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Abstract

Background: Despite their widespread use, the biological mechanisms underlying the efficacy of psychotropic
drugs are still incompletely known; improved understanding of these is essential for development of novel more
effective drugs and rational design of therapy. Given the large number of psychotropic drugs available and their
differential pharmacological effects, it would be important to establish specific predictors of response to various
classes of drugs.

Results: To identify the molecular mechanisms that may initiate therapeutic effects, whole-genome expression
profiling (using 324 Illumina Mouse WG-6 microarrays) of drug-induced alterations in the mouse brain was
undertaken, with a focus on the time-course (1, 2, 4 and 8 h) of gene expression changes produced by eighteen
major psychotropic drugs: antidepressants, antipsychotics, anxiolytics, psychostimulants and opioids. The resulting
database is freely accessible at www.genes2mind.org. Bioinformatics approaches led to the identification of three
main drug-responsive genomic networks and indicated neurobiological pathways that mediate the alterations in
transcription. Each tested psychotropic drug was characterized by a unique gene network expression profile related
to its neuropharmacological properties. Functional links that connect expression of the networks to the
development of neuronal adaptations (MAPK signaling pathway), control of brain metabolism (adipocytokine
pathway), and organization of cell projections (mTOR pathway) were found.

Conclusions: The comparison of gene expression alterations between various drugs opened a new means to
classify the different psychoactive compounds and to predict their cellular targets; this is well exemplified in the
case of tianeptine, an antidepressant with unknown mechanisms of action. This work represents the first proof-of-
concept study of a molecular classification of psychoactive drugs.
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Background
The complex etiology and heterogeneity of mental disor-
ders is associated with moderate effectiveness of psycho-
active drugs, frequent recurrence of symptoms and high
cost of therapy [1]. Psychotropic drugs have diverse thera-
peutic profiles (Table 1), and even a single class drugs can
show high diversity of effectiveness and effects may be
limited to particular sub-types of a given disorder, exem-
plified by the various subclasses of antidepressants [2]. On
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the other hand, drugs belonging to different therapeutic
classes may have effects that are either beneficial or adverse
in a particular disease. Therefore, the identification of com-
mon and specific neurobiological actions of psychoactive
compounds is critical to understanding therapeutic mecha-
nisms. Furthermore, comparison of drug-induced molecu-
lar profiles may provide objective criteria for a more
rational classification of psychotropic drugs.
The development of maladaptive neuroplastic changes is

suggested to underlie the progression of neuropsychiatric
disorders [3]. The pattern of structural alterations in the
brain is determined by the process of synaptic plasticity and
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Table 1 A list of psychotropic drugs selected for the comparison

Drug Dose [mg/kg, i.p.] (control)1 Pharmacological targets Clinical group7

1 Mianserin (MIA)3 20 (sal) HRH1 / HTR2C, 2A, 3A / ADRA2C, 2A, 1A / NET / CHRM Antidepressant (NaSSa)

2 Imipramine (IMI)3 10 (sal) SERT / HRH1 / NET / ADRA1A / HTR2C / CHRM Antidepressant (TCA)

3 Fluoxetine (FLU)3 20 (sal) SERT / NET / HTR2C Antidepressant (SSRI)

4 Bupropion (BUP)3 20 (sal) DAT Antidepressant (DRI)

5 Tianeptine (TIA)2 20 (sal) Unknown targets Antidepressant (SSRE)

6 Tranylcypromine (TRA)2 20 (sal) MAO Antidepressant (MAOI)

7 Methamphetamine (MET)2 2 (sal) NET / DAT Psychostimulant

8 Cocaine (COC)2 25 (sal) DAT / NET / SERT Psychostimulant

9 Nicotine (NIC)2 1 (sal) n-AChR Psychostimulant

10 Heroin (HER)6 10 (sal) OPRM1, OPRK1, OPRD1 Analgesic

11 Morphine (MOR)4 20 (sal) OPRM1, OPRK1, OPRD1 Analgesic

12 Ethanol (ETO)2 2000 (sal) GABAA Anxiolytic/Analgesic

13 Diazepam (DIA)2 5 (twe) GABAA Anxiolytic

14 Buspirone (BUS)3 10 (sal) 5HT1A Anxiolytic

15 Hydroxizine (HYD)2 10 (sal) HRH1 Anxiolytic

16 Clozapine (CLO)3 3 (twe) DRD4, 2 / HRH1 / HTR2A, 2C / DRD1 / CHRM / ADRA1A Antipsychotic

17 Risperidone (RIS)3 0.5 (twe) HTR2A, 2C / DRD1 / DRD2, 3, 4 / ADRA1A, 2C / HRH1 Antipsychotic

18 Haloperidol (HAL)3 1 (twe) DRD2, 3, 4 / 5HT2 Antipsychotic

19 Tween 802 vol. 10 ml/kg (naïve) No targets Vehicle

20 Saline (SAL)5 vol. 10 ml/kg (naïve) No targets Vehicle
1the effective drug doses were based on the literature; the drugs were purchased from 2Sigma-Aldrich, 3Biotrend, 4Teva, 5Polpharma or 6synthesized from
morphine, 7class of antidepressant (NaSSa, noradrenergic and specific serotonergic antidepressant, TCA tricyclic antidepressant, SSRI selective serotonin reuptake
inhibitor, DRI dopamine reuptake inhibitor, SSRE selective serotonin reuptake enhancer, MAOI monoamine oxidase inhibitor).
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is influenced by genetic, neurodevelopmental and environ-
mental factors [4]. It is thought that therapeutic agents re-
verse disease-related alterations by reconstruction and
normalization of neuronal connections in targeted brain
areas [5,6]. This view is supported by the fact that the
therapeutic effects of psychotropic drugs usually have de-
layed onset and gradually increase with time. Establishment
of these long-lasting changes requires gene expression and
synthesis of new proteins [7-9] in a time-dependent and
region-specific manner; such changes may serve as early
markers of drug-activated biological processes.
Impaired control over drive and motivation is a fre-

quent symptom in psychiatric disorders, including de-
pression, mania and addiction [10,11]. Since these
conditions are characterized by disturbed monoaminer-
gic function, most current pharmacotherapies target re-
ceptors and transporters for dopamine, serotonin and
noradrenaline as well as other transmitters such as
GABA and acetylcholine [12,13]. All of these transmitter
systems are represented in the striatum, a brain region
responsible for control of motivation, reward-based
learning and decision-making [14,15]. The striatum as
an evolutionarily ancient brain region reveals compar-
able functions and gene expression profiles between ro-
dents and humans [16]. Thus, despite the limitations of
an animal model [17], the comparison of drug-induced
dynamic alterations in the rodent striatal gene expres-
sion profile provides insights into molecular mechanisms
of psychotropic drug actions.
In this study, using whole-genome gene expression

microarrays we identified main drug-responsive genomic
networks that are regulated by 18 individual psychoactive
drugs known to impact on one or more pharmacological
targets within the striatum. This work introduces a novel
approach for the classification of psychotropic drugs on
the basis of gene expression profiling. To encourage fur-
ther discoveries along these lines, we made freely available
the entire interactive database which contains the results
of the present study (www.genes2mind.org).

Results
Drug-induced transcriptional alterations in the striatum
Using whole-genome microarrays (Illumina MouseWG-6),
we compared striatal gene expression profiles (magnitude
and dynamics of ~30,000 genes) produced by 18 major psy-
choactive drugs at 1, 2, 4 and 8 hours after acute adminis-
tration (Table 1). Obtained data were subjected to two-way
analysis of variance (ANOVA) with drug and time as factors
(Additional file 1). We found 317 drug-responsive tran-
scripts in the striatum at the most conservative statistical
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threshold (P < 0.05 after Bonferroni correction, nominal
P = 1.36 × 10-06). After removal of genes represented more
than once on the microarrays, this list contains 278 unique
genes. For down-stream analyses we selected top 300 tran-
scripts ordered by genes2mind score, which takes into ac-
count fold of change and direction of drug-induce gene
expression alterations (please see Methods for details). This
method was implemented in the genes2mind selection
module (www.genes2mind.org). Furthermore, we estimated
total number of genes regulated by psychotropic drugs by
calculation of true positives over a wide range of false dis-
covery rates (FDR). This estimation indicated that the total
number of regulated transcripts slightly exceeds one thou-
sand (Additional file 2). Therefore, with the restrictive stat-
istical approach we identified about 30% of drug-responsive
genes in the striatum. For canonical pathway analysis we
used 5% FDR threshold at which we identified most of
drug-regulated transcripts (872 microarray probes). The
number of genes regulated by each drugs in the time-
course (genes2mind score > 10) is presented in Additional
file 3. All the additional analyses and comparisons (includ-
ing selection of drugs, genes and time-points) are available
at the genes2mind resource.

Molecular classification of psychotropic drugs
We used hierarchical clustering and principal com-
ponent analysis (PCA) of the 300 drug-responsive
transcripts (defined by genes2mind score using all the
time-points) to classify psychotropic drugs. Drug-
induced transcriptional signatures were distinguished
A

Figure 1 A comparison of psychotropic drugs based on pattern of ge
and PCA plot (B) were generated based on expression profile of top 300 d
divergence in the profile of drug-induced transcriptional alterations. Therap
(green for antidepressants, red for psychostimulants, blue for anxiolytics, br
components of PCA are shown on x and y axis, while third component is c
between the various therapeutic groups: anxiolytics
(buspirone, diazepam and hydroxyzine), atypical antipsy-
chotics (clozapine and risperidone), opioids (morphine
and heroin) and psychostimulants (methamphetamine
and cocaine) (Figure 1A). However, the expression
profile of the antipsychotic drug - haloperidol was simi-
lar to that of psychostimulants and tranylcypromine.
Also, the effects of nicotine resembled those of addictive
drugs, ethanol and opioids, more closely than other
psychostimulants. Antidepressants proved to be the
most heterogeneous group of drugs in terms of their im-
pact on gene expression, with mianserin, imipramine,
tranylcypromine and fluoxetine displaying very diverse
profiles. The gene expression profile of mianserin was
most similar to those elicited by atypical neuroleptics;
the profiles obtained in response to imipramine were
similar to those produced by anxiolytics; and tranylcypromine
generated a profile that resembled that obtained with
psychostimulants. Nevertheless, antidepressants that target
monoamine transporters (fluoxetine and bupropion) fell into
one cluster.
Three main PCA components explained 56% of the

variance in gene expression and mapped the test drugs
in three-dimensional space according to their molecular
profiles (Figure 1B). The first PCA component repre-
sented the strong effects of opioids, ethanol and
tranylcypromine; there were no detectable effects of di-
azepam and hydroxyzine. The second principal compo-
nent included the full spectrum of drug-induced effects
in the striatum - from substantial inhibition of gene
B

ne expression alterations in the striatum. Cluster dendrogram (A)
rug-responsive genes. Distance between drugs corresponds to a
eutic classes of drugs are coded by colors presented on the clustering
own for antipsychotics and light blue for opioids). First and second
oded by color and size of the circles as presented on the right.
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expression by diazepam or clozapine to strong activation
by cocaine and methamphetamine. The third PCA com-
ponent showed, on one hand, a common effect of anti-
psychotic drugs and mianserin, and on the other, a
common effect of all three anxiolytics.

Drug-induced gene expression networks
To connect effects of psychotropic drugs to inducible
gene expression patterns in the striatum, we determined
the correlation between loadings of the first three PCA
components and the level of transcriptional alterations.
Hierarchical clustering was used to search for drug-
inducible groups of co-expressed genes (Figure 2A).
Three main drug-responsive gene clusters, representing
network α (containing 105 transcripts), β (43 transcripts)
and γ (27 transcripts) became evident. The clusters re-
vealed diverse drug- and time-dependent patterns of up-
A

B

Figure 2 Drug-induced gene expression networks in the striatum. Ge
drug-regulated transcripts (A). Map of the striatal transcriptome represente
The inter-node distance is proportional to the Spearman correlation of the
transcripts indicates the level of correlation between gene expression and
and down-regulation of gene expression (see Figure 3
for examples of typical genes). Next, a map of the
complete striatal transcriptome, based on the level of
correlation between profiles of all transcripts measured
using microarrays, was developed in order to depict
drug-induced alterations in expression. All three drug-
responsive gene clusters are located on the same branch
of a tree (Additional file 4). The clusters were clearly
separated and organized in drug-regulated genomic net-
works (Figure 2B). We found no other networks with
distinct gene expression patterns. However, it is possible
to identify subclusters of genes with moderately different
profiles of expression within the three main networks
(Additional file 5).
Expression of gene network α correlated with the sec-

ond PCA component. Drug-induced changes in network
α genes were bidirectional, e.g. methamphetamine
ne networks α, β, γ were identified by hierarchical clustering of top
d as minimal spanning tree (B). Each node represents one transcript.
expression levels of two genes. The node color of drug-responsive
PCA components (see Figure 1b), according to a triangle scale.



Figure 3 Psychotropic drug-induced transcriptional alterations of example genes. Four genes with typical expression profiles for the
networks α (Areg and Npas4), β (Cdkn1a) and γ (Cirbp) were selected from drug-responsive transcripts. The microarray results are presented as
time-course (1, 2, 4 and 8 hours) of fold-changes vs. saline control (as described in the legend). Results from drug-naïve group of animals are
presented as an additional control.
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induced expression of Npas4 and Egr1, while diazepam
inhibited it. Buspirone, mianserin and risperidone in-
duced some activity-dependent genes but down-
regulated others, e.g. mianserin inhibited expression of
Homer1 by 0.6-fold and induced Fos by 2.3-fold. The
gene expression network β correlated with the first PCA
factor. The expression of this network was regulated to a
different degree by drugs from various pharmacological
groups, e.g. Cdkn1a or Fkbp5 after opioids and
tranylcypromine, except that diazepam, hydroxyzine and
imipramine had no effects. The expression of gene net-
work γ correlated with the third PCA component. All
network γ genes were regulated by risperidone,
Figure 4 Functional analysis of drug-induced gene networks α, β and
astrocytes and oligodendrocytes, overrepresentation of transcription factor
transcriptome = 5.6 h); significance of enrichment: *P < 0.05, **P < 0.01, ***P
mianserin and clozapine, in a bidirectional manner, e.g.
Cirbp and Mtor were strongly up-regulated by atypical
neuroleptics and mianserin, but down-regulated by
tranylcypromine or methamphetamine.

Functional description of drug-regulated gene networks
Cell-type enrichment of drug-responsive genes
Identification of the types of neural cells expressing
genes from the α, β and γ networks was carried out by
reference to publicly available data that represents cellu-
lar enrichment of individual transcripts in neurons, as-
trocytes or oligodendrocytes (Figure 4) [18]. Significant
enrichment of transcripts from the expression network α
γ. The networks were described by gene enrichment in neurons,
binding sites (TFBS) and median mRNA half-life (median for whole-
< 0.001.
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was found in neurons (e.g. neuron-specific Npas4, Scg2
or Baiap2) and under-representation in oligodendro-
cytes. Gene network β was characterized by very strong
over-representation of genes expressed in astrocytes, in-
cluding the cell-type specific markers Gjb6 and Ppp1r3g.
Network γ genes did not show enrichment in any par-
ticular cell type although individual genes that were
highly expressed in either neurons (Amn and Lst1) or ol-
igodendrocytes (Cnp) were identified.

Over-representation of transcription factor binding sites
The cREMaG database [19] was used for in silico identi-
fication of molecular factors involved in the transcrip-
tional control of the gene expression networks revealed
in the present study. We found significant over-
representation of SRE (serum-response elements, 4-fold
enrichment; P < 0.01) and CRE (cAMP response ele-
ments, 3.8-fold enrichment, P < 0.05) in the promoter re-
gions of genes from network α. These elements are
potential binding sites for the transcriptional factors SRF
(e.g. in Egr1 and Arc) and CREB1 (e.g. in Dusp1
and Fosl2). Significant over-representation of GRE
(glucocorticoid-response elements, 4.3-fold enrichment,
P < 0.01) on promoter regions of genes from network β
(e.g. in Tsc22d3 and Pdk4) was observed. Gene network
γ showed significant enrichment of binding sites for tran-
scriptional factor NFYA (5.8-fold enrichment, P < 0.01).
Two examples of genes with conserved binding sites for
NFYA (regulatory subunit for NF-Y complex) are Per1
and Mtor.

Transcript stability of drug-responsive genes
Transcript stability is related to function of the tran-
scribed protein [20]. Our analysis reveals substantial dif-
ferences in the half-lives of mRNAs belonging to the α
and β networks. Gene expression network α contains
genes with a short mRNA half-life (median = 2.9 h), in-
cluding very short-lived transcripts (< 2 h half-life:
Gadd45g, Fos and Egr2). In contrast, network β includes
transcripts with significantly longer (median: 8.7 h) half-
lives (> 20 h in the case of Sult1a1 and Itgad). Whole-
genome screening indicated that genes with low mRNA
stability are frequently involved in regulation of intracel-
lular signaling, while long-lived transcripts have a role in
cell metabolism [20]. The median half-life of transcripts
from network γ was 6.9 h, i.e. not significantly different
from the median of 5.6 h for the whole transcriptome.

Functional classification of drug-responsive genes
To characterize the transcriptional representation of bio-
logical processes, a list of genes from each gene expres-
sion network was analyzed using GO (Gene Ontology).
Functional clusters of transcripts connected with protein
MAP kinase phosphatase activity (81-fold enrichment,
P = 2.4 × 10-9; e.g., Dusp1 and Dusp4), rhythmic pro-
cesses (7.2-fold, P = 2.3 × 10-3; e.g., Egr2 and Per2) and
transcriptional regulator activity (2.8-fold, P = 6.7 × 10-5;
e.g., Sertad1 and Atf3) were over-represented among
genes from network α. The group of genes from net-
work β was enriched in transcripts involved in lipid
metabolism (11.5-fold, P = 2.2 × 10-3; e.g., Adipor2 and
Pnpla2) and formation of adherens junctions (13.6-fold,
P = 1.3 × 10-3; e.g., Dlg5 and Synm), whereas, analysis of the
novel network γ revealed the enrichment of genes connected
to cell projection organization (4.7-fold, P = 8.5 × 10-3; e.g.,
Lst1 and Cnp). A detailed description of the results of GO
classification is included in Additional file 6.
We did not find transcriptional regulation of genes

coding main targets for psychotropic drugs, as for ex-
ample dopamine receptors Drd2 and Drd1a or serotonin
transporter Slc6a4. It is possible that promoters of these
genes are not directly activated in response to the ligand
binding.

Canonical pathways analysis
A canonical pathways analysis was performed to investi-
gate the functional characteristics between drug-
regulated genes. To increase resolution of the analysis
an extended list of transcripts was used (872 transcripts
at <5% FDR). Genes were assigned to the networks
according to drug-induced profiles of alterations in ex-
pression (Additional files 1 and 5). The canonical path-
ways analysis using the Pathways-Express identified
significant biological functions altered differentially by
the psychotropic drugs at the statistical threshold of
P < 0.05. The Additional file 7 contains a list of biological
pathways for each drug-regulated transcriptional network.
The list of pathways for gene expression network α in-
cludes neuroplasticity-related signaling cascades MAPK
and ErbB. The network β contains genes involved in the
control of cellular metabolism via glucose regulation by
adipocytokine and PPARG molecular pathways. The γ
network proved to be enriched in genes involved in regu-
lation of circadian rhythm and mTOR signaling path-
ways. Additional file 8: Figure S8 shows examples of
canonical pathways enriched between drug-responsive
genes (Additional file 8).

The examples of drug-regulated transcriptional profiles
We selected genes with expression patterns representative
for the identified drug-responsive transcriptional networks
(Figure 3). In general, transcripts from network α reveal re-
markable correlation in expression profile, but we also
found drug-dependent diversity between particular genes.
The expression of Areg is induced by psychostimulants

and tranylcypromine administration. The profile of Areg
expression suggests that an increase in dopaminergic
transmission may be directly involved in drug-induced
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regulation of this gene. Moreover, the time-course of al-
terations in Areg expression corresponds to pharmacoki-
netic properties of the drugs: we observed a strong
increase in the mRNA abundance of Areg 1 h after injec-
tion of cocaine, 2 h after methamphetamine and 4 h
after tranylcypromine. Npas4 is induced by these three
drugs in the same direction as Areg, but unlike Areg,
Npas4 expression is also induced by opioids and
inhibited by diazepam, atypical neuroleptics as well as
antidepressants that antagonize 5-HT2 receptors. Other
examples of genes with slightly different profiles are
Egr2 and Arc, with expression induced by haloperidol
and buspirone as well as Dusp1 and Fos, induced by
haloperidol and mianserin (www.genes2mind.org).
Drug-induced network β reveals more homogenous

pattern of transcriptional alterations. Genes from this
network showed the largest alterations (up to 6-fold vs.
saline control group) in expression 4 h after administra-
tion of mianserin and tranylcypromine. Example gene
Cdkn1a is activated to a different degree by all the psy-
chotropic drugs, except for imipramine, diazepam and
hydroxyzine.
Network γ exhibits a pattern of gene expression changes

that is connected to pharmacological properties of the
drugs. Transcriptional activation of Cirbp is limited to
mianserin, risperidone and clozapine treatment while opi-
oids and psychostimulants seem to inhibit the expression of
this gene and other network γ genes (e.g., Trove2 and
Mrpl15).

Prediction of drug-target interactions from gene
expression profiling
The comparison of gene expression profiles has been re-
cently used as a tool for prediction of therapeutic prop-
erties of drugs [21-23]. Our molecular classification of
psychotropic drugs indicated an interesting profile of
tianeptine. Tianeptine is a tricyclic antidepressant whose
mechanism of action is still not clear [24]. Here, a linear
model, based on the level of gene expression alterations
induced in the striatum by drugs with well-known
pharmacological properties (Figure 5A), was used in an
attempt to predict tianeptine’s molecular mechanism(s)
of action. The matrix of interactions between 14 psycho-
tropic drugs and 13 neuropharmacological mechanisms
was constructed on the basis of data in the PDSP Ki
database [25]. Levels of modulation by tianeptine were
predicted for each of the mechanisms. This analysis re-
vealed that the transcriptional effects of tianeptine may
involve increased activity of noradrenaline, serotonin
and dopamine neurotransmission (Figure 5B).

Monoaminergic action of tianeptine
Further, in situ hybridization was used to examine the
anatomical distribution of drug-induced alterations in
the expression of two neuroplasticity-related genes fol-
lowing exposure of mice to tianeptine and two other an-
tidepressants, tranylcypromine and mianserin. Patterns
of tianeptine-induced expression of Arc and Egr1 in
the forebrain proved similar to those produced by
tranylcypromine, an inhibitor of monoamine oxidase
that increases the concentrations of all monoamine neu-
rotransmitters; both drugs induced Arc and Egr1 tran-
scription in the striatum and neocortex (Figure 5C). In
contrast, mianserin, which affects levels of noradren-
aline, but not of dopamine or serotonin, produced differ-
ent effects; these included downregulation of Arc and
Egr1 transcripts in the striatum. According to these pro-
files, we predicted that tianeptine, like other monoamine
stimulants, may have a positive reinforcing effect in ani-
mals. This prediction was confirmed in the conditioned
place preference test in which we observed a significant
increase in time spent in the environmental context as-
sociated with tianeptine administration (P < 0.01, t-test)
(Figure 5D). Thus, both the patterns of drug-induced
gene expression and the behavioral data support the
conclusion that tianeptine acts as a positive modulator
of monoaminergic neurotransmission.
Discussion
The profile of drug-induced gene expression in the brain
is determined by activity of different neurotransmiter
systems and response of various types of cells. To un-
ravel complexity of this profile we designed a detailed
time-course gene expression study for eighteen psycho-
tropic drugs belonging to all the major clinical classes.
The previously published large-scale gene expression
analyses were focused on a single drug [26,27], drugs
from one clinical class [28,29] or marker genes [30,31].
Transcriptome alterations induced in the brain by
buspirone, bupropione, hydroxyzine or tianeptine were
not analyzed so far. The study involved extraction of a
pool of approximately 1000 transcripts that are regulated
by psychotropic drugs. Differential transcription of dif-
ferent subsets of genes from this pool was observed dur-
ing the first few hours after drug administration; 90% of
the affected transcripts were up-regulated and the
remaining were inhibited. Interestingly, the majority of
drug-induced transcriptional alterations dissipated within
8 hours of treatment, indicating that drug-induced
changes of mRNA abundance are transient. We suppose
that they are then rapidly followed by protein expression
and these proteomic alterations translate short-lived
transcriptional drug effects into lasting structural modifi-
cations of the brain; further, we suggest that chronic
drug treatment leads to accumulation of drug-induced
plastic alterations that eventually become manifest as
therapeutic effects.
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Figure 5 Prediction of tianeptine targets by gene expression profiling. A matrix of drug-target binding interactions from the PDSP Ki
database (A). The mechanisms of tianeptine action predicted from expression profiles of the transcripts most sensitive to the analyzed
pharmacological mechanisms (B). Brain distribution of tianeptine-induced gene expression alterations of Arc and Egr1 and (C). Rewarding
properties of tianeptine in the conditioned place preference test. Scores are expressed as means + standard error of the mean (t-test, **P < 0.01) (D).
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This study was limited to transcriptional mechanisms
activated in response to acute drug administration. The
effects of psychoactive drugs such as anti-psychotic ac-
tion, mood normalization, tolerance or addiction require
repeated treatment. We have recently investigated gene
expression changes at several time-points after chronic
administration of heroin or methamphetamine to associ-
ate drug-induced molecular changes with long-term be-
havioral adaptations e [32]. In that work we found that
effects of chronic treatment share transcriptional alter-
ations with single administration, as for example regula-
tion of glucocorticoid-dependent (Plin4 and Fkbp5) or
circadian rhythm-regulated genes (Per1 or Per2). How-
ever, there were no direct correlations between tran-
scriptional and behavioral effects of the drugs as well as
no significant changes in gene expression profile after a
period of withdrawal. We conclude that psychoactive
drugs induce transient transcriptional program that may
initiate neuroplastic alterations, but does not trigger
long-term alteration in mRNA abundance levels in ma-
ture differentiated brain cells.
Bioinformatic analysis revealed that the transcriptional

response to the psychotropic drugs tested fall into three
major groups of co-regulated genes. The largest gene
network, α, contains genes previously defined as being
activity-dependent. The observed alterations in expres-
sion of genes belonging to the network α correspond
well to drug effects on neuronal activity (e.g. activation
by cocaine and inhibition by diazepam); expression of
genes in this network is known to depend on an inter-
play between the transcriptional factors CREB and SRF
[33-35]. The gene network α includes a number of
neuroplasticity-related transcriptional factors (e.g. Npas4,
Egr1 and Fosb) as well as other regulators of brain



Korostynski et al. BMC Genomics 2013, 14:606 Page 9 of 14
http://www.biomedcentral.com/1471-2164/14/606
plasticity (e.g. Arc and Homer1) [36-39]. Moreover, some
network α genes are involved in MAP kinase signal trans-
duction pathway (e.g. Dusp1 and Dusp6) which plays a
pivotal role in various forms of long-lasting neuroplasticity
[40,41]. The network α also contains novel genes (e.g.
transcripts related to ErbB receptors signaling pathway
Ddit4, developmental neuronal death Sertad1 or a modu-
lator of Wnt and Fgf signaling pathways Shisa2) [42,43].
These genes deserve further functional characterization
with respect to drug effects. All network α genes were
shown to be expressed in neurons and their mRNAs
were found to have relatively short half-lives. Several
lines of evidence indicate that the expression of genes be-
longing to network α is involved in the initiation of plas-
tic alterations and long-term modulation of neuronal
signaling and the diverse functions of these genes indi-
cate that psychotropic drugs activate control points for
multiple intracellular pathways [44]. Accordingly, we sug-
gest that, at the transcriptional level, brain plasticity is
regulated through expression of molecular switches ra-
ther than of all components of neuroplasticity-related
pathways.
Another network identified (β) is strongly enriched in

genes that are expressed predominantly in astrocytes
and glucocorticoid response elements (GRE) in their
promoter regions are overrepresented. However, while
the collective function of network β genes in astrocytes
remains unknown, genes from this group are implicated
in glucose metabolism e.g. Pdk4 and glucose transport e.
g. Slc2a1 as well as other metabolic processes; in
addition, Sult1a1 is involved in sulfate conjugation of
neurotransmitters and certain xenobiotics and Xdh plays
a role in the oxidative metabolism of purines [45-48].
The network β is enriched for genes related to
adipocytokine signaling pathway. This molecular cascade
is an important regulator of energy intake and metabolic
rate [49]. It thus appears that glial cells use expression of
network β genes to activate a set of metabolic control
points and therefore, to support the functional responses
of neurons to psychotropic drugs. The relatively long
half-lives of the mRNAs generated from these genes
most likely contribute to the regulation of neural cell
metabolism [20]; interestingly, patients with affective
disorders often display altered brain metabolism [50].
Glucocorticoids are key regulators of cellular metabol-
ism and their dysregulated secretion is found in several
psychiatric disorders [51]; in major depression, anti-
depressant actions are usually first seen only after gluco-
corticoid secretion has been normalized [52]. Thus,
activation of glucocorticoid-dependent genes following
psychotropic drug treatment may represent restoration
of homeostatic control of brain metabolism.
The third psychotropic drug-inducible network, γ, that

emerged from this study includes genes involved in the
organization of cell projections (e.g. Lst1, Cnp) and the
mTOR pathway (e.g. Mtor, Tsc1) [53-55]. Evolving evi-
dence implicates the mTOR pathway in dendrite
arborization and spine morphology [56]. Network γ may
therefore serve to switch on multiple control points for
morphological alterations in nerve cells. Our results in-
dicate that expression of this network in the striatum
may depend on serotonin signaling, specifically the 5-
HT2 receptor. Thus, gene network γ may be involved in
the mediation of the long-lasting effects of 5-HT2 antag-
onist antipsychotic drugs on the cellular level. Moreover,
the 5-HT2 blockade-dependent expression of network γ
in the striatum that separates haloperidol from risperi-
done may be useful as a transcriptional marker for atyp-
ical neuroleptics.
The current Anatomical Therapeutic Chemical (ATC)

and World Health Organization (WHO) classification of
psychotropic drugs is based on their clinical effectiveness.
As shown by the present work, comparison of gene expres-
sion profiles can clearly distinguish between atypical anti-
psychotics, opioids and psychostimulants. Moreover, the
three anxiolytic drugs studied here show relatively similar
genomic profiles despite the different mechanisms associ-
ated with their actions. Interestingly, these anxiolytics and
the antidepressant imipramine share a common expression
profile and imipramine can act efficiently to reduce anxiety
[57]. On the other hand, the molecular profile of mianserin
differs markedly from that of imipramine while being simi-
lar to that of the atypical antipsychotics clozapine and ris-
peridone; this may reflect the fact that all of these drugs
can modulate serotonergic activity. The potential utility of
the presently-described approach to distinguish between
the two classes of antipsychotics is further illustrated by the
finding that the typical antipsychotic haloperidol has a
similar molecular profile to that of psychostimulant drugs.
This most likely results from the propensity of all these
drugs to upregulate activity-dependent genes in the stri-
atum. It is important to note, however, that haloperidol and
psychostimulants induce these genes in different neuronal
populations and via different pharmacological mechanisms
[58]. Another observation from the present analysis is that
drugs which trigger large increases in striatal dopamine and
norepinephrine levels induce similar expression profiles
(cocaine and methamphetamine, tranylcypromine).
In general, antidepressants proved to be highly heteroge-

neous with respect to activation of molecular networks.
This diversity reflects their diverse pharmacological and
neurobiological mechanisms of action [12], as well as sig-
nificant differences in the efficacy of individual compounds
in the treatment of different forms of depression [2,59].
Based on the present analysis of transcriptional profiles, it
would appear that mianserin would be a highly effective
treatment for psychotic depression, imipramine for anxiety-
depressive disorders, and tranylcypromine for depression
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associated with anhedonia. The broad gene expression pro-
file of fluoxetine indicates that it would be a suitable first-
line treatment [60].
The prediction of drug properties based on the pattern

of gene expression alterations need not exactly corres-
pond to the therapeutic profile. To form multidimen-
sional profile of a drug or novel psychoactive compound
the results of molecular analysis should be combined
with binding profile and behavioral response [61,62].
The pharmacological mechanisms of action of the tricyc-
lic drug tianeptine, indicated for depression, are not fully
understood. The present genomic profiling approach ap-
pears to have the potential to identify neuronal targets
for drugs with unknown mechanisms of action as well
as for experimental compounds [63-65]. Until now,
tianeptine has been thought to act by either enhancing
serotonin reuptake, modulating glutamatergic transmis-
sion and/or counteracting maladaptive stress-induced
neuroplasticity [24,66]; however, none of these mecha-
nisms has been fully validated. The present study re-
vealed that the transcriptional effects of tianeptine may
result from a blockade of norepinephrine, serotonin and
dopamine transporters; in this respect, tianpetine shares
some of the dopaminergic and noradrenergic properties
with its predecessor amineptine [67]. Supporting the
view that tianeptine acts primarily by modulating
monoaminergic function are clinical findings that the
tianeptine, has moderate addictive potential comparable
to diazepam [68] as well as the presently observed
pattern of tianeptine-induced expression of activity-
dependent genes. Importantly, the lack of tianeptine-
binding molecular targets suggests that the drug indirectly
influences monoamine levels [69]. The transcriptional pro-
file of tianeptine is not necessarily in conflict with the pre-
viously proposed mechanisms of its action as positive
effects of tianeptine on both glutamatergic transmission
and neuroplasticity might be indirect. However, our results
suggest a change in tianeptine status from a drug acting
through unknown mechanisms to an antidepressant with
remarkable ability to modulate all three monoamine sys-
tems. Compounds with such activity profile have been re-
cently proposed as likely to form the basis for the
development of the next generation of antidepressant
drugs [70].

Conclusions
Psychotropic drugs conventionally classified as antidepres-
sants, antipsychotics, anxiolytics, psychostimulants and opi-
oids regulate expression of three major gene expression
networks implicated in the control of neuronal signaling,
brain metabolism and organization of cell projections. The
patterns of drug-induced gene networks revealed here offer
new valuable markers of pharmacological activation of di-
verse neurobiological processes and systems. In particular,
the present study provides novel insights into the mecha-
nisms through which tianeptine might exert its antidepres-
sant action.

Methods
Animals
Adult male (8 to 10 weeks old) C57BL/6 J inbred mice
(Jackson Laboratory, Bar Harbor, ME, USA) were
housed 6 to 10 per cage under a 12-h dark/light cycle
with free access to food and water. Animals weighing 20
to 30 g were used throughout the experiments. The ani-
mal protocols were approved by the local Bioethics
Commission at the Institute of Pharmacology PAS.

Drug treatment
Mice were injected i.p. (vol. 10 ml/kg) with drugs listed
in Table 1. Then animals were sacrificed by decapitation
1, 2, 4 or 8 h after a single injection along with the ap-
propriate vehicle and naïve control groups (6 animals
per each drug-treated and control group). Risperidone,
haloperidol, clozapine and diazepam were suspended in
1% Tween 80 solution (Sigma-Aldrich, St. Louis, MO,
USA); other drugs were dissolved in saline. The effective
doses of psychotropic drugs were based on the literature,
particular attention being payed to their pharmacological
effects in C57BL/6 J mice [71-79]. The doses were se-
lected to provide reasonable comparison of drugs effects
on the molecular level.

Tissue collection and RNA isolation
Samples containing the rostral part of the caudate puta-
men and the nucleus accumbens, referred to hereafter as
the striatum, were collected. The dissection procedure
was performed as previously described [80]. In addition,
tissue samples containing frontal cortex, amygdalae and
hippocampus were frozen in order to allow future exper-
iments. Tissue samples were placed in RNAlater reagent
(Qiagen Inc., Valencia, CA, USA) and preserved at −70°C.
Samples were homogenized in 1 ml Trizol reagent
(Invitrogen, Carlsbad, CA, USA). RNA was isolated fol-
lowing the manufacturer’s protocol and further purified
using the RNeasy Mini Kit (Qiagen Inc.). The total RNA
concentration was measured using a ND-1000 Spectrom-
eter (NanoDrop Technologies Inc., Montchanin, DE,
USA). RNA quality was determined using an Agilent
Bioanalyzer 2100 (Agilent, Palo Alto, CA, USA).

Microarray hybridization
A starting amount of 200 ng high-quality total RNA
(pooled 1:1 from two animals) was used to generate
cDNA and cRNA with the Illumina TotalPrep RNA
Amplification Kit (Illumina Inc., San Diego, CA, USA).
The obtained cDNA served as a template for in vitro
transcription with T7 RNA polymerase and biotin UTP
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to generate multiple copies of biotinylated cRNA. Each
cRNA sample (1.5 μg) was hybridized overnight to
MouseWG-6 BeadChip array (Illumina); subsequently,
chips were washed, dried and scanned with the
BeadArray Reader (Illumina). Raw microarray data were
generated using BeadStudio v3.0 (Illumina). A total of
108 Illumina MouseWG-6 v1.1 and 216 Illumina
MouseWG-6 v2 microarrays were used (three independ-
ent arrays per group). Samples from 2 mice were pooled
per microarray, 3 biological replicates were used per
time-point and 12 arrays per each drug. To provide an
overall appropriately balanced dataset, treatment group
samples were distributed between array plates and
hybridization batches.

Microarray data analysis
Analysis and quality control of 324 microarrays were
performed using BeadArray R package v1.10.0. After
background subtraction, data was normalized using
quantile normalization and then log2-transformed. Re-
sults were standardized to reduce the effect of hybridiza-
tion batches using z-score transformation. All the
experiments were planned and performed to allow direct
comparison of a relatively large number of psychoactive
drugs. Gene cross-annotation between the two versions
of Illumina microarrays was performed automatically.
All statistical analyses were performed in R software ver-

sion 2.11.1 [81]. There were no significant differences in
mRNA abundance levels between the batches of vehicle-
treated animals (saline as well as Tween 80) after correc-
tion for multiple testing. Therefore, for drug comparison
all control groups were combined together. Two-way
ANOVA with fixed effects for drug factor (df = 19), time
factor (df = 3) and interaction (df = 57) was followed by
appropriate correction for multiple testing (using the
Bonferroni or Benjamini-Hochberg procedures).
The genes2mind gene selection score (implemented

on www.genes2mind.org) was computed as follows:

score ¼ 10 � ‐log2pij
� � � log2 foldij þ 1

� � � foldmeani
� �

foldsdi

The variables described: i - drug, j – time-point, p - P
value obtained from Student’s t test, fold - fold of change
compared to saline control, foldmean - mean fold
change from the four experimental time-points and
foldsd - standard deviation of fold values from the four
time-points. The data integration system was based on
MySQL in the data layer, Java in the logic layer and
AJAX (GWT) in the presentation layer. Published
databases [18,19,82] were used to check cell-type
enrichment, mRNA half-life and to control for over-
representation of TFBSs of genes [18,19,82]. The func-
tional annotation analysis tool DAVID 2008 was used to
identify over-represented ontologic groups among the
gene expression patterns [83]. The list of transcripts rep-
resented on the Illumina Mouse WG-6 microarray was
used as a background list. Over-represented GO terms
were defined as having at least three transcripts and
P < 0.05 under Fisher’s exact test. The automated func-
tional profiling of drug-regulated genes was performed
using the Pathways-Express online tool with default pa-
rameters [84].

Identification of co-expressed gene networks
Spearman correlations were calculated for all pairs of gene
expression profiles. A co-expression tree that grouped
transcripts with the most similar expression profiles was
built using correlation coefficients and a minimal span-
ning tree algorithm. Visual representation of the data was
obtained using the sfdp algorithm from the graphviz R li-
brary. Clusters of co-expressed genes were identified using
the single-linkage clustering method. Walk-length on the
co-expression tree (number of edges separating corre-
sponding transcripts) was used as the distance metric for
clustering. The top 300 drug-regulated transcripts were
selected (at genes2mind score > 1.8) for clustering. An ar-
bitrary cutoff value (internode distance = 4) was selected
to dissect major drug-inducible gene expression networks.

Model-based inference of pharmacological mechanisms
The pharmacological mechanisms underlying the ob-
served gene expression alterations were transformed into
a linear model. Transcriptional effects were modeled as
a product of two factors, as follows:

Etranscript ¼
X

mech

Atranscript
mech ⋅Bmech

drug

Variable A described the sensitivity of transcript abun-
dance to activation levels of a given pharmacological
mechanism. The strength of drug-target interaction was
represented by the binding parameter B. Its values were
based on binding constants found in the PDSP Ki data-
base [25]. The binding matrix contained data on 14
drugs that act through at least one of the 13 pharmaco-
logical targets. Together with experimental expression
levels, the binding data allowed for the estimation of
sensitivity parameters A through a least squares fit. The
theoretical model was used to infer the possible mecha-
nisms of tianeptine action. The response matrix A was
reduced by finding the 50 most sensitive transcripts for
each tested pharmacological mechanism. After removal
of duplicates, 350 transcripts were selected for further
analysis and their responses to tianeptine were repre-
sented by expression vector E'. Together with reduced
response matrix A', E' was used in a least squares fit to
theoretically predicted tianeptine-induced activation of

http://www.genes2mind.org
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pharmacological targets. The accuracy of the model was
tested by prediction of tranylcypromine mechanism of
action (Additional file 9).

In situ hybridization
The frozen brains were cut into 12 μm-thick coronal
sections on a cryostat microtome CM 3050S (Leica
Microsystems, Germany), and the sections were thaw-
mounted on gelatin-chrome alum-coated slides and
processed for in situ hybridization. The hybridization
procedure was performed as previously described [85].
Briefly, the sections were fixed with 4% paraformalde-
hyde, washed in PBS and acetylated by incubation with
0.25% acetic anhydrite (in 0.1 M triethanolamine and
0.9% sodium chloride). The sections were dehydrated
using increasing concentrations of ethanol (70 to 100%),
treated with chloroform for 5 minutes and rehydrated
with decreasing concentrations of ethanol. The sections
were hybridized for 15 h at 37°C with oligonucleotide
probes complementary to Arc and Egr1 cDNA. The
probes were labeled with 35S-dATP by the 3'-tailing re-
action using terminal transferase (MBI Fermentas,
Vilnius, Lithuania). After hybridization, the slices were
washed three times for 20 minutes with 1 × SSC/50%
formamide at 40°C and twice for 50 minutes with
1 × SSC at room temperature. Then, the slices were
dried and exposed to phosphorimager plates (Fujifilm,
Tokyo, Japan) for 5 days. The hybridization signal was
digitized using a Fujifilm BAS-5000 phosphorimager and
Image Reader software (Fujifilm).

Conditioned place preference
CPP tests were performed using an unbiased procedure
in a three-arm apparatus. The experiment consisted of
the following phases separated by 24 h: pre-conditioning
test (day 0), conditioning with a tianeptine dose of
20 mg/kg (days 1, 3, 5), conditioning with saline (days 2,
4, 6) and post-conditioning test (day 7). The CPP score
was defined as the time spent in the drug-paired com-
partment on day 7 minus the time spent in the same
compartment in the preconditioning phase on day 0.
The scores were expressed as means with the standard
error of the mean.

URLs
Bioinformatic platforms: genes2mind, http://genes2mind.
org; cREMaG database, http://cremag.org; PDSP Ki data-
base, http://pdsp.med.unc.edu.

Accession codes
Microarray data are available in the NCBI Gene Expres-
sion Omnibus (GEO) under accession numbers GEO:
GSE15774, GSE48951 and GSE48954.
Additional files

Additional file 1: A table listing the results of the two-way ANOVA
for drug treatment factor (followed by Bonferroni or FDR
corrections for multiple tests). For drug-regulated transcripts
genes2mind scores and gene network associations are provided. The
second sheet contains lists of the genes from the three major gene
expression networks α, β and γ.

Additional file 2: ANOVA results of gene expression profiling of
drug effects in mouse striatum. A figure presenting the relationship
between the number of true positive results and the proportion of false
positives for drug factor in ANOVA.

Additional file 3: A table listing the comparison of transcriptional
effects of the tested psychotropic drugs. The table contains the
number of regulated transcripts (genes2mind score >10) at each time-
point of the experiment (obtained using the genes2mind gene selection
module).

Additional file 4: A figure showing a minimal spanning tree of the
whole-transcriptome, based on correlation of gene expression
profiles. Each node represents one transcript (an example branch with 4
transcripts was presented on the right). The internode distance is
proportional to the Spearman correlation of the expression levels of two
transcripts. The top 300 drug-responsive genes are depicted by red color
(defined by genes2mind score using the four time-points).

Additional file 5: A figure showing hierarchical clustering of drug-
induced gene expression alterations in the mouse striatum.
Microarray results are shown as a heat map and include 872 transcripts
with a significance (FDR < 5%) obtained from two-way analysis of
variance of the drug factor. Colored rectangles represent transcript
abundance 1, 2, 4 and 8 h after injection of the drug indicated above.
The intensity of the color is proportional to the standardized values from
each microarray. Drug-responsive gene networks were denoted on the
right.

Additional file 6: A table listing the complete results of the GO
analysis presented in the manuscript. The analyses were performed
on lists of genes that correspond to networks α, β and γ (results are
presented in separate sheets). The analyzed genes are listed in Additional
file 1.

Additional file 7: A table listing the complete results of the
canonical pathways analysis presented in the manuscript. The
analyses were performed on extended (FDR < 5%) lists of genes that
correspond to networks α, β and γ (results are presented in separate
sheets). The analyzed genes are listed in Additional file 1.

Additional file 8: A figure showing examples of canonical biological
pathways regulated by psychotropic drugs. The analyses were
performed on extended (FDR < 5%) lists of genes that correspond to
networks patterns α, β and γ. The pathways were created based on KEGG
database using the Pathways-Express online tool. Drug-responsive genes
were indicated using yellow color.

Additional file 9: The mechanisms of tranylcypromine action
predicted from expression profiles of the transcripts most sensitive
to the analyzed pharmacological mechanisms (for details please
see Methods section).
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