otherwise give up the 
case and make a new selection.

4.	 Manually input the evidences found in the tested case record into the DUCG cloud 
platform developed to implement the DUCG methodology.

Table 2   (continued)

Symbol Variable n Description

162 Myasthenia
165 Facet joint of hand pathological change
172 Arthralgia (quantity)
175 Limbs proximal myasthenia
176 Weight loss
178 Electromyogram shows myogenic muscular atrophy
179 CK
180 Dyspnea
209 Anorexia

  
Cn 29 Symptom

30 Sign
31 Brucella culture
32 Other imaging tests
33 CT
34 Blood biochemical test
35 Anti-MCV antibody
71 PLT
72 CT shows sacroiliac joint injury
73 ECG
74 Ultrasonocardiography
75 Rheumatic test
76 Blood RT
77 CSF RT
78 CSF biochemical test
79 Virus and infection related test
80 Autoimmune antibody test

  
SXn 13 Muscle biopsy shows myositis
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Fig. 17   The DUCG includ-
ing 23 diseases that may cause 
arthralgia
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5.	 Click the DUCG diagnosis function on the platform to find the possible diseases and 
rank them according to their conditional probabilities.

6.	 Compare the diagnosed diseases with the tested case record. If the diagnosed diseases 
with significant conditional probabilities cover the diseases in the record, and the clini-
cal experts confirm that the diseases not in the record (if any) are also reasonable, label 
this tested case as “correct,” otherwise label it as “incorrect.” In fact, because of the 
uncertain quality, norm and format in the records, it was not easy to judge the correct-
ness. In the confusing cases, discussions with clinical experts were the final means to 
make judgements.

7.	 Calculate the precision for each disease by the correct case number divided by the total 
tested case number of the disease.

8.	 Calculate the total precision for the DUCG of the chief complaint by the total correct 
case number divided by the total tested case number under the chief complaint.

As an example, the arthralgia DUCG verified in Group 1 is as shown in Fig. 17. Total 
23 diseases are listed in Table 3, in which the 16 diseases in Group 2 are included. The 
verification results are shown in Tables 4, 5. The results for the other five chief com-
plaints are in Tables  6, 7, 8, 9, 10 respectively in the Appendix. The total precisions 
from the two groups are listed and compared in Table 5. Note that the precisions from 
Group 2 are all 100%.

Table 3   The 23 diseases that 
may cause arthralgia, in which 
the diseases with “*” are not 
included in Group 2

Variable index Disease Abbreviate

1 Pseudogout
2 Reactive arthritis
3 Lyme disease
4 Rheumatoid arthritis RA
5 gout
6 Adult still’s disease AOSD
7 Systemic lupus erythematosus SLE
8 Sjögren’s syndrome SS
9 Osteoarthritis OA
10 Ankylosing spondylitis AS
11 Polymyositis
12 Infectious arthritis
13 Systemic sclerosis SSc
14 Psoriatic arthritis PsA
15 Brucellosis
16 Tuberculosis TB
39 Trauma*
40 Relapsing polychondritis* RPC
41 Polymyalgia arteritica* PMR
42 Vasculitis*
43 Sarcoidosis*
44 Sports injury*
46 Rheumatic fever*
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It is seen that the total precisions of the six DUCGs from the two groups respectively 
are very close to each other and no less than 96.5%, in which the lowest precision for all 
diseases was no less than 80%. The precision difference of the two groups is no more than 
|96.53 − 100|% = 3.47%. The mean precision difference of the six chief complaints is:

4.3 � Verification discussions

For some relatively rare diseases, the case records were less than 10. In such cases, all the 
qualified records were selected. If there was no case found, the precision of this disease 
could not be calculated and was not considered in the precision calculations.

|99.12 − 100| + |96.53 − 100| + |99.49 − 100| + |99.14 − 100| + |100 − 100| + |98.27 − 100|
6

= 1.24%

Table 4   The precisions of the third-party verifications for arthralgia, in which the diseases with “*” are not 
included in Group 2

SLE: systemic lupus erythematosus; RA: Rheumatoid arthritis; TB: Tuberculosis; PsA: psoriatic arthritis; 
AS: ankylosing spondylitis; AOSD: Adult Still’s disease; SSc: systemic sclerosis

Disease Total number of 
cases in Group 1; 
Group 2

Randomly selected 
and tested cases in 
Group 1; Group 2

Correct diagno-
ses in Group 1; 
Group 2

Precision in 
Group 1; Group 
2 (%)

Gout 1129; 1733 10; 10 10; 10 100; 100
SLE 808; 1861 10; 10 10; 10 100; 100
PsA 14; 488 10; 10 10; 10 100; 100
Polymyositis 5; 184 5; 10 5; 10 100; 100
Sjögren’s syndrome 95; 452 10; 10 10; 10 100; 100
Osteoarthritis 1388; 2586 10; 10 10; 10 100; 100
RA 2282; 3999 10; 10 10; 10 100; 100
Reactive arthritis 30; 76 10; 10 10; 10 100; 100
TB 67; 2074 10; 10 9; 10 90; 100
AS 44; 339 10; 10 10; 10 100; 100
AOSD 4; 80 4; 10 4; 10 100; 100
Infectious arthritis 5; 54 5; 10 5; 10 100; 100
SSc 9; 161 9; 10 9; 10 100; 100
Pseudogout 0; 2 0; 2 ; 2 ; 100
Brucellosis 1; 0 1; 0 1; 100;
Lyme disease 0; 0 0; 0 ; ;
Sub-total 5881; 14,089 114; 132 113; 132 99.12; 100
Trauma* 876; 10; 10; 100;
RPC* 0; 0; ; ;
PMR* 0; 0; ; ;
Vasculitis* 0; 0; ; ;
Sarcoidosis* 0; 0; ; ;
Sports injury* 5; 5; 5; 100;
Rheumatic fever* 4; 4; 4; 100;
Total 6766;14,089 133;132 132;132 99.25; 100
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We believe that it is enough to test no more than 10 randomly selected cases for a dis-
ease in verifications, because 10 cases can cover most knowledge points related to the dis-
ease. If the knowledge base is correct, the test results will be correct, regardless of how 
many cases are tested. Given the total number of cases, if we increase the tested cases for 
every disease, only the tested cases of common diseases will be increased and the results 
will likely be correct, while the tested cases of rare diseases will not be increased due to 
the lack of cases, leading to an improper higher precision in total. The scientific way to 
perform the verification is to have the numbers of tested cases as equal as possible for all 
diseases. As a balance, we chosen to have no more than 10 tested cases.

The so-called “rare” disease means that it is rare under the chief complaint. A disease is 
rare under a chief complaint does not mean that it is also rare under other chief complaints.

It is easy to understand that only the discharged patient case records meet the high-
quality requirement (the recorded information was sufficient and diagnosis was correct) for 
the third-party verifications. We did not use the outpatient case records for verifications, 
because it was hard to judge whether the outpatient diagnoses were correct or not. In gen-
eral, the case record for a discharged patient contains more medical information than the 
case record of an outpatient. How to verify the diagnostic precision of DUCG conditional 
on less information for an outpatient is another issue and will be addressed elsewhere.

5 � Summery and discussions

The C-type variables are used only in the DUCG construction. Without C-type variables, 
the DUCG knowledge base is hard to be well organized and interpreted, and mistakes 
occur easily. The inference is based on the DUCG without C-type variables, which is auto-
matically generated from the DUCG with C-type variables and is invisible.

Two groups of independent verifications for the six DUCG knowledge bases corre-
sponding to six chief complaints verify that DUCG has strong generalization ability, which 
means that DUCG can be applied in any real application scenarios with almost the same 
precisions. This is because of the knowledge invariance.

The diagnostic interpretability of DUCG is provided by the generated sub-DUCG for 
each possible disease. A sub-DUCG is for a possible disease, in which all the evidences 
and causalities including the connected state-known variables and the isolated state-abnor-
mal variables to this possible disease are displayed to the users in a graphical manner with 
text. More details can be found in Zhang et al. (2021).

DUCG does not deal with AI-aided medical image examination and medical sound rec-
ognition. They could be done by ML models. Hence, the relationship between DUCG and 
ML is cooperation.

In real applications, the AI-aided system should be able to recommend next medical 
checks based on the known information to collect further information for more accurate 
diagnosis. This will be discussed in another paper.

Appendix

The diagnostic results of the five chief complaints (dyspnea, cough and expectoration, 
epistaxis, fever with rash, abdominal pain) are shown in following.
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Table 8   Diagnostic precisions of DUCG for epistaxis, in which “*” indicates only in Group 1

ITP: Idiopathic thrombocytopenic purpura; HT: Hemorrhagic telangiectasia; AA: aplastic anemia; MDS: 
myelodysplastic syndrome

Disease Total cases 
in Group 1; 
Group 2

Randomly selected and 
tested cases in Group 
1; Group 2

Correct diagno-
ses in Group 1; 
Group 2

Precision in 
Group 1; Group 
2 (%)

Malignant tumor of 
nasal cavity and 
paranasal sinus

7; 109 7; 10 7; 10 100;100

Hemorrhagic nasal 
polyps

3; 94 3; 10 3; 10 100; 100

Nasal bone fracture 136; 26 10; 10 10; 10 100; 100
Fungal maxillary 

sinusitis
10; 26 10; 10 10; 10 100; 100

Acute leukemia 34; 631 10; 10 10; 10 100; 100
Inverting papilloma 15; 24 10; 10 10; 10 100; 100
Epistaxis 1089; 436 10; 10 10; 10 100; 100
Deviation of nasal 

septum
572; 870 10; 10 10; 10 100; 100

Nasal angioma 14; 80 10; 10 10; 10 100; 100
ITP 31; 562 10; 10 9; 10 90; 100
Maxillary sinus carci-

noma
4; 138 4; 10 4; 10 100; 100

Nasopharyngeal car-
cinoma

85; 2906 10; 10 10; 10 100; 100

Ethmoid sinus fracture 0; 4 0; 4 ; 4 ; 100
Ethmoid sinus carci-

noma
0; 3 0; 3 ; 3 ; 100

Atrophic rhinitis 8; 2 8; 2 8; 2 100; 100
HT 0; 2 0; 2 ; 2 ; 100
Foreign body in nasal 

cavity
3; 0 3; 0 3; 100;

Nasopharyngeal angi-
ofibroma

1; 0 1; 0 1; 100;

Frontal sinus fracture 0; 0 0; 0 ; ;
Sub-Total 2012; 5913 116; 131 115; 131 99.14; 100
AA* 8; 8; 8; 100;
MDS* 2; 2; 2; 100;
Hemophilia* 1; 1; 1; 100;
Hepatopathy* 10; 10; 8; 100;
Leptospirosis* 0; 0; ; ;
Total 2033; 5913 137; 131 134; 131 97.81; 100
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