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Abstract: Background: The rapid growth of the elderly population poses a huge challenge for people
to access medical services. The key to get rid of the dilemma is for patients to go firstly to primary
medical institutions. Existing studies have identified numerous factors that can affect patients’ health
institution choice. However, we currently know little about the role of Internet use in the patients’
medical decisions. The objective of this study is to explore health-seeking behavior and institution
choice under the background of the Internet era from the perspective of older adults, and to analyze
whether the Internet could guide patients to the appropriate medical institution so as to accomplish
hierarchical treatment. Methods: The dataset comprises 9416 people aged 45 or above from the
China Health and Retirement Longitudinal Survey (CHARLS), which, through multistage cluster
sampling, was conducted in 2011, 2013, and 2015. Logistic regression, PSM, and FE model are used to
estimate the influence of Internet use on the health care decision-making behavior. Results: Internet
use has a significant positive impact on the self-treatment of common diseases (β = 0.05, p < 0.05). In
terms of medical institution choices, those who use Internet are more inclined to choose top-level
hospitals than community health service institutions to treat common diseases (β = 0.06, p < 0.01).
Conclusions: The Internet has lowered the obstacles to learning about common ailments, resulting in
a substitution impact of self-treatment for hospital care. However, Internet use may aggravate older
adults’ perception of the risk of disease, which exacerbates the tendency of going to higher-level
medical institutions for medical treatment. The finding of the study is useful for further rational
planning and utilization of the Internet in order to guide patients to appropriate medical institution,
which helps to improve the efficiency of the overall medical and health services.

Keywords: gatekeeping system; self-treatment; primary health institutions; CHARLS; PSM

1. Introduction

With a rapidly ageing population, the Chronic non-infectious diseases are becoming
more common, and an effective health-care delivery paradigm is required to provide
accessible and inexpensive health services to the whole population [1]. Globally, most
developed nations have generally adopted a three-tiered health-care service model and
gatekeeping system in which patients visit primary care doctors or general practitioners
for the treatment of common illnesses [2,3]. Then, the general practitioners send patients to
hospitals and other medical service institutions for emergency and specialized treatment
based on the patient’s condition. This is essential for the development of accessible,
sustainable and equitable health systems; Britain’s National Health Service is one of the
most cost-effective health services in the world because the general practitioner system acts
as a gatekeeper [4].

China accounts for more than 20 percent of the world’s population, but only 2 percent
of the world’s medical and health resources; the rapidly growing elderly population has
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caused health care resources to become scarce and difficult to access [5]. To address this,
the Chinese government transformed the above system characteristics into the hierarchi-
cal diagnosis and treatment system (HDTS) in 2015, which guides patients to go firstly
to primary health institutions, where those with severe diseases are referred to tertiary
hospitals if necessary [6]. However, this ambitious national health care reform program
in China has not solved the problem of “difficult and expensive medical treatment” [7–9].
There are data showing that China’s primary health care quality is still lacking. The visits
of patients in primary medical institutions dropped from 4.34 billion to 4.12 billion from
2015 to 2020, whilst those of higher-level hospitals rose during the same period. Moreover,
between 2015 and 2020, the average sickbed utilization rate of primary medical institutions
was only 65%, while that of high-level hospitals reached as high as 95% [10]. The critical
reason is that China’s HDTS does not require mandatory primary health care, and most
patients choose to bypass primary medical institutions and enter general hospitals when
they need treatment, resulting in a phenomenon that general hospitals are overcrowded
while other medical institutions have insufficient patients [11–14]. The key to getting rid of
the dilemma of graded diagnosis and treatment is for residents to choose grassroot medical
treatment. Only by understanding the drivers and barriers on the intention of first visit
in primary care institutions can more effective policies and interventions be developed to
promote the first consultation at the grassroots level.

Patients’ health-seeking behavior and institution choice are part of a complex decision-
making process. Previous literature suggests that they are not only affected by objective
factors, such as demographic characteristics, economic environment, national policies,
the distribution of medical institutions, and medical institutions’ conditions, but also by
subjective factors, such as self-perceived health status, cognition of diseases and personal
preference [15–25]. However, we currently know little about the role of information supply
in the patients’ medical behavior or institution choice. In fact, the information supply
may play an important role. As Arrow pointed, in the medical market, “information is a
valuable commodity”, and changes in the structure of information supply and demand are
likely to have an “inducing effect” on individual medical choices [26–29]. In particular, the
rapid development of the Internet has caused the explosive growth of medical information
and substantially increased the accessibility of medical knowledge. This makes the Internet
one of the primary sources of medical information and expertise for residents prior to
seeking medical treatment [30–35]. The Internet has exacerbated the spillover of medical
information, and changes in the quantity, quality, and scope of information supply, which
affect patients’ decision making [36,37].

Several research works involving Internet use suggest that the association between
the Internet and medical decision making is still unclear. According to Lee et al., Internet
health information has the potential to significantly influence the health attitudes and
behaviors of a substantial part of the population, as well as the treatment of chronic
illnesses [38]. A previous study, however, found that while the Internet might improve
individuals’ health-related knowledge and attitudes, it seldom impacted their health-
related actions [39]. Patients demonstrated interest in online comparative health care
information in the study of Zwijnenberg et al., but the influence of the Internet on patients’
decision making remained restricted [40]. Consequently, it is still unclear whether searching
online information through the Internet will affect patient’s health-seeking behavior and
institution choice.

People browse health information through the Internet to make further medical de-
cisions. On the one hand, the Internet provides diagnosis and treatment plans for almost
all types of common diseases, including basic definition and symptoms, drug-use meth-
ods, and contraindications [41–43]. Studies have shown that an increasing number of
people tend to use the Internet to obtain health care information [44–46], including older
adults [47,48]. After the appearance of disease symptoms, patients use the Internet to
search for the type of disease corresponding to the symptoms and determine the severity
of the disease [49,50]. If the patient judges that the disease is common and not serious,
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he/she will purchase drugs and self-diagnose according to the online treatment plan. The
Internet offers many advantages for patients in comparison with the offline world, such as
convenience, time saving, and reduced limitations on space and time. The statistical report
on Internet development has suggested that Internet penetration has continued to grow,
and the popularity of the Internet has gradually spread to the elderly from the young [51].
Based on the above analysis, this paper assumes the following:

Hypothesis 1. Internet use has a significant positive impact on self-treatment among older adults.

On the other hand, due to the multi-source nature of Internet information, it may
aggravate the incompleteness of the individual knowledge of the disease and make individ-
uals more dependent on authoritative medical institutions [52]. In terms of rare diseases,
it is difficult for different websites and platforms to provide patients with consistent in-
formation, and the uncertainty of diagnosis and treatment content may aggravate the
risk perception of patients’ disease. Patients often have access to information that could
psychologically prepare the latter but could also scare them. Online medical information
focuses on universality and introductory content and does not list the probability of poten-
tial consequences. As a result, patients often overestimate the negative consequences of
rare diseases and increase the expected utility loss of misdiagnosis [53]. As far as serious
diseases are concerned, the difficulty and individualization make patients have to undergo
equipment inspections and professional diagnosis [54]. Community health service institu-
tions located in common and chronic diseases face cross-border competition from Internet
medical information. Top-level hospitals are in a professional monopoly position because
they are good at handling difficult and complicated diseases [55–61]. Based on the above
analysis, this paper assumes the following:

Hypothesis 2. When choosing medical facilities for common diseases, Internet use increases older
adults’ preference for top-level hospitals.

Hypothesis 3. When choosing medical facilities for serious diseases, Internet use increases older
adults’ preference for top-level hospitals.

To test the above hypotheses, this paper applied several complementary methods, such
as logistic regression, propensity score matching (PSM) and fixed-effect models (FE) based
on a sample consisting of 9416 elderly participants from the China Health and Retirement
Longitudinal Study (CHARLS), which is a multi-panel nationally representative household
survey of the Chinese population aged 45 years and older conducted through multistage
cluster sampling. Over the past 20 years, China has witnessed the rapid development
and application of the Internet. By the end of 2020, the number of Internet users in China
was 989 million, making China the largest Internet user in the world. Studying Internet
medical information spillover in China is of particular interest, given that China is the
world’s largest developing country and facing a serious ageing population issue, which
will inevitably further lead to a significant increase in the demand for medical services.

Compared with the existing literature, the main contributions of this study are as
follows. First, the present paper is (to the best of the author’s knowledge) the first attempt to
comprehensively evaluate the impact of Internet use on the choice of health care. This study
can contribute to a better understanding of the causes of medical decisions among older
adults and provides a useful guide to strategy and policy formulation in the healthcare
sector. Second, it provides a new analytical perspective for a hierarchical medical system,
extending the research focus of grading diagnosis and treatment from institutional analysis
and economic incentives to information induction. Third, this paper uses longitudinal
panel data, mixed cross-sectional data, PSM and FE to solve the problem of selection bias
and endogeneity to a large extent based on national survey data with a large sample size,
and provides stronger statistical capabilities and more general conclusions.
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2. Materials and Methods
2.1. Source of Data

The data used in this study were from the China Health and Retirement Longitudinal
Study (CHARLS), which is a nationally representative survey of the population 45 years or
above living in China, funded by Peking University (China), National Institute on Aging
(China), and World Bank. Since 2011, CHARLS has conducted a survey every two years,
sampling 28 (out of 31) provinces in China through multi-stage stratified probability pro-
portionate to size sampling (PPS), which represents about 95% of China’s population. The
database is public, and more detailed description of the sampling design and process can
be obtained from its website (http://charls.pku.edu.cn, accessed on 1 February 2021). In
each survey wave, about 17,000 people living in 10,000 households in 150 counties/districts
and 450 villages/resident committees (or villages) were surveyed by using the face-to-face
computer-assisted personal interview. Due to the long time span of the follow-up survey,
CHARLS research is faced with some temporary or permanent exits, which are offset by
the new respondents, that is, data imbalance. The survey aims to provide a database for
population ageing academic research and public health policy analysis by tracking and
collecting a wide range of information on demographic and socio-economic characteristics,
family relations and dynamics, wealth, employment, education, health status and func-
tioning, biomarkers, health care and insurance [62–64]. The Institutional Review Board of
Peking University granted ethical consent (IRB00001052-11015). To research the association
between the Internet use and health-seeking behavior and institution choice of the elderly
population, we limited the samples to respondents who fell ill in the last month. This paper
selects the mixed cross-sectional data of the three phases of 2011, 2013 and 2015 as the
analysis object. Compared with the cross-sectional data, the mixed cross-sectional data can
increase the sample size, expand the sample representativeness, and obtain more precise
estimates and more effective statistics. By eliminating the missing values, the final sample
contains 9253 individuals.

2.2. Variable Measurement

Self-treatment. It was measured by asking middle-aged and elderly respondents
who fell ill in the last month whether they had self-medicated. If the respondent has self-
medicated by buying over-the-counter Western medicine or prescription Western medicine,
it is recorded as 1; otherwise, it is recorded as 0.

Health institution selection for common disease, HIS-CD. It was measured by asking
the type of medical institution visited by the elderly respondents who fell ill in the last
month. If the respondent attends a community health service center, township health center,
health service station, village clinic or private clinic and other primary medical institutions,
it is recorded as 0; if the respondent is in a general hospital, specialized hospital, and other
non-primary medical institutions, it is recorded as 1.

Health institution selection for major disease, HIS-MD. It was measured by asking
middle-aged and elderly respondents what type of medical institution they were hospi-
talized in most recently. If the respondent is hospitalized in primary medical institutions,
such as community health service centers, township health centers, health service stations,
village clinics or private clinics, it is recorded as 0; if the respondent is in general hospitals,
specialized hospitals, and other hospitalization in non-primary medical institutions, it is
recorded as 1.

Internet use, IU. Like previous studies that considered Internet use through smart-
phones or mobile phones [65–68], all respondents were asked whether they used a computer
or mobile phone to surf the Internet. The value of the main treatment variable “Internet
use” is 1 when respondents use the telephone or mobile phone to surf the Internet; other-
wise it is 0. Because online browsing is a necessary condition for the overflow of Internet
medical information, only individuals participating in online browsing activities have the
opportunity to access Internet medical information. The process of online browsing greatly

http://charls.pku.edu.cn
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increases the possibility that individuals access medical information through the Internet.
Therefore, the proxy variable is reasonable.

Control variable. Referring to Liu et al. and Zhang et al., this paper compiled a
rich set of control variables, including age, gender, marital status, education level, urban
or rural areas, physical health, IADL (Instrumental Activity of Daily Living), per capita
household income, family members and children quantity [41,63]. Considering that the
type of residence may influence the interviewees accessing medical information through
the Internet and choosing the type of medical treatment, this paper controls the type
of residence. Finally, this paper controls the regional effect to eliminate the influence
of regional differences. Table 1 shows the descriptive statistics of these variables. In
accordance with our expectation, compared with the non-Internet users, Internet users
had a higher probability of self-treatment and select a top-level hospital for treatment of
common diseases. However, there was no significant difference between Internet users and
non-users in terms of medical options for treating severe cases. Of course, these descriptive
statistics provide only instructive evidence. More rigorous analysis is needed to control for
other confounding factors.

2.3. Analytic Strategy

Since the dependent variable in this study is a dichotomous variable, logistic regression
analysis is used to establish the following measurement model:

log (Y1i) = ln(p/(1− p)) = β0 + β1 Interneti +
N

∑
j=1

γjZi + pri + εi (1)

log (Y2i) = ln(p/(1− p)) = β0 + β1 Interneti +
N

∑
j=1

γjZi + pri + εi (2)

log (Y3i) = ln(p/(1− p)) = β0 + β1 Interneti +
N

∑
j=1

γjZi + pri + εi (3)

From Equation (1) to Equation (3), the subscript i is the i-th respondent; as the core
explanatory variable, Internet is the usage of Internet. If the respondent often surfs the
Internet, Internet = 1; if the respondent does not surf the Internet or does not surf the Internet
frequently, Internet = 0. p is the event probability. Z is a series of personal characteristics
and family characteristics control variables. pr is a province fixed effect, used to control
regional differences. εi represents the error term, independent and identically distributed.
β0 and β1 are the parameters to be estimated; the dependent variable Y1 is the self-diagnosis
and treatment choice of respondent i. Y2 is the health care choice of general disease. Y3 is
the health care choice of serious illness.

In this study, whether respondents are online is not randomly assigned, but is the
result of their conscious choice based on their own characteristics and resources. Therefore,
there may be potential endogenous problems due to selection bias or missing variables.
Therefore, this paper uses propensity score matching and a fixed-effects model to solve
endogenous problems [69].

PSM is a common method for dealing with self-selection problems. The basic idea is
to select a certain sample from the control group to match the sample in the intervention
group according to the propensity score, and then estimate the treatment effect based on
the resultant variable difference between the paired samples. The propensity score is the
probability of the sample as the intervention group. It is estimated by the logit model after
the observable variable X is given. The calculation equation is as follows:

P(Xi) = Pr(Di = 1|Xi) =
eβxi

1 + eβxi
(4)
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Table 1. Descriptive statistics.

Variables Definition
ALL Internet Users Non-Internet

Users Mean
Difference

Mean (S.D.) Mean (S.D.) Mean (S.D.)

Self-treatment 0 = no self-treatment,
1 = self-treatment 0.468 (0.499) 0.490 (0.495) 0.465 (0.499) 0.025 ***

HIS-CD 0 = primary medical institution,
1 = great public hospitals 0.366 (0.482) 0.473 (0.470) 0.354 (0.478) 0.119 ***

HIS-MD 0 = primary medical institution,
1 = great public hospitals 0.805 (0.397) 0.824 (0.267) 0.801 (0.400) 0.023

Age ranging from 45 to 101 years 59.62(9.734) 53.52(7.272) 59.86 (9.740) −6.34 ***

Gender 0 = male, 1 = female 0.516 (0.500) 0.408 (0.492) 0.521 (0.500) −1.113 ***

Urban vs. rural
residence

0 = rural residents,
1 = urban residents 0.212 (0.409) 0.708 (0.455) 0.192 (0.394) 0.516 ***

Marriage status 0 = having no partner,
1 = having a partner 0.871 (0.336) 0.926 (0.262) 0.869 (0.338) 0.057

Education
1 = uneducated, 2 = literate,

3 = primary education, 4 = secondary
education, 5 = tertiary education

2.846 (1.362) 4.543 (0.698) 2.778 (1.338) 1.765 ***

Insured 0 = having no insurance,
1 = having insurance 0.937 (0.243) 0.958 (0.201) 0.936 (0.245) 0.022

Self-rated health self-rated health: 0 = poor, 1 = fair,
2 = good, 3 = very good, 4 = excellent 2.165 (0.581) 1.912 (0.500) 2.175 (0.582) −0.263 ***

IADL Instrumental Activity of
Daily Living, 0–28 10.18 (4.056) 7.663 (2.677) 10.28 (4.069) −2.6171 ***

Per capital
income

log form of annual household per
capital income (CNY) 8.106 (2.612) 9.408 (2.622) 8.054 (2.598) 1.354 ***

Household size the total number of family members 3.258 (3.583) 3.247 (1.515) 3.259 (3.641) −0.012

Number of
children

the total number of children
in the legal sense 2.792 (1.446) 2.656 (0.870) 2.837 (1.446) −0.181 ***

Housing type

0 = wood, bamboo, grass, sheet iron,
cave dwelling, adobe, 1 = bricks and

wood, mixed structure,
3 = concrete and steel

1.355 (0.701) 1.564 (0.726) 1.347 (0.699) 0.217 ***

Observations 9416 1884 7528
Note. * p < 0.1, ** p < 0.05, *** p < 0.01.

In Equation (4), Xis the control variable matrix, D is the indicator variable, the inter-
vention group is 1, and the control group is 0. The common matching methods include
kernel matching, nearest neighbor matching and radius matching. In order to ensure the
robustness of the results, this paper adopts the nearest neighbor matching (1:1), nearest
neighbor matching (1:5), kernel matching and radius matching, respectively. After match-
ing, the influence degree of intervention on explained variables can be measured. The
average treatment effect of intervention group is usually estimated, and its expression is
as follows:

ATT = E(Y1|D = 1)− E(Y0|D = 1) = E(Y1 −Y0|D = 1) (5)

In Equation (5), Y1 represents the value of the explained variable when the intervention
group sample receives the intervention, and Y0 represents the value of the explained
variable when the intervention group sample assumes no intervention.

This study may have potential endogenous problems, due to selection bias or missing
variables. PSM can only solve the selection bias caused by observable variables, and
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potential missing variables may still bias the final estimation results. Therefore, this paper
uses the 2011–2015 three-phase panel data and uses a fixed-effects model (FE) to control
the unobserved personal characteristics and family characteristics that do not change over
time. Since the data of the three periods are separated by only 2 years, some unobserved
variables, such as health concepts and environmental preferences, are less likely to change
during the three periods. The measurement equation of the fixed model (FE) of panel data
is as follows:

Yit = β0 + β1 Interneti t +
N

∑
j=1

γjZit + provincei + yeart + δi + εi t (6)

In Equation (6), the subscript i is the i-th respondent; t is the year; as the core explana-
tory variable, Internet is the usage of Internet; Z is a series of personal characteristics and
family characteristics control variables; province is the province fixed effect; year is the year
fixed effect; εi represents the error term, independent and identically distributed; β0 and
β1 are the parameters to be estimated; the dependent variable Y1 is the self-diagnosis and
treatment choice of respondent i. Y2 is the choice of respondent i‘s general disease clinic. Y3
is the choice of respondent i’s serious illness clinic.

3. Results
3.1. Benchmark Regression Results

Before conducting an empirical analysis, we ran a multicollinearity test. The maximum
value was 4.13, which was far below the experience VIF value of 10. Therefore, we can
confirm that multiple collinearity did not have much of an effect on the regression analysis.
Table 2 presents the results from the estimation of specification (1). In this paper, according
to Equations (1)–(3), logit estimates are made on the effect of medical options on using
the Internet, and the results are shown in Table 2. The results in column (1) show that
Internet use has a significant positive impact on the self-treatment of common diseases
(β = 0.05, p < 0.05). Specifically, using the Internet can increase the probability of the elderly
self-treatment by 5%, so Hypothesis 1 is supported. The results in column (2) show that
Internet use has a significant positive impact on the elderly choosing top-level hospitals
for the treatment of common diseases (β = 0.06, p < 0.01), so Hypothesis 2 is supported.
However, the results in column (3) show that Internet use has no significant impact on the
elderly choosing top-level hospitals for the treatment of major disease (β = 0.03, p > 0.1).
Hypothesis 3 is not supported.

Table 2. Effect of Internet use on medical decisions.

Variables
(1) (2) (3)

Self-Treatment HIS-CD HIS-MD

Internet use
0.050 ** 0.060 *** 0.030
(0.047) (0.001) (0.516)

Age −0.001 −0.010 −0.010 *
(0.588) (0.221) (0.066)

Gender
0.030 −0.200 *** −0.080

(0.734) (0.004) (0.498)

Urban vs. rural residence
0.360 *** 0.860 *** 1.290 ***
(0.003) (0.000) (0.000)

Marry 0.030 −0.080 0.080
(0.760) (0.426) (0.587)

Uneducated
0.000 0.000 0.000

(.) (.) (.)
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Table 2. Cont.

Variables
(1) (2) (3)

Self-Treatment HIS-CD HIS-MD

Literate
0.330 ** 0.240 ** 0.180
(0.011) (0.031) (0.274)

Primary education 0.220 ** 0.220 ** 0.320 **
(0.050) (0.027) (0.033)

Secondary education 0.270 ** 0.460 *** 0.450 **
(0.040) (0.000) (0.015)

Tertiary education 0.120 0.650 *** 0.830 ***
(0.493) (0.000) (0.001)

Insured
0.420 *** −0.100 −0.290
(0.004) (0.507) (0.327)

Per capital income 0.040 *** 0.040 *** 0.040 **
(0.002) (0.004) (0.030)

Self-rated health
0.200 *** 0.000 −0.150
(0.006) (0.989) (0.114)

IADL
0.008 0.040 *** 0.050 ***

(0.011) (0.000) (0.000)

Household Size
−0.020 0.000 0.010
(0.359) (0.818) (0.788)

Number of children
0.020 −0.060 ** 0.080 *

(0.583) (0.035) (0.068)

Humble and old house
0.000 0.000 0.000

(.) (.) (.)

Brick and concrete house
0.040 −0.210 ** −0.380 **

(0.747) (0.042) (0.044)

Concrete and steel house
−0.070 0.080 −0.180
(0.548) (0.424) (0.311)

Constant
−2.360 ** −2.680 *** −0.160

(0.022) (0.635) (0.861)

Province fixed effects YES YES YES
Year fixed effects YES YES YES

Observations 3314 4938 2444
Wald 136.490 601.820 183.370

R-squared 0.1381 0.1199 0.110
Note. * p < 0.1, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses. HIS-CD = health institution
selection-common disease; HIS-MD = health institution selection-major disease.

3.2. PSM Results

PSM is a common method for dealing with self-selection problems. The basic idea is
to select a certain sample from the control group to match the sample in the intervention
group according to the propensity score, and then estimate the treatment effect based on
the resultant variable difference between the paired samples [70,71]. The logit probability
model to estimate the conditional probability of respondents is adopted. (The estimation
results of the logit probability model show that the probability of Internet use is significantly
correlated with age, gender, urban–rural differences, education level, family income per
capita, IADL, number of children, and housing type. Due to space limitations, detailed
estimation results are not reported in this paper.) To ensure that different matching methods
do not interfere with the estimation results, the nearest neighbor matching method (1:1),
nearest neighbor matching method (1:5), kernel matching method and radius matching
method are adopted, respectively. Only the samples with the most similar propensity
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scores of the intervention group are kept in the control group, while those that do not
match are deleted. Next, the matching quality needs to be tested. This paper first compares
the propensity score overlap between the intervention group and the control group before
matching, as shown in Figure 1a. In general, the propensity score distribution of the
intervention group is significantly different from that of the control group. Figure 1b
shows the distribution of propensity scores after matching. (This paper adopts a variety
of matching methods for analysis, and all pass the matching quality test. Due to space
limitations, only the nearest neighbor matching method (1:5) test results are reported here.)
It can be intuitively judged that propensity score matching obviously corrects the score
deviation between the two groups. 
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Figure 1. Probability score distribution. (a) Before matching; (b) after matching.

This paper firstly estimates the average treatment effect before matching, and the
results are shown in Table 3. The average treatment effect before matching is significantly
higher than that after matching, which means that if the selection bias is not considered, the
influence of the Internet on the choice of medical treatment will be overestimated. There
are four different matching methods adopted to calculate the average treatment effect.
The estimation results of different matching methods are basically the same, indicating
that this study is not sensitive to matching methods and has good robustness. This paper
takes the average of the average treatment effects of different estimation methods for
subsequent analysis.

Table 3. The average treatment effect of Internet on medical decisions.

Matching Method
(1) (2) (3)

Self-Treatment HIS-CD HIS-MD

Before the match ATT
0.111 *** 0.294 *** 0.126 **
(0.041) (0.032) (0.044)

Nearest neighbor matching (1:1) ATT 0.099 ** 0.116 ** 0.063
(0.064) (0.053) (0.052)

Nearest neighbor matching (1;5) ATT 0.093 ** 0.117 ** 0.017
(0.049) (0.041) (0.037)

Radius matching method ATT 0.081 ** 0.116 *** 0.027
(0.046) (0.038) (0.034)

Kernel matching ATT 0.079 ** 0.115 ** 0.026
(0.046) (0.038) (0.034)

ATT Average 0.088 ** 0.116 ** 0.033
Note. * p < 0.1, ** p < 0.05, *** p < 0.01, AI robust standard errors in brackets. ATT = average treatment effect.
The average treatment effect of this paper: controlled age, gender, marital status, education level, urban-rural
differences, family income per capita, health status, IADL, number of family members, number of children,
housing type, and controlled urban fixed effects and time fixed effects.
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3.3. Heterogeneity Analysis

The analysis in this paper shows that Internet use has significantly increased the
probability of treatment for middle-aged and elderly people, but at the same time, it has
increased the flow of middle-aged and elderly people to high-level medical institutions for
common diseases. However, the influence of the Internet on medical choice may vary from
group to group. For this reason, this paper conducts an in-depth analysis of the influence
of different groups.

First, this paper investigates whether the effects of gender differences are heteroge-
neous. The results are shown in Table 4. The usage of Internet has a significant positive
impact on the self-treatment of common diseases in middle-aged and elderly men, but the
impact on women is not significant. It may be caused by gender differences in sociology or
psychology; the usage of the Internet has a significant positive impact on men and women
choosing high-level medical institutions for general disease treatment.

Table 4. Heterogeneity analysis of the influence of Internet on medical decisions.

Variables
(1) (2) (3)

Self-Treatment HIS-CD HIS-MD

Gender

Male 0.142 ** 0.131 ** 0.018
(0.067) (0.060) (0.054)

Female 0.028 0.112 * 0.05
(0.080) (0.062) (0.056)

Urban vs. rural residence

Rural 0.148 ** 0.118 * 0.161 **
(0.077) (0.070) (0.071)

Urban 0.020 0.089 * −0.003
(0.060) (0.048) (−0.09)

Family economic status

Low income −0.016 −0.130 0.001
(0.164) (0.164) (0.19)

Middle income 0.174 *** 0.192 *** 0.062
(0.060) (0.069) (0.054)

High income 0.088 0.072 −0.02
(0.084) (0.055) (0.044)

Note. * p < 0.1, ** p < 0.05, *** p < 0.01, AI robust standard errors in brackets. the nearest neighbor matching (1:5)
was used for estimation. The average treatment effect also controls age, gender, marital status, education level,
urban–rural differences, per capita household income, health status, IADL, number of family members, number
of children, and housing type; the fixed effects of city and time, limited to length, are no longer reported.

Second, this paper investigates whether the impact of urban–rural differences is
heterogeneous, and the results are shown in Table 4. The usage of the Internet has a
significant positive impact on the self-treatment of middle-aged and elderly people in rural
areas, but it has no significant impact on middle-aged and old people in urban areas. This is
because middle-aged and old people in urban areas generally conduct self-treatment when
facing common diseases. (According to the regression results in Table 2, the coefficient of
impact of living in a city on self-treatment of common diseases is 0.86 (significant at the 1%
level).) Therefore, the further impact of the Internet is limited. The usage of the Internet has
a significant positive impact on rural and urban middle-aged and elderly people choosing
high-level medical institutions for general disease treatment, while the usage of the Internet
also has a significant positive impact on rural middle-aged and elderly people.

Finally, we studied whether the influence of different economic groups is heteroge-
neous. Based on the difference in household income per capita, we divided the respondents
into high-income, middle-income and low-income groups. (The income group is divided
according to the 2015 poverty standard issued by the National Bureau of Statistics of China.
Respondents whose per capita household income is less than CNY 2700 are considered
low income, and those whose household per capita income is between CNY 2700 and CNY
20,000 are considered middle income. Those with a per capita income of more than CNY
20,000 are considered high income). The results are shown in Table 4. The usage of the
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Internet only affects the choice of medical treatment for middle-income groups but has little
effect on low-income and high-income groups. The explanation for this is that low-income
groups cannot afford higher medical expenditures. Therefore, after illness, low-income
groups tend to use cheap traditional Chinese medicine. Even if they have to go to the
hospital, they choose lower-cost primary medical institutions. Therefore, Internet use has a
limited impact on them. The high-income groups pay more attention to their own health
conditions. They generally conduct self-treatment after illness and choose higher-level
hospitals for treatment. Therefore, Internet use will no longer affect the medical choices of
high-income groups.

3.4. Robustness Test

In view of the fact that PSM can only solve the problem of selection bias caused by
observable variables, and the omitted variables may still interfere with the final estimation
results, this paper further adopts the fixed-effects model (FE) to solve the endogenous
problem. The advantage of the FE model is that it can eliminate the heterogeneity that
does not change over time. However, because it only estimates the “in-group variation”
of the variable, it may cause a large variance bias and reduce the estimation accuracy. For
this reason, this paper also carried out random effects model estimation, and the results
are shown in Table 5. Before conducting an empirical analysis, we ran a multicollinearity
test. The maximum value was 3.31, which was far below the experience VIF value of
10. The estimated results of the FE model and the random-effects model on the impact
of Internet on self-treatment, general disease treatment institution selection, and severe
disease treatment institution selection are very similar to the results of PSM in Table 3,
which shows that the results of this paper are robust.

Table 5. Estimates of fixed effects and random effects of the influence of Internet on medical decisions.

Variable
(1) (2) (3)

Self-Treatment HIS-CD HIS-MD

Panel A: Fixed-effects model

Internet use
0.070 ** 0.155 ** 0.02
(0.071) (0.025) (0.040)

Control variable yes yes yes
Personal fixed effect yes yes yes

Year fixed effect yes yes yes
N 3987 7810 2945
F 0.27 4.28 3.90

Within R-sq 0.023 0.0267 0.059

Panel B: Random effects model

Internet use
0.078 *** 0.092 ** −0.013
(0.019) (0.010) (0.041)

Control variable yes yes yes
Urban fixed effect yes yes yes

Year control variable yes yes yes
N 3987 7810 2945

Within R-sq 0.179 0.233 0.152
Between R-sq 0.418 0.384 0.346
Overall R-sq 0.021 0.1310 0.093

Note. * p < 0.1, ** p < 0.05, *** p < 0.01, the parentheses are the Driscoll–Kraay error. The fixed-effects model has
two-way control of time effect and individual effect. It also controls age, gender, marital status, education level,
urban–rural differences, family income per capita, health status, IADL, number of family members, number of
children, and housing type; the random effects model also controls these variables and controls the province fixed
effects. Due to space limitations, this paper only reports the estimated results of the key explanatory variables
Internet use.
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4. Discussion

This paper investigated the impact of Internet use on medical decisions medical
decisions among Chinese older adults through several complementary methods, such as
logistic regression, propensity score matching (PSM) and fixed-effect models (FE) based
on the 2011, 2013, and 2015 China Health and Retirement Longitudinal Study (CHARLS).
The results showed that the Internet had a certain effect on older adults’ health seeking
behavior and institution choice. First, the elderly with Internet behavior are more inclined
to self-cure when suffering from common diseases, especially for rural residents and
middle-income groups, indicating that self-diagnosis and therapy can partially replace
hospital care. Second, in terms of medical institution choices, those who use Internet are
more inclined to choose top-level hospitals than community health service institution to
treat common diseases. The study contains theoretical and practical consequences for
how to govern Internet health care and direct people to medical institutions, as well as a
reference to Internet medical treatment promotion and implementation.

Chinese older adults who use Internet are more inclined to self-treatment than visiting
hospitals, which is consistent with some research descriptions. Yang et al. pointed out that
online medical platforms have become the “entrance” for many patients to see a doctor,
which, to a certain extent, diverts the flow of patients with common diseases to high-level
hospitals [72]. As the popularity of the Internet has grown, surfing and selecting health
information has become a standard procedure before deciding whether or not to visit a
hospital [73]. The popularity of the Internet and mobile Internet has broken the medical
information barriers, and the public can obtain diagnosis and treatment measures for
common diseases from the Internet at low cost and conveniently. The emergence of online
appointment registration services, online health care and monitoring, telemedicine, online
diagnostic and treatment services, and medical supplies businesses related to medical
services, medicines, and online consultations enable people to enjoy online medical services
more quickly, efficiently, and at low cost [74]. Overall, the Internet has the potential
to minimize barriers to common illness knowledge, to some extent lessen information
asymmetry between patients and physicians, and increase individuals’ awareness and
access to fundamental health knowledge, lowering the likelihood of utilizing medical
services. Due to the current shortage of medical resources and the public’s thirst for
medical resources, the integration of medical resources and the Internet is an important
way to improve China’s lack of medical resources.

In contrast, this study discovered that the Internet may increase the likelihood of
seeking medical treatment from the top-level hospitals. The multi-source and uncertainty
of medical information acquisition has exacerbated the inconsistency and incompleteness
of an individual’s perception of disease. Due to the limitation of professional knowledge, it
is difficult for patients to identify the relevant information, and they are prone to be misled
by the wrong medical information, which leads to health anxiety; for instance, physical
symptoms are misinterpreted as signals of dangerous diseases, and there is a continual
worry of being sick [75]. Ogasawara found that many websites offer harmful information
about cancer, and the proportion of these websites is far higher than that of sites that
offer reliable information about cancer treatment [76] which brings “noise” and intensifies
the “increasing tendency” of regular medical institutions. If the development of Internet
medical care is allowed to develop savagely and irregularly, it may further aggravate the
medical burden of hospitals. The competent government departments should strengthen
the supervision and guidance on the quality of medical information on the Internet to
ensure the authority of medical information.

This study also has some limitations. First, although this paper has largely solved the
endogenous problem caused by selection bias and missing variables that do not change
over time through PSM and FE, but due to data limitations, no suitable instrumental
variables were found to further ensure the rigor of the results. Second, this is a survey on
the middle-aged and elderly people in China. Because the health of the middle-aged and
old people is quite different from that of other groups, all the conclusions of this study
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cannot be generalized to the general group. With the further development of online medical
care, research on the mechanism of the influence of patients’ medical behavior from the
perspective of the Internet will be the direction of future research.

5. Conclusions

With the rapid development of a new generation of information technology, the
dissemination and utilization of medical service information has accelerated, and the
functions of online medical services have also continuously expanded. The Internet has
broken down the barriers to the knowledge of common diseases, shortened the gaps
in health information accessibility, and has produced a slight substitution effect of self-
diagnosis and treatment on hospital care. However, the knowledge monopoly of difficult
and complicated diseases cannot be eliminated, and at the same time, the increase in
inconsistent, incomplete, and commercialized medical information has also brought noise
to decision making, blurring the residents’ cognitive boundary of common diseases and
severe diseases. Consequently, the rising tendency of visiting high-level medical institutions
may be exacerbated, which will be unable to guide patients to hierarchical diagnosis and
treatment. The government should issue relevant policies to regulate the development of
Internet medical care and guide patients to choose reasonable medical institutions based on
their own conditions so as to achieve the purpose of hierarchical diagnosis and treatment,
save costs, and greatly improve service efficiency and service quality.
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