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Macrophages are key innate immune cells in the tumor microenvironment that
regulate primary tumor growth, vascularization, metastatic spread and response to
therapies. Macrophages can polarize into two different states (M1 and M2) with
distinct phenotypes and functions. To investigate the known tumoricidal effects of
M1 macrophages, we obtained RNA expression profiles and clinical data from The
Cancer Genome Atlas Thyroid Cancer (TCGA-THCA). The proportions of immune cells
in tumor samples were assessed using CIBERSORT, and weighted gene co-expression
network analysis (WGCNA) was used to identify M1 macrophage-related modules.
Univariate Cox analysis and LASSO-Cox regression analysis were performed, and four
genes (SPP1, DHRS3, SLC11A1, and CFB) with significant differential expression were
selected through GEPIA. These four genes can be considered hub genes. The four-gene
risk-scoring model may be an independent prognostic factor for THCA patients. The
validation cohort and the entire cohort confirmed the results. Univariate and multivariate
Cox analysis was performed to identify independent prognostic factors for THCA. Finally,
a prognostic nomogram was built based on the entire cohort, and the nomogram
combining the risk score and clinical prognostic factors was superior to the nomogram
with individual clinical prognostic factors in predicting overall survival. Time-dependent
ROC curves and DCA confirmed that the combined nomogram is useful. Gene set
enrichment analysis (GSEA) was used to elucidate the potential molecular functions of
the high-risk group. Our study identified four genes associated with M1 macrophages
and established a prognostic nomogram that predicts overall survival for patients with
THCA, which may help determine clinical treatment options for different patients.

Keywords: M1 macrophages, CIBERSORT, weighted gene co-expression network analysis, nomogram, thyroid
cancer

Abbreviations: THCA, thyroid cancer; PTC, papillary thyroid cancer; TME, tumor microenvironment; TAMs, tumor-
associated macrophages; MHC, major histocompatibility complex; TCGA, the cancer genome atlas; WGCNA, weighted gene
co-expression network analysis; GO, gene ontology; GSEA, gene set enrichment analysis; AUC, the area under the curve;
DCA, decision curve analysis.
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INTRODUCTION

Thyroid cancer (THCA) is the most common malignant
endocrine tumor, and the incidence of THCA has been increasing
annually worldwide in recent decades. THCA has thus become
one of the fastest growing malignancies in China (Valvo and
Nucera, 2019). The development of high-throughput molecular
and multi-omics techniques has improved our understanding
of molecular changes related to the occurrence and progression
of THCA (Boufraqech and Nilubol, 2019). The development of
THCA is associated with many genetic changes and molecular
mechanisms in addition to DNA methylation, which has been
widely studied by researchers. It is now clear that the outcome
of cancer and the response to treatment are guided by the activity
of multiple immune cells in the tumor (Clancy and Hovig, 2016);
recent studies have confirmed that immune-related genes (IRGs)
play a crucial role in the recurrence and metastasis of THCA,
and reliable immune-related prognostic markers are needed to
determine the prognosis of THCA patients (Iancu et al., 2020;
Xue et al., 2020).

There is ample evidence to show that IRGs play an important
role in the biological process of cancer (Zhu et al., 2020). Among
IRGs, the most explored by researchers are those linked to tumor-
associated macrophages (TAMs), which have been shown to
be the most common infiltrating immune cells in the tumor
microenvironment of many tumors, such as gliomas, and to play
a crucial role in tumorigenesis and immunosuppression (Shan
et al., 2020). By analyzing the phenotypic transformation of
TAMs during tumor progression, researchers found that most M1
macrophage-related genes are highly expressed in the early stage
in a variety of tumors (Ren et al., 2017), and their activation also
plays a significant role in the progression of inflammatory bowel
disease; in addition, these genes are major pro-inflammatory
genes (Zhu et al., 2016). M1 macrophage-related genes include
IL-6, IL-8, CD80, PIM1, RTP4, and SLC11A1, and studies have
shown that after metformin treatment, the expression of M1-
related factors in tumor cells can be enhanced or weakened,
thus affecting the prognosis of the tumor (Chiang et al., 2017).
A comprehensive analysis of different M1 macrophage-associated
genes will help to reveal the relationship between aberrant
expression of different genes and the occurrence and progression
of THCA and may identify new prognostic molecules and
therapeutic targets.

In recent decades, M1 macrophage-related genes have been
identified in the human genome. Most of them participate in
regulation of the immune microenvironment in many malignant
tumors, such as head and neck squamous cell carcinomas,
gastric carcinoma, and hepatocellular carcinoma (Pang et al.,
2019; de Vos et al., 2020; Yamakoshi et al., 2020). While
mutations in these genes are the biological basis for immune
escape in various hematological malignancies, these immune
escape mechanisms are characteristic of both Hodgkin’s and
non-Hodgkin’s lymphomas and represent new prospects for
antitumor therapies (Pizzi et al., 2016).

In this study, CIBERSORT, WGCNA, univariate Cox analysis,
LASSO-Cox analysis and GEPIA were used to identify M1
macrophage-related genes in the THCA microenvironment to

construct a risk-scoring model, which performed well in the
validation cohort and the entire cohort.

In the entire cohort, independent prognostic factors for overall
survival were determined by univariate and multivariate Cox
analysis. A nomogram incorporating the risk score and clinical
prognostic factors was established. Overall, our risk-scoring
model and nomogram can accurately predict overall survival for
patients with THCA.

MATERIALS AND METHODS

Data Collection and Preprocessing
The Cancer Genome Atlas (TCGA1) is a large, free reference
database for researchers that collects and collates various omics
data related to cancer (Tomczak et al., 2015). From TCGA,
we downloaded THCA RNA expression data from 500 tumor
samples with complete clinical information (including age,
gender, stage, histological type, T stage, lymph node status, and
metastasis). Transcript per million (TPM) values were calculated,
and the expression levels of genes were presented using the Log2
(TPM+ 1) scale.

Evaluation of Tumor-Infiltrating Immune
Cells
CIBERSORT is a deconvolutional algorithm that uses the
expression values of 547 marker genes to predict the proportions
of 22 immune cell types from bulk tumor sample expression
data through support vector regression (Newman et al., 2015).
To estimate the relative proportion of 22 types of infiltrated
immune cells in the tumor mass, the online analytical platform
CIBERSORT2 was used. Data were normalized following Chen
(Chen et al., 2018), and the settings for the run were 1000
permutations with quantile normalization disabled.

Construction of Gene Co-expression
Networks
The R package “WGCNA” was used to construct the co-
expression network and to identify the co-expressed modules
(Langfelder and Horvath, 2008). Tumor samples with a
CIBERSORT P-values < 0.05 were retained, samples with
significant outliers were excluded, and the remaining samples
were considered as a discovery cohort to construct co-expression
networks and identify hub genes. We used the median absolute
deviation (MAD) to select 5000 highly variable genes for the
WGCNA expression data. First, the gene expression data were
used to obtain a Pearson correlation matrix between the genes.
The Pearson correlation matrix was transformed continuously
with the power adjacency function to obtain a weighted network.
The power adjacency function results in an adjacency matrix, as
calculated by aij = | cor(i,j)| β (cor(i,j) = Pearson’s correlation
between paired genes; aij = adjacency between paired genes).
A soft threshold β can improve strong correlations and weaken

1http://cancergenome.nih.gov/
2https://cibersort.stanford.edu/
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weak correlations. The power of β = 6 (scale-free R2 = 0.85)
was selected as the soft-thresholding parameter to ensure a scale-
free network, and the dynamic hybrid cut method (a bottom-up
algorithm) was used to identify co-expressed gene modules.

Identification of Clinically Significant
Modules
Module eigengenes (MEs) are defined as the first principal
component of a given module, and the value of MEs is that
they can be considered the most representative gene expression
profile for each module. The correlation between MEs and
macrophages was calculated by the Pearson test to identify
modules of interest. A module was considered to be significantly
correlated with macrophages when P < 0.05. We selected the
macrophage subtype of interest and the module with the highest
correlation coefficient and defined it as a hub module. Gene
Ontology (GO) functional enrichment analysis of the gene set
contained within the hub module was performed using the R
package “clusterProfiler”(Yu et al., 2012), P-values < 0.01 were
regarded as significant.

Identification of Hub Genes
We performed univariate Cox regression analysis on the genes
in the hub module to calculate the relationship between the
expression level of each gene and overall survival (OS). Next,
genes with P-values < 0.01 were analyzed by lasso regression
through the R package “glmnet,” and finally, the lasso regression
screened genes with significant differences in GEPIA were used as
hub genes (Friedman et al., 2010; Tang et al., 2017; Blanco et al.,
2018).

Analysis of Hub Genes and Clinical
Indicators
The “beeswarm” R package was used to demonstrate the
relationship between genes and clinical features (including stage,
histological type, T stage, lymph node status, and metastasis), and
statistical significance was analyzed by the Kruskal-Wallis test.

Construction of the Risk-Scoring Model
The coefficients of the univariate Cox analysis of hub genes
in the discovery cohort were locked in the validation cohort
and entire cohort. The formula for the risk score is described
below: Risk score = βgene A × expr gene A + βgene B × expr
gene B + ·· + βgene N × expr gene N, where expr was the
mRNA expression of the hub genes, and β was the regression
coefficient for the corresponding gene in the univariate Cox
regression analysis. The optimal cut-off value was identified by
the R package “survminer” to split each cohort in a proportion
of 4 to 6. Patients were classified into high- and low-risk
groups according to the cut-off value. Survival curves for the
high- and low-risk groups were plotted using Kaplan–Meier
analysis. The R package “timeROC” was used to calculate time-
dependent ROC curves and AUC at 3, 5, and 8 years to assess the
predictive performance of the risk-scoring model. Subsequently,
we considered the samples used to construct the co-expression
network as the discovery cohort and used the R package “caret”

to randomly divide the THCA sample, with 60% in validation
cohort A (n = 300) and 40% in validation cohort B (n = 200).
The predictive value of the risk-scoring model in validation
cohort A, validation cohort B and the entire cohort was then
further examined.

Building and Validating a Predictive
Nomogram
To develop a nomogram, we conducted univariate and
multivariate analyses using Cox regression models to identify
clinical features associated with survival. We used calibration
curves (by the bootstrap method with 500 resamples) to
validate the nomogram, and time-dependent ROC curve and
decision curve analysis (DCA) were next used to compare all
and only one independent prognostic factor included in the
nomogram. Compared to an all or nothing strategy, DCA
identifies a range of threshold probabilities for which the
magnitude of the net benefit of a model is highest and determines
which of several models is optimal, and the DCA tutorial is
available at http://www.decisioncurveanalysis.org along with R
code (Vickers and Elkin, 2006).

Differential Gene Expression Analysis
and Gene Set Enrichment Analysis
In the entire cohort, the sample was divided into high- and
low-risk groups based on the cut-off value of the risk score.
The R package “limma” was used to analyze the fold changes
in gene expression. Gene set enrichment analysis (GSEA),
which was performed with the R package “clusterProfiler,” was
used to identify the pathways in which high- and low-risk
groups were significantly enriched in the reference gene set,
and hallmark gene sets were selected as the reference gene set
(Subramanian et al., 2005).

RESULTS

Clinical Features of the Thyroid Cancer
Samples
We explored the distinct potential prognostic value of different
M1 macrophage-related genes for THCA. Discovery cohort was
used to identify hub genes, the validation cohort and the entire
cohort was used to validate the four-gene risk-scoring model, and
the clinical features of THCA samples from different cohorts are
shown in Supplementary Table S1.

Proportion of Tumor-Infiltrating Immune
Cells in Thyroid Cancer Samples
The expression spectrum of 22 immune cells in THCA was first
measured and analyzed using the CIBERSORT algorithm, and
the abundance of immune cell subpopulations in the samples was
evaluated. Then, we screened out the P-values < 0.05 samples to
draw bar graphs to show the proportion of different cell subtypes
in each sample (Figure 1).
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FIGURE 1 | Evaluation of 22 tumor-infiltrating immune cell types.

Gene Co-expression Networks of
Thyroid Cancer
According to CIBERSORT analysis, the proportions of different
cell subtypes in each sample were used as the trait data for
WGCNA. Then, we used the MAD to select 5000 highly variable
genes to build a co-expression network. The hclust function was
used to check whether there are outliers in the sample, and 7
samples with obvious outliers were removed. Finally, 156 samples
were used to construct the co-expression network. The soft
threshold (power = 6) is selected as the soft threshold parameter
to build the scale-free network. A total of 12 network modules
were detected (Figures 2A,B). Supplementary Figure 1 shows
the sample clustering plot and a heatmap of the proportions of
22 types of immune cells. The blue module is closely related to
M1 macrophages (R2 = 0.54, P = 5e-13) and M0 macrophages
(R2 = −0.62, P = 1e-17) (Figure 2C). The absolute value of the
correlation between the other modules and macrophages was
less than 0.5. We are interested in the characteristics of M1
macrophages, so the blue module was identified as a hub module.
Next, we performed GO enrichment analysis of the genes in the
hub module, and we showed the enrichment of the five most
significant GO terms in BP, CC, and MF. The three most highly
enriched terms were leukocyte proliferation, T cell activation, and
regulation of the lymphocyte activation pathway (Figure 2D).

Identification of Hub Genes and
Construction of the Risk-Scoring Model
To select hub genes to construct the risk-scoring model in the
TCGA training dataset, we performed univariate Cox analysis
on genes within the hub module, and the results are presented
in Supplementary Table S2. Univariate Cox analysis of genes

P-values < 0.01 was performed by LASSO-Cox regression
analysis to select hub genes. To determine the optimal value of the
penalty parameter lambda by 10 cross-validations, lambda.min
was selected as the optimal lambda value (Figures 3A,B). Based
on the results of LASSO regression analysis, we filtered genes
with non-zero coefficients in the LASSO model through GEPIA
and selected genes with significant differential expression as hub
genes (Figure 3C). Finally, the genes SPP1, DHRS3, SLC11A1,
and CFB were selected as hub genes. The coefficients from
univariate Cox analysis of the hub genes were used to construct
the risk-scoring model (Figure 3D).

The Relationship Between Hub Genes
and Clinical Features
Hub genes were significantly associated with histological types
and higher pathological stage and were expressed at higher levels
in PTC classical cell types (Figures 4A,B). Finally, we investigated
the connection between TNM and hub genes. There were no
significant differences in the expression levels of all hub genes
in the T stage, but the expression levels of all hub genes showed
significant differences according to lymph node status and were
higher in the N1 stage (Figures 5A,B). The expression levels
of SPP1, SLC11A1, and CFB were differentially expressed in
metastasis, although no significant differences were detected in
DHRS3 (Figure 5C).

Construction and Validation of the
Risk-Scoring Model
We established a risk-scoring model based on the gene expression
signature of the hub genes to predict survival. The risk score
formula is as follows: risk score = 2.1∗ expr SPP1 + 0.28∗ expr
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FIGURE 2 | Construction of a weighted gene co-expression network. (A) Analysis of the scale-free network coefficient R-squared for the soft threshold (β) and the
mean connectivity for the soft threshold. We hope that the value of R-squared exceeds 0.85, so the power value is 6 (β = 6). (B) A cluster dendrogram was built
based on the dissimilarity of the topological overlap, which presents 12 network modules. (C) Heatmap demonstrating the correlation between module eigengenes
and immune cells. (D) GO enrichment analysis of all genes in the hub module.

DHRS3+ 0.44∗ expr CFB+ 5∗ expr SLC11A1. “expr” represents
the expression value of the corresponding gene. To confirm
the prognostic significance of the risk score. The optimal cut-
off values were picked using the “survminer” package to divide
the risk scores of the different cohorts into high- and low-
risk groups. We validated the constructed risk-scoring model in
validation cohorts A and B and the entire cohort. The population
of validation cohort A was ranked according to the risk score
from low to high, and we showed the survival time by the
ranking (Figures 6A,B). We found that the survival curves were
significantly different between the high- and low-risk groups,
while the low-risk group had a better survival period (Figure 6C).
The risk-scoring model of validation cohort A showed that the
area under the curve (AUC) values of the time-dependent ROC
curve of the 3-, 5-, and 8-year OS were 0.816, 0.621, and 0.605,
respectively (Figure 6D). The population of validation cohort
B was ranked according to the risk score from low to high,
and we showed the survival time by the ranking (Figures 6E,F).
We found that the survival curves were significantly different
between the high- and low-risk groups, while the low-risk group
had a better survival period (Figure 6G). The risk-scoring model

of validation cohort B showed that the AUC values of the
time-dependent ROC curve of the 3-, 5-, and 8-year OS were
0.721, 0.716, and 0.787, respectively (Figure 6H). The population
of the entire cohort was ranked according to the risk score
from low to high, and we showed the survival time by the
ranking (Figures 6I,J). We found that the survival curves were
significantly different between the high- and low-risk groups,
while the low-risk group had a better survival period (Figure 6K).
The risk-scoring model of entire cohort showed that the AUC
values of the time-dependent ROC curve of the 3-, 5-, and 8-
year OS were 0.793, 0.69, and 0.719, respectively (Figure 6L). The
relationships between hub gene heat maps and clinical features in
validation cohort A, validation cohort B and the entire cohort are
shown in Figure 7.

Establishment of a Nomogram for
Overall Survival Prediction in THCA
To identify independent prognostic factors, we performed
univariate and multivariate Cox analyses in the entire cohort,
which showed that age, metastasis and risk score were
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FIGURE 3 | Identification of genes associated with M1 macrophages. (A) LASSO coefficient profiles of the prognostic-related candidate hub genes. (B) Relationship
between partial likelihood deviance and log(λ). (C) Expression of the hub genes in GEPIA. (D) Univariate Cox analysis of the hub genes. *P-values < 0.01.

FIGURE 4 | Relationship between hub genes and histological type and pathological stage. (A) Histological type. (B) Pathological stage.

independent prognostic factors for OS in THCA (Supplementary
Table S3). We developed a nomogram that can predict
OS for THCA at 3, 5, and 8 years using age, metastasis
and risk score (Figure 8A). Calibration charts showed that
the nomogram model may underestimate or overestimate
mortality (Figure 8B). Compared with the nomogram including
only age or metastasis, the nomogram model showed the
largest AUC for 3-year OS, 5-year OS and 8-year OS

(Figure 9A). DCA demonstrated that the nomogram model
had the best net benefits for 3-year, 5-year, and 8-year OS
(Figure 9B). In conclusion, the above results suggest that
the nomogram that combines the risk score and clinical
features performs well in predicting both short-term survival
(3 years) and long-term survival (5 and 8 years) when
compared to the nomogram constructed using a single
prognostic factor. Nomograms combining clinical features and
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FIGURE 5 | The relationship between the hub genes and TNM. (A) T stage. (B) Lymph node status. (C) Metastasis.

FIGURE 6 | Outcomes of a four-gene risk-scoring model in each cohort. Risk score analysis, Kaplan–Meier analysis and time-dependent ROC analysis in validation
cohort A (A–D). Risk score analysis, Kaplan–Meier analysis and time-dependent ROC analysis in validation cohort B (E–H). Risk score analysis, Kaplan–Meier
analysis and time-dependent ROC analysis in the entire cohort (I–L).

risk score may facilitate patient counseling, decision-making, and
clinical management.

Gene Set Enrichment Analysis of High-
and Low-Risk Score Groups
To understand how the high- and low-risk score groups affect
THCA survival, we used the optimal cut-off value of the risk

score to divide the entire cohort into high- and low-risk groups
for GSEA. The volcano plot shows the results of differential
gene expression analysis (Figure 10A). We show the three
pathways with the maximum normalized enrichment score
(NES) values and the three pathways with the minimum NES
(Figure 10B). According to the results, the high-risk score group
may be associated with oxidative phosphorylation of proteins,
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FIGURE 7 | Distribution of four-gene expression profiles and clinical features of each cohort. Validation cohort A (A). Validation cohort B (B). Entire cohort (C).

FIGURE 8 | Nomogram for predicting overall survival in THCA patients. (A) Construction of the nomogram was based on age, metastasis and risk score in the entire
cohort. (B) The calibration plot for internal validation of the nomogram.

transplant rejection, and the IL-6/JAK/STAT3 pathway, and the
low-risk group may be associated with components of the blood
coagulation system, late responses to estrogen and the apical
junction complex (Supplementary Table S4).

DISCUSSION

M1 macrophage-related genes are not only closely associated
with the development and promotion of inflammation but are
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FIGURE 9 | The time-dependent ROC and DCA curves of the nomogram. (A) The time-dependent ROC curves of the different nomograms compared for 3-, 5-,
and 8-year overall survival in the entire cohort. (B) The DCA curves of the different nomograms compared for 3-, 5-, and 8-year overall survival in the entire cohort.
The 8-year DCA curves of metastasis are not shown, as the calculated net benefit were all smaller than calculated with the none assumption.

also involved in the infiltration and metastasis of a variety of
malignant tumor cells. Although some members of the M1
macrophage-related gene family have been confirmed to play
critical roles in THCA, the different functions of M1 macrophage-
related gene family members in THCA are still unclear. In
this study, the expression and prognostic values of different
M1 macrophage-related genes in THCA were analyzed, and the
combined prognostic gene signature may have a better predictive
effect than a single biomarker.

There has been an extraordinary amount of research showing
that the increased expression of several M1 macrophage-related
genes often predicts a poor prognosis. In this study, we
established a novel four-gene signature (including SPP1, DHRS3,
CFB, and SLC11A1) for THCA prognosis prediction. The risk-
scoring model not only has good predictive performance in
validation cohort A, but also has good predictive performance
in validation cohort B. The four-gene risk-scoring model
was an independent prognostic factor for THCA, and the
survival rate of patients in the high-risk group is significantly
lower than that in the low-risk group. The AUC values
of the risk-scoring model in each cohort (validation cohort
A, validation cohort B, and the entire cohort) and the
nomogram combining the risk-scoring model and clinical
prognostic factors performed well in predicting short-term
survival (3 year) and long-term survival (5- and 8-year) for
patients with THCA. Furthermore, GSEA revealed several
significantly enriched pathways. The high-risk group was
associated with oxidative phosphorylation of proteins and the IL-
6/JAK/STAT3 pathway, while the low-risk group was associated

with components of the blood coagulation system and late
responses to estrogen, which might help explain the underlying
molecular mechanisms that the high- and low-risk groups
have different OS.

Secreted Phosphoprotein 1 (SPP1), also known as osteopontin,
is one of the molecules in the PI3K/AKT/mTOR pathway, and it
has been reported as an oncogene in many cancers (Yang et al.,
2020; Li et al., 2018; Guo et al., 2020). It is also a cytokine that
can upregulate the expression of interferon and interleukin-12
(Wu Q. et al., 2019). Studies have found that SPP1 can promote
the proliferation, migration and invasion of malignant tumor
cells and inhibit cell apoptosis, leading to poor prognosis in
certain tumors (Liu et al., 2020). However, the function and
mechanism of abnormal SPP1 in THCA patients are still unclear.
Our study found that SPP1 was significantly overexpressed in
tumor samples, and its univariate Cox analysis in the discovery
cohort showed it to be a risk factor for patients with THCA.

Dehydrogenase/reductase member 3 (DHRS3) is involved
in tumor suppression pathways and is constitutively expressed
in breast cancer cell lines (Zhang et al., 2019). DHRS3, as a
retinaldehyde reductase, can maintain embryonic development,
cell differentiation and apoptosis by maintaining the cell supply
of retinol and its metabolites (Kirschner et al., 2010; Wu L. et al.,
2019). It has been confirmed that DHRS3 is highly expressed in
PTC, as confirmed by our study, and it may become a potential
target for PTC therapy (Oler et al., 2008).

Solute Carrier Family 11 member 1 (SLC11A1) is a
phagosomal membrane protein that is expressed in monocytes,
and monocytes are the circulating precursors of macrophages
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FIGURE 10 | Differential gene expression analysis and GSEA for high- and low-risk groups in the entire cohort. (A) Volcano plot for differentially expressed genes.
Red dots represent genes whose expression is upregulated, green dots represent genes whose expression is downregulated, and red circles represent hub genes.
(B) The three pathways with the smallest NES and the three pathways with the largest NES are displayed.

and dendritic cells (DCs) (Bauler et al., 2017). SLC11A1, as
a pro-inflammatory factor, is closely related to the occurrence
and progression of many inflammatory diseases (Xu and Yang,
2020). In addition, it is also associated with susceptibility to many
infectious diseases (Braliou et al., 2019). We show that SLC11A1
is expressed at low levels in tumor samples, and it has been
suggested that transcriptional repression of SLC11A1 leads to
cell proliferation and survival if unchecked, which could result
in cancer and autoimmunity (Awomoyi, 2007).

Complement Factor B (CFB) is one of the factors of the
complement system, and after interacting with the tumor cell
lines MDA-MB231, CFB can show significant upregulation
(Oliveira-Ferrer et al., 2020). Studies have shown that CFB
may be a new tumor marker for the diagnosis of pancreatic
cancer. An increased level of CFB has very high sensitivity
and specificity for the diagnosis of pancreatic cancer, and its
false-positive rate is lower than that of the common tumor
marker CA19-9 (Kim et al., 2019). The complement system is a
powerful system with a wide range of biological functions, and
the activation of its significant components can control tumor
growth (Gadwa and Karam, 2020). We designed the nomogram
to combine four gene signatures and clinical features. Its visual
scoring system is easy to understand and facilitates individualized
therapies and clinical decision-making. Patients with high risk
scores should be treated aggressively, while patients with low
risk scores should avoid additional treatments that may lead to
unnecessary toxicity.

To our knowledge, the prognostic model and nomogram
associated with these four-gene signature have not been
reported previously and they could be a useful prognostic
method for THCA. However, our study has some limitations.
First, the clinical information on THCA that we downloaded
from TCGA was limited and incomplete. Second, detailed

information about family history, tumor size, vascular tumor
invasion, extent of tumor resection and regional factors
were not included in the nomogram. Last, nomograms are
based on a retrospective study design, and multicentre,
large-scale prospective clinical trials are required to further
validate the model.

CONCLUSION

This study identified genes associated with M1 macrophages
through co-expression networks and constructed a risk-scoring
model based on four genes and a nomogram incorporating
the risk-scoring model and clinical features to predict patient
prognosis and guide clinical decision-making. However, further
research is needed to explore the biological role of these four
genes in THCA and to incorporate more detailed clinical data to
construct a broadly applicable nomogram. We hope the present
study will provide powerful evidence for the future development
of individualized genomic treatment in THCA.
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