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ABSTRACT: The synthesis of cyclic amphiphilic graft
copolymers with a hydrophobic polycarbonate backbone and
hydrophilic poly(N-acryloylmorpholine) (PNAM) side arms
via a combination of ring-opening polymerization (ROP),
cyclization via copper-catalyzed azide−alkyne cycloaddition
(CuAAC), and reversible addition−fragmentation chain trans-
fer (RAFT) polymerization is reported. The ability of these
cyclic graft copolymers to form unimolecular micelles in water
is explored using a combination of light scattering, small-angle
X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryoTEM) analyses, where particle size was found to
increase with increasing PNAM arm length. Further analysis revealed differences in the solution conformations, loading
capabilities, and morphologies of the cyclic graft copolymers in comparison to equivalent linear graft copolymer unimolecular
micelle analogues. Furthermore, the cyclic and linear graft copolymers were found to exhibit significantly different cloud point
temperatures. This study highlights how subtle changes in polymer architecture (linear graft copolymer versus cyclic graft
copolymer) can dramatically influence a polymer’s nanostructure and its properties.

■ INTRODUCTION

The function and properties of polymers are inherently linked
to their structure; therefore, through variation of polymer
composition and architecture a wide array of applications can
be targeted.1−3 Among the polymer architectures now available
in the polymer chemist’s toolbox are star,4−6 branched,7−10 and
dendritic11−13 structures as well as single chain polymer
nanoparticles (SCNPs),14−17 all of which have found
application as unimolecular micelles for potential use as drug
delivery vehicles.10,13,18−20 These unimolecular particles possess
advantages over conventional polymeric micelles prepared via
the self-assembly of amphiphilic block copolymers,21 where as a
consequence of their unimolecular nature such particles do not
display a critical micelle concentration, cannot disassemble, and
demonstrate enhanced robustness toward variations in temper-
ature, pH, and ionic strength. Furthermore, unimolecular
micelles display a narrow particle size distribution, where the
size and shape of the particles can be precisely controlled
during polymer synthesis which allows for facile targeting of
specific particle properties.
Polymers that possess a graft structure can also be utilized as

unimolecular micelles, where the properties of these graft
copolymers can be tailored via the systematic variation of arm
length, backbone length, and grafting density, leading to an
extremely versatile range of nanostructures.5,22−25 Graft
copolymers have been found to exhibit distinct self-assembly
behavior in comparison to the conventional self-assembly of
linear block copolymers; however, whereas the self-assembly of
linear polymers is an extensive field of research,21 the self-

assembly of graft copolymers is relatively unexplored. Graft
copolymers composed of a hydrophobic backbone and
hydrophilic side arms are reported to form either unimolecular
or multimolecular micelles upon dissolution in a selective
solvent.26−30 In a graft copolymer unimolecular micelle, the
hydrophobic backbone collapses and is shielded from
unfavorable solvent interactions by the hydrophilic side arms,
resulting in a core−shell structure. Alternatively, graft
copolymers self-assemble into loose micellar aggregates,
where the aggregation number is typically low as a consequence
of the increased number of hydrophilic blocks per hydrophobic
block in comparison to assemblies composed of linear block
copolymers. Whether graft copolymers self-assemble into
unimolecular or multimolecular micelles is dependent on
grafting density and the length and composition of the side
arms and backbone, as these factors determine the interfacial
tension between the hydrophobic backbone and solvated side
arms and the repulsive interactions between side arms.
Another class of polymers that have received increased

attention as a consequence of their architecture are those that
possess a cyclic topology,31−33 where cyclic polymers have been
shown to exhibit some unique physical properties in
comparison to their linear counterparts.34−36 For example,
cyclic polymers possess smaller hydrodynamic volumes and
radii of gyration than analogous linear polymers as a result of
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the more confined conformation of cyclic polymers. More
recently, cyclic polymers have been shown to demonstrate
some advantages over linear polymers when considered as
potential drug or gene delivery vehicles. Grayson and co-
workers reported that cyclic poly(ethylene imine) (PEI)
displayed significantly higher transfection efficiencies in
comparison to linear PEI,37 while Yamamoto and Tezuka
found that micelles assembled from cyclic diblock copolymers
displayed greater robustness toward increasing temperature and
ionic strength when compared to micelles composed of
analogous linear triblock copolymers.38,39 Furthermore, cyclic
graft copolymers (graft copolymers that possess a cyclic
backbone and linear side arms) have shown promise as carriers
for tumor-targeted drug delivery.40 Szoka and co-workers
reported that poly(ethylene glycol) (PEG)-grafted cyclic
copolymers display longer in vivo circulation times and higher
tumor accumulation than equivalent PEG-grafted linear
analogues.41,42 Meanwhile, Pun and co-workers reported that
folate-labeled poly(oligo ethylene glycol methacrylate) (PO-
EGMA)-grafted cyclic copolymers display higher levels of
specific targeted uptake into cancer cells compared to
equivalent folate-labeled linear graft copolymers, suggesting
that cyclic and linear graft copolymers follow different cell
internalization mechanisms.43

Differences between the thermoresponsive behavior of cyclic
and linear polymers that exhibit lower critical solution
temperatures (LCSTs) have also been reported. However,
there is some inconsistency as to the effect of cyclization on
temperature response with some studies reporting that cyclic
polymers display lower cloud point temperatures than
equivalent linear polymers,44−47 whereas other groups report
that cloud point temperatures increase upon cyclization.48−51

Moreover, the difference between cloud point temperatures of
equivalent linear and cyclic polymers is only a few degrees (1−
6 °C). In contrast, the difference in cloud point temperature of
micellar assemblies composed of either linear or cyclic block

copolymers is significantly larger. Yamamoto and Tezuka found
that micelles assembled from cyclic poly(butyl acrylate)-b-
poly(ethylene oxide) (PBA12-b-PEO59) displayed a cloud point
temperature 40 °C higher than micelles prepared from linear
PBA6-b-PEO59-b-PBA6, despite both assemblies displaying
comparable values of hydrodynamic diameter (Dh).

38 This
large difference in cloud point temperature was attributed to
the ability of the linear triblock copolymer to form intermicelle
bridges resulting in particle agglomeration at lower temper-
atures, whereas the cyclic diblock copolymer micelles can only
agglomerate through dehydration.
Following these reports, we wanted to explore the effect of

cyclization on the solution properties and thermoresponsive
behavior of unimolecular micelles prepared from amphiphilic
graft copolymers. We anticipate that unimolecular micelles
prepared from graft copolymers with a cyclic backbone will
exhibit unique properties in comparison to those with a linear
backbone. Our group has previously reported the synthesis of
amphiphilic linear graft copolymers via a combination of ring-
opening polymerization (ROP) and reversible addition−
fragmentation chain transfer (RAFT) polymerization.52 A
novel RAFT chain transfer agent (CTA) functional cyclic
carbonate monomer (1) was synthesized and polymerized via
ROP before subsequent RAFT polymerization of N-isopropyl-
acrylamide (NIPAM) to yield well-defined polycarbonate-g-
poly(NIPAM) copolymers with a hydrophobic backbone and
thermoresponsive hydrophilic side arms. In this article we
expand this approach to prepare a range of thermoresponsive
amphiphilic cyclic graft copolymers through a combination of
ROP, cyclization via the copper-catalyzed azide−alkyne cyclo-
addition (CuAAC) “click” reaction, and RAFT polymerization.
The aqueous solution properties of these amphiphilic cyclic
graft copolymers are explored via laser light scattering, SAXS,
and turbidimetry and compared to those of equivalent linear
graft copolymers in order to ascertain the effect of polymer

Scheme 1. Synthesis of RAFT CTA-Functional Cyclic Polycarbonate Copolymers
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backbone architecture on thermoresponsive behavior and the
use of amphiphilic graft copolymers as unimolecular micelles.

■ RESULTS

Synthesis of Cyclic Graft Copolymers. Cyclic graft
copolymers with a hydrophobic polycarbonate backbone and
hydrophilic side arms were prepared through a combination of
ring-closure and “grafting-from” approaches. Linear precursor
polycarbonates were prepared via ROP and subsequently end-
group modified before bimolecular ring-closure via CuAAC
“click” chemistry (Scheme 1). Polymerization from RAFT CTA
groups located on the cyclic polycarbonate backbone yielded
cyclic graft copolymers.
Linear precursor polymers containing RAFT CTA function-

alities were synthesized following our previously reported
method for the organocatalyzed ring-opening copolymerization
of the RAFT CTA-functional cyclic carbonate monomer 1 and
ethyl-functional cyclic carbonate monomer, 5-methyl-5-ethox-
ycarbonyl-1,3-dioxan-2-one, 2 (Scheme 1).52 Polymerizations
were conducted in dichloromethane at room temperature using
5 mol% of 1,8-diazabicycloundec-7-ene (DBU) as the polymer-
ization catalyst and 1,4-butanediol as the polymerization
initiator to yield hydroxyl-terminated telechelic polycarbonates
(initial monomer-to-initiator ratio = 25, [total monomer] =
0.25 M). The comonomer feed ratio (RAFT CTA-functional

monomer 1:ethyl-functional monomer 2) was varied to target
polycarbonates with 100% (1:0), 50% (1:1), and 20% (1:4)
RAFT CTA functionality to obtain polymers P1, P2, and P3,
respectively. Size exclusion chromatography (SEC) analysis of
the resulting polycarbonate copolymers revealed monomodal
molecular weight distributions with low dispersity values (ĐM ≤
1.2) (Figure S1), while 1H NMR spectroscopy revealed
resonances that correspond to both the RAFT CTA and
ethyl functionalities (Figure S2). Integration of these
resonances allowed determination of the obtained incorpo-
ration of RAFT CTA functionality and revealed a strong
agreement between the monomer feed ratio and the final
copolymer composition. Furthermore, resonances that corre-
spond to the CH2 groups of the 1,4-butanediol initiating group
at δ = 4.10 and 1.71 ppm were observed by 1H NMR
spectroscopy. Matrix-assisted laser desorption ionization time-
of-flight mass spectrometry (MALDI-ToF MS) of polymer P1
with 100% RAFT CTA functionality revealed a single sodium-
charged distribution with regular spacing equal to the molecular
weight of the RAFT CTA-functional monomer repeat unit (m/
z = 400) and a 1,4-butanediol initiating group, confirming the
excellent end-group fidelity of the polycarbonate and controlled
nature of the polymerization (Table S1 and Figure S3).
The hydroxyl end-groups of the telechelic linear polycar-

bonates were transformed into alkyne functionalities via

Figure 1. Characterization of alkyne-functional linear polycarbonate copolymer P2alkyne and cyclic polycarbonate copolymer P2cyclic: (A) expansion
of 1H NMR spectra (400 MHz, CDCl3, δ = 3.3−1.9 ppm) of P2alkyne and P2cyclic; (B) FT-IR spectra of P2alkyne (black) and P2cyclic (red), (inset)
expansion of FT-IR spectra (3400−3200 cm−1) highlighting loss of alkyne functionality; (C) size exclusion chromatograms for P2alkyne (black, Mn =
7.4 kDa, ĐM = 1.17) and P2cyclic (red, Mn = 6.2 kDa, ĐM = 1.16) in CHCl3 with 0.5% NEt3.
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esterification with an excess of 4-pentynoic anhydride, where
quantitative functionalization was confirmed by 1H NMR
spectroscopy, IR spectroscopy, and MALDI-ToF MS. Compar-
ison of the 1H NMR spectra of the telechelic polycarbonates
before and after functionalization revealed the appearance of a
triplet resonance at δ = 1.97 ppm that corresponds to the
terminal proton of the alkyne functionality and new resonances
at δ = 2.58−2.37 ppm that correspond to the CH2 groups
adjacent to the alkyne moiety (Figure S4). The complete
downfield shift of the resonance at δ = 3.70 ppm that
corresponds to the CH2 groups adjacent to the terminal
hydroxyl functionalities was also observed. Examination of the
IR spectra of the alkyne-functional telechelic polycarbonates
showed the complete loss of the broad peak at 3540 cm−1 that
corresponds to the OH stretch of the hydroxyl end-groups and
the appearance of a new signal at 3290 cm−1 that corresponds
to the CH stretch of the alkyne functionality (Figure S5).
MALDI-ToF MS analysis of polymer P1alkyne further confirmed
the quantitative functionalization of end-groups, revealing a
single sodium charged distribution consistent with the
successful esterification of both hydroxyl groups, observed as
an increase in molecular weight of m/z = 161 kDa (Figure S6).
Furthermore, SEC analysis revealed that the molecular weight
distribution of the polycarbonate copolymers remained narrow
after end-group functionalization (Figure S7).
Cyclic RAFT CTA-functional polycarbonates were prepared

through bimolecular ring closure via the copper-catalyzed
cycloaddition of the alkyne-terminated telechelic polymers and
a disulfide-containing diazide linker, 3, which in turn was
prepared according to adapted literature procedures.53,54 To
ensure cyclization was favored over step-growth polymerization,
but also to reduce the quantity of solvent required, pseudo-high
dilution55 was used whereby a solution of linear precursor
polymer and difunctional linker was slowly added to the
catalyst solution via a syringe pump. A 100 mol excess of Cu(I)
catalyst per mole of polymer was also used to ensure rapid ring-
closure. Cyclization conditions were carefully optimized to
enable effective bimolecular ring-closure; strictly stoichiometric
quantities of diazide and difunctional alkyne polymer were
used. Specifically, an equimolar solution of difunctional alkyne-
terminated polycarbonate (1.0 mM) and diazide linker 3 in
toluene were added via syringe pump to a stirred solution of
Cu(I)Br (0.05 mM) and N,N,N′,N″,N″-pentamethyldiethylene-
triamine (PMDETA) (0.05 mM) at room temperature at a rate
of 0.3 mL h−1. After complete addition of the polymer and
diazide solution, the reaction was allowed to stir for a further 3
h. The copper catalyst was removed via washing with brine and
then stirring the polymer solution overnight in the presence of
CupriSorb beads. The polymer was isolated via precipitation
into petroleum ether 40−60 °C. It was found that variation of
these cyclization conditions, e.g., a faster rate of polymer and
diazide addition or reduced dilution of the polymer, diazide, or
catalyst solutions, resulted in significant polymer−polymer
coupling as observed by SEC analysis (Figure S8). It was
therefore concluded that high cyclization yields could only be
achieved when ring closure was performed specifically under
the optimized conditions.
A combination of characterization techniques were used to

confirm the successful cyclization of the RAFT CTA-functional
polycarbonates. 1H NMR spectroscopic analysis revealed the
complete disappearance of the resonances attributed to the
terminal proton of the alkyne functionality at δ = 1.97 ppm as
well as a shift in the resonances that correspond to the adjacent

CH2 groups from δ = 2.58−2.37 ppm to δ = 3.06−2.58 ppm
(Figure 1A and Figure S9). The appearance of resonances that
correspond to the successful incorporation of the diazide
disulfide linker were also observed, specifically the resonance at
δ = 3.19 ppm that corresponds to the CH2 groups adjacent to
the disulfide moiety. The preservation of the quartet and triplet
resonances at δ = 3.36 and 1.34 ppm, respectively, which
correspond to the ethyl group of the RAFT CTA functionality,
confirm that the RAFT CTA functionality was successfully
retained during the CuAAC cyclization reaction. However, the
1H NMR spectra of the cyclized polycarbonates did not show
the appearance of a resonance that corresponds to the proton
of the triazole ring (Figure S9). It was hypothesized that this
resonance was obscured by the aromatic signals at δ = 7.41−
7.19 ppm from the RAFT CTA functionality. Indeed, when a
cyclic polycarbonate was prepared from only ethyl-functional
repeat units, 1H NMR spectroscopy revealed the appearance of
a resonance at δ = 7.46 ppm that was attributed to the proton
of the triazole ring (Figure S10). Analysis of the cyclized
polymers by IR spectroscopy revealed the complete loss of
signal at 3290 cm−1 that corresponds to the CH stretch of the
terminal alkyne groups (Figure 1B). Furthermore, signals at ca.
2100 cm−1 which may correspond to azide functionality were
not observed by IR spectroscopy, which indicates that chain
blocking, where one polymer chain reacts with two diazide
linker molecules preventing cyclization, had not occurred.
Meanwhile, SEC analysis of the polycarbonates before and after
cyclization revealed a reduction in apparent molecular weight as
a consequence of the confined solution conformation of cyclic
polymers in comparison to linear polymers (Table S3, Figure
1C, and Figure S11). Narrow molecular weight distributions
and low dispersity values were also retained during ring closure,
and the absence of any high molecular weight polymer
impurities confirmed that polycondensation had not occurred.
Examination of the MALDI-ToF mass spectrum of polymer
P1cyclic provided further evidence of successful cyclization
(Figure 2). An increase in molecular weight of m/z = 204 Da
was observed after cyclization, consistent with the addition of
one equivalent of the diazide linker 3 per polymer chain.

Figure 2. MALDI-ToF mass spectrum of cyclic polycarbonate P1cyclic.
Spectrum collected in linear mode.
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To prepare amphiphilic cyclic graft copolymers, hydrophilic
poly(N-acryloylmorpholine) (PNAM) arms were grown from
the RAFT CTA groups located on the cyclic polycarbonate
backbone using similar conditions to those we previously
reported for the preparation of linear graft copolymers (Scheme
2).52 RAFT polymerizations were conducted at 65 °C in
chloroform, with [starting polymer] = 3.0 mM and using 2,2′-
azobis(isobutyronitrile) (AIBN) as the radical initiator. A ratio
of [CTA]:[AIBN] = 1:0.1 was used, where the average number
of CTA groups per polymer chain was determined by 1H NMR
spectroscopy. The growth of PNAM arms from polymer P2cyclic
(50% RAFT CTA functionality) was initially investigated using
100 equiv. of NAM per CTA unit. Following the polymer-
ization SEC analysis revealed the presence of linear PNAM
homopolymer impurities and the occurrence of graft−graft
coupling at higher monomer conversions (>50%), as was also
observed for the preparation of linear graft copolymers in our
previous report (Figure S12).52 Graft−graft coupling was
eliminated by stopping polymerizations at low monomer
conversion (<40%), and linear PNAM homopolymer con-
taminants were partially removed via dialysis to afford relatively
well-defined amphiphilic cyclic graft copolymers (ĐM < 1.6). A
range of cyclic-polycarbonate-g-PNAM copolymers with differ-
ent PNAM arm lengths, from ca. DP 30 to DP 110, were
prepared by varying the equivalents of NAM used during
polymerization. The molecular weights of the resulting graft
copolymers were observed to increase, from Mn = 38.9 to 92.9
kDa, as PNAM arm length as evidenced by SEC analysis

(Figure 3 and Table 1). Analysis of the cyclic-polycarbonate-g-
PNAM copolymers by 1H NMR spectroscopy revealed
resonances that correspond to both the PNAM arms and
cyclic polycarbonate backbonemost notably the resonances
at δ = 3.63 and 3.31 ppm attributed to the CH2 groups of the
morpholine ring and the resonances at δ = 4.27 and 1.24 ppm
that correspond to the CH2 and CH3 groups of the
polycarbonate backbone, respectively (Figure S13).

Unimolecular Micelle Formation. Following the success-
ful synthesis of a range of amphiphilic cyclic graft copolymers
their potential to form unimolecular micelles was investigated
using multiple complementary characterization techniques:
dynamic light scattering (DLS), static light scattering (SLS),
small-angle X-ray scattering (SAXS), and cryogenic trans-
mission electron microscopy (cryoTEM) (Table 2).56 To allow
comparison of their solution properties with linear graft
copolymers, a range of linear-polycarbonate-g-PNAM copoly-
mers (P7−P9) of equivalent compositions and molecular
weights were also prepared by polymerization of NAM from
linear polycarbonate P2 (Table 1, Scheme 2, and Figure 3).
Cyclic and linear graft copolymers P4−P9 were all found to
directly disperse in 18.2 MΩ·cm water, a selective solvent for
the PNAM arms. We hypothesized that these amphiphilic graft
copolymers would adopt a unimolecular core−shell micellar
structure in aqueous solution to prevent unfavorable inter-
actions between the hydrophobic polycarbonate backbone and
the selective solvent for the NAM grafting block. 1H NMR
spectroscopic analysis of P4−P9 in D2O revealed that the

Scheme 2. Synthesis of Cyclic-Polycarbonate-g-PNAM Copolymers P4−P6 and Linear-Polycarbonate-g-PNAM Copolymers P7−
P9
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resonances that correspond to the CH2 and CH3 groups of the
polycarbonate backbone at δ = 4.27 and 1.24 ppm were
strongly attenuated, suggesting that the polycarbonate back-
bones of both the cyclic and linear graft copolymers are
confined in a hydrophobic core (Figure S14). In contrast, for
1H NMR spectra recorded in CDCl3 a good solvent for both
the polycarbonate backbone and PNAM sides arms these
resonances are clearly visible.
To determine whether confinement of the hydrophobic

polycarbonate backbone is caused by adoption of a
unimolecular core−shell structure or aggregation of the graft

copolymers, DLS analysis of P4−P9 was performed in both
18.2 MΩ·cm water, a selective solvent for the PNAM side arms,
and 1,4-dioxane, a good solvent for both the side arms and
polycarbonate backbone, at 4 mg mL−1. Similar values of
hydrodynamic diameter (Dh) were obtained in both solvents
for linear and cyclic graft copolymers (Dh = 7−12 nm), which
indicated that the graft copolymers remained unimolecularly
dispersed in water and did not assemble to form larger
structures (Table 2). Moreover, the dispersities of the particles
for both linear and cyclic graft copolymers in water were found
to be <0.3, which indicates that the particles were relatively
well-defined; however, a second population that corresponds to
a slow mode of relaxation was observed in the intensity profile
(Figures S15−S20). Further analysis of cyclic and linear graft
copolymers P6 and P9 with the longest PNAM arm length of
DP 110 by SLS also revealed two modes of relaxation. These
two modes were separated using REPES analysis57 where the
slow modes of relaxation were found to be negligible through
determination of the relative scattered intensities of the fast and
slow modes. Molecular weight (Mw) and aggregation number
(Nagg) were also determined via SLS analysis. Solutions of P6
and P9 were analyzed at a concentration of 4 mg mL−1 at
angles ranging from 30° to 150° in 18.2 MΩ cm water (Figures
S21 and S22). The obtained values of Mw for P6 and P9 were
found to be 89.6 and 76.9 kDa, respectively, and the
corresponding aggregation numbers (Nagg) were <1, providing
further evidence of the unimolecular conformations of the
cyclic and linear graft copolymers in water.
SAXS analysis of the cyclic and linear graft copolymers P4−

P9 in 18.2 MΩ cm water and 1,4-dioxane at 0.5 mg mL−1 was
also performed, and the radii of gyration (Rg) for the graft
copolymers was determined using the Guinier−Porod
model58,59 available in the NCNR Analysis Macros in Igor
Pro60 (Figure S23). In agreement with DLS and SLS analysis,
the linear and cyclic graft copolymers were not observed to
aggregate into higher order structures in water but remained
unimolecularly dispersed (Table 2). Rg values from SAXS
analysis were also determined using the AutoRg function
available in Primus61 to further confirm the values found using
the Guinier−Porod fit in Igor (Table S4). When aggregation in
the SAXS sample was not negligible (high turn of intensity at
low q values), the Rg value was obtained by a manual fit and not
an automatic fit to minimize the amount of aggregation in the
modeling.
For both the cyclic and linear graft copolymers DLS analysis

revealed that Dh increased with increasing PNAM arm length,
where polymers P4 and P7 with PNAM arm length of DP 30
displayed the smallest particle sizes (cyclic-P4 Dh = 7.6 nm,
linear-P7 Dh = 6.7 nm) and polymers P6 and P9 with PNAM
arm length of DP 110 displayed the largest particle sizes (cyclic-
P6 Dh = 12 nm, linear-P9 Dh = 13 nm), demonstrating how
particle size can be precisely tuned through variation of arm
length (Table 2). Furthermore, values of Rg determined by
SAXS analysis were found to increase for both cyclic and linear
graft copolymers as PNAM arm length was increased (Table 2
and Table S4).
The cyclic and linear graft copolymers with PNAM arm

lengths of DP 110, P6 and P9, respectively, were further
analyzed by cryoTEM at a concentration of 2 mg mL−1, which
revealed the presence of particles and provided further evidence
for the formation of micellar structures (Figure S24). The size
of the particles corresponded to particle dimensions
determined by light scattering and SAXS analysis suggesting

Figure 3. (top) Size exclusion chromatograms of cyclic-polycarbonate-
g-PNAM copolymers P4 (Mn = 26.6 kDa, ĐM = 1.51), P5 (Mn = 45.3
kDa, ĐM = 1.47), and P6 (Mn = 60.5 kDa, ĐM = 1.66. (bottom) Size
exclusion chromatograms of linear-polycarbonate-g-PNAM copoly-
mers P7 (Mn = 15.8 kDa, ĐM = 1.62), P8 (Mn = 28.6 kDa, ĐM = 1.53),
and P9 (Mn = 55.3 kDa, ĐM = 1.68), CHCl3 with 0.5% NEt3 as eluent
and polystyrene standards.

Table 1. Characterization of Cyclic and Linear Graft
Copolymers P4−P9

polymer structure
Mn(NMR)a

(kDa)
Mn(SEC)

b

(kDa)
Mp(SEC)

b

(kDa) ĐM
b

P4 cyclic-poly(211-co-
111-g-NAM32)

58.1 26.6 38.9 1.51

P5 cyclic-poly(211-co-
111-g-NAM50)

86.8 45.3 69.2 1.47

P6 cyclic-poly(211-co-
111-g-NAM112)

186 60.5 92.9 1.66

P7 linear-poly(211-co-
111-g-NAM28)

51.3 15.8 27.7 1.62

P8 linear-poly(211-co-
111-g-NAM47)

81.6 28.6 46.9 1.53

P9 linear-poly(211-co-
111-g-NAM112)

185 55.3 93.0 1.68

aDetermined by 1H NMR spectroscopy. bDetermined by SEC analysis
in CHCl3 with 0.5% NEt3 using polystyrene standards.
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that both the PNAM arms and polycarbonate core were visible,
where cyclic graft copolymer P6 displayed an average particle
diameter (Dav) of 17.7 ± 6 nm and Dav = 12.9 ± 3 nm for linear
graft copolymer P9. Particles of cyclic graft copolymer P6
appeared to be clustered together, which may explain the
aggregation observed at low q values for this polymer during
SAXS analysis.
Effect of Backbone Architecture on Unimolecular

Micelle Conformation. Investigation of the solution proper-
ties of graft copolymers P4−P9 revealed distinct differences
between those with a cyclic polycarbonate backbone and those
with a linear polycarbonate backbone. Whereas the nongrafted
cyclic polycarbonates (P1cyclic−P3cyclic) displayed lower appa-
rent molecular weights as determined by SEC analysis than the
equivalent nongrafted linear polycarbonates (P1−P3) (a
phenomena which is well-known and occurs as a consequence
of the reduced conformational freedom of cyclic polymers)
(Figure S10 and Table S3), the cyclic and linear graft
copolymers with DP 30 and DP 50 PNAM arm lengths were
found to exhibit the opposite trend. Cyclic graft copolymers P4
and P5 displayed a greater apparent molecular weight than the
equivalent linear graft copolymers (P7 and P8) (Figure 4 and
Table 1), suggesting that these cyclic graft copolymers possess a
larger hydrodynamic volume than the equivalent linear graft
copolymers. Meanwhile, the cyclic and linear graft copolymers
with the longest PNAM arm length (P6 and P9) were found to
display very similar values of apparent molecular weight. This
trend in hydrodynamic volume between cyclic and linear graft
copolymers was also observed by DLS and SAXS analysis,
where values of Dh and Rg were observed to be larger for the
cyclic graft copolymers P4 and P5 in comparison to the linear
graft copolymers P7 and P8 in both water and 1,4-dioxane,
whereas cyclic and linear graft copolymers with PNAM arm
length of DP 110 (P6 and P9) displayed similar values of Dh
and Rg (Table 2).
The ability to load the hydrophobic polycarbonate core of

the graft copolymer unimolecular micelles was investigated to
determine whether the observed differences in hydrodynamic
volume between the cyclic and linear graft copolymers affected
their ability to uptake the hydrophobic dye Nile Red. Aqueous
solutions of cyclic and linear graft copolymers P4−P9 (1 mg
mL−1) were added to an excess of Nile Red and stirred for 16 h
before filtration to remove unsequestered dye. The polymer
solutions were analyzed by UV−vis spectroscopy which
revealed the appearance of a signal at λ = 550 nm that
corresponds to encapsulated Nile Red (Figure 4). The cyclic
graft copolymers were found to uptake more Nile Red than the
equivalent linear graft copolymers, suggesting either that the
volume of hydrophobic polycarbonate core of the cyclic graft

copolymers was larger than the linear graft copolymers or that
the hydrophobic core of the cyclic graft copolymers was more
accessible than the core of the linear graft copolymer particles.
Further differences between the solution conformations of

unimolecular micelles prepared from cyclic- and linear-
polycarbonate-g-PNAM copolymers were revealed by SAXS
analysis, where a range of complex structural models based on
shape form factors of scattering objects were used to model the
SAXS data. As a consequence of the graft structure of the
polymers and their deviation into a unimolecular core−shell
structure, Debye and polydisperse Gaussian coil models did not
provide a good fit for the data for either cyclic or linear graft
copolymers. For both cyclic and linear graft copolymers with
the shortest PNAM arm length (DP 30, P4 and P7) a spherical
micelle model with some dispersity on the radius (PolyCore-
Form model,62 Figure 5) was found to fit well. Further evidence
that graft copolymers P4 and P7 possessed a spherical
morphology was obtained by determination of a dimension
parameter, a measure of the anisotropy of the unimolecular

Table 2. DLS and SAXS Analysis of Cyclic and Linear Graft Copolymers P4−P9

polymer PNAM arm length Dh(H2O)
a (nm) Dh(dioxane)

a (nm) Rg(H2O)
b (nm) Rg(dioxane)

b (nm) dimension parameter (H2O)
c Rg

b/Rh
a (H2O)

cyclic-P4 30 7.6 ± 0.5 8.2 ± 0.1 3.3 ± 0.01 4.2 ± 0.01 0.18 0.87
linear-P7 30 6.7 ± 0.4 7.3 ± 0.5 2.7 ± 0.01 3.5 ± 0.01 0.20 0.81
cyclic-P5 50 10 ± 1 12 ± 1 4.3 ± 0.01 4.5 ± 0.01 0.65 0.86
linear-P8 50 7.7 ± 0.6 8.9 ± 0.4 3.5 ± 0.02 4.5 ± 0.05 0.16 0.91
cyclic-P6 110 12 ± 0.4 13 ± 0.5 5.7 ± 0.01 4.7 ± 0.17 0.29 0.95
linear-P9 110 13 ± 0.4 14 ± 0.3 5.8 ± 0.01 d 0.27 0.89

aDetermined by DLS analysis, concentration 4 mg mL−1. bDetermined by SAXS analysis using the Guinier−Porod model in Igor software,
concentration 0.5 mg mL−1. cDetermined by the Guinier−Porod model; 0 means spherical micelles, 1 is for rodlike micelles, and 2 is for platelike
micelles. The model is more accurate for hard micelles but can still give information for softer or looser assemblies. dPoor sample collection did not
provide raw data of good quality.

Figure 4. (left) Size exclusion chromatograms of cyclic-poly(211-co-111-
g-NAM32) (P4) and linear-poly(211-co-111-g-NAM28) (P7), CHCl3
with 0.5% NEt3 as eleunt. (right) UV−vis spectra of P4 and P7 in
18.2 MΩ cm (1 mg mL−1) after incubation with an excess of Nile Red.
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micelles, using the Guinier−Porod model (where a value of
zero is indicative of a spherical structure, a value of 1 indicates a
rodlike morphology, and a value of 2 indicates a platelike
structure). Both cyclic and linear graft copolymers with a
PNAM arm length of DP 30 displayed dimension parameters
close to zero (cyclic-P4 0.18, linear-P7 0.20), indicating these
unimolecular micelles possessed a spherical morphology.
When PNAM arm length was increased to DP 50, a deviation

between the solution conformation of the cyclic and linear graft
copolymer micelles was observed. Whereas linear graft
copolymer P8 was found to fit well to a spherical micelle
model, the equivalent cyclic graft copolymer P5 fitted well to a
cylindrical model with dispersity on the radius (Cypr model,58

Figure 5). This observation was further supported by
determination of the dimension parameters for P5 and P8;
while the linear graft copolymer with PNAM arm length of DP
50 possessed a dimension parameter close to zero (linear-P8
0.16), the dimension parameter of the cyclic graft copolymer
with DP 50 PNAM arm length (P5) was found to be 0.65,
suggestive of a more elongated structure. Moreover, the slope
of the SAXS data in the Porod region (q values between 0.006
and 0.02 Å−1) for P5 was determined to be −0.94, which is very
close to −1, the value expected for a rodlike morphology
(Figure S25 and Table S5).
A difference in solution morphology between cyclic and

linear graft copolymers with PNAM arm length of DP 110 (P6

and P9) was also observed by SAXS analysis; however, fitting
this data proved difficult. While uniform and core−shell models
of spherical and cylindrical micelles provided either no fit or a
very poor fit for cyclic graft copolymer P6, the best fit was
observed for a linear summation of a uniform cylindrical micelle
model and a model for polymeric chains in a good solvent
(Polydisperse Gaussian Coils).63,64 We have previously
demonstrated that a similar summation model (PolyCoreForm
model and Debye model for monodisperse polymer chains in a
good solvent) provides a good fit for particles in the presence of
a hydrated shell that could not be accounted for by fitting with
a core−shell model.65 Therefore, cyclic graft copolymer P6
behaves as a cylindrical micelle with a hydrated PNAM shell,
where the summation model provides a cylindrical length of
17.8 nm with a core radius of 5.0 nm and a shell thickness of
13.9 nm (Figure 5). Kratky plots were used to gain more
information on the morphology of P6 (Figure S26). The plot
for spheres (Iq2 vs q) exhibits a horizontal asymptote at high q
values, indicative of a spherical morphology in solution.
However, as there is almost no shape observed at low q values
for this Kratky plot, the possibility that the particles present a
different morphology cannot be discarded. Meanwhile, the
Kratky plot for rods (Iq2 vs q) also displays a horizontal
asymptote in combination with a well-defined symmetrical bell-
shaped curve at low q values, which strongly indicates the
presence of a rodlike morphology in solution. The bell-like

Figure 5. (top left) SAXS profiles and corresponding spherical micelle fits for polymers P4 and P7 in 18.2 MΩ cm water. Data for P7 have been
shifted vertically by a factor 10 for more clarity. (top right) SAXS profiles and corresponding cylindrical and spherical micelle fits for polymers P5
and P8 in 18.2 MΩ cm water. Data for P8 have been shifted vertically by a factor 20 for more clarity. (bottom left) SAXS profiles and corresponding
cylindrical and spherical micelle fits for polymers P6 and P9 in 18.2 MΩ cm water. Data for P9 have been shifted vertically by a factor 10 for more
clarity. (bottom right) Schematic representation of cyclic (P4−P6) and linear (P7−P9) graft copolymers adopting spherical and cylindrical
conformations.
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shape has a maximum intensity at q = 0.17 Å−1, which
corresponds to a repeat unit length of 37 nm. This correlates
with the longer dimension found for the form factor fit (radius
of core and thickness of shell of 18.9 nm, therefore a total
diameter of 37.8 nm). The low-intensity bell shape obtained for
the spherical Kratky plot has a maximum intensity at q = 0.028
Å−1, a repeat unit length of 22 nm, which is in good agreement
with the length provided by the form factor fit (17.8 nm). The
slope of the SAXS raw data in the Porod region for P6 was
found to be −0.81, which further indicates that a rodlike
morphology is more likely to be observed (Figure S25 and
Table S5).
In contrast, the linear graft copolymer with DP 110 PNAM

arms (P9) exhibits the behavior of a spherical micelle with a
hydrated shell. Again, the hydrated PNAM shell could not be
accounted for using the core−shell models available in Igor;
neither a spherical nor cylindrical model could fit the raw data
at high q values. Thus, a linear summation of a uniform
spherical model and a model for polymeric chains in a good
solvent (Polydisperse Gaussian Coils) was used to provide
further information on the sample (Figure 5). The summation
model afforded a core radius of 5.5 nm and a shell thickness of
11.4 nm. A linear summation with a cylindrical model was also
attempted but did not provide a good fit. Despite the
morphological differences observed between the cyclic and
linear graft copolymers with DP 110 PNAM arm length (P6
and P9) by SAXS analysis, the dimension parameters for P6
and P9 were found to be very similar (cyclic-P6 0.29, linear-P9
0.27) and suggestive of a slightly anisotropic morphology.
The ratio Rg/Rh is related to the spatial density distribution

of a polymer or particle in solution and gives an indication of
nanostructure morphology, where Rg/Rh = 0.775 indicates a
solid sphere or fully collapsed globule, Rg/Rh = 1 a hollow
sphere, Rg/Rh = 1.5 a random coil in a good solvent, and Rg/Rh
> 2 a rodlike chain or elongated structure. Values of Rg/Rh in
18.2 MΩ cm water were determined for the cyclic and linear
graft copolymers, where Rg and Rh were determined by SAXS
using the Guinier−Porod model and DLS analysis, respectively.
For all cyclic and linear graft copolymers (P4−P9), Rg/Rh
ranged from 0.81 to 0.95, indicating these unimolecular
micelles possessed a partially collapsed spherical structure
(Table 2). This result was slightly unexpected for cyclic graft
copolymers P5 and P6, where SAXS analysis suggested the
particles possessed a slightly elongated structure; however,
when Rg/Rh was determined using Rg from the Primus analysis,
values of 1.37 and 1.36 were obtained, consistent with
elongated structures (Table S4).
Comparison of the values of Rg determined by the Guinier−

Porod and AutoRg models can provide further insight into the
anisotropy of the graft copolymer particles. Whereas the
Guinier−Porod model provides a value of Rg that corresponds
to the cross section of the particle, the Primus model provides a
value of Rg that corresponds to an intermediate value between
the cross section and the length of the particle; for spherical
particles these values should be very similar, whereas for
anisotropic particles these two values of Rg will vary. For linear
graft copolymers P7−P9 (PNAM arm lengths of DP 30, 50,
and 110, respectively) and cyclic graft copolymer P4 (PNAM
arm length of DP 30) the values of Rg determined using the two
models in Igor and Primus were found to be in close agreement
(Table 2 and Table S4), providing further evidence that these
unimolecular particles possessed a spherical morphology.
Meanwhile, for cyclic graft copolymers P5 and P6 (PNAM

arm lengths of DP 50 and 110, respectively) values of Rg
determined using the two different models showed significant
variation (Table 2 and Table S4), providing further evidence
that these polymers adopted an elongated conformation in
solution in accordance with the aforementioned SAXS analyses.
Overall, detailed SAXS analysis of the cyclic and linear graft

copolymers in combination with DLS analysis revealed distinct
differences between their solution conformations. Both the
cyclic and linear graft copolymers adopt a unimolecular micellar
structure in aqueous solution, and for short PNAM arm lengths
these particles are observed to be spherical. However, as PNAM
arm length is increased from DP 30 to DP 110, the cyclic graft
copolymer particles adopt a more elongated morphology,
whereas the linear graft copolymers remain spherical, across the
polymer compositions studied.

Effect of Backbone Architecture on Thermorespon-
sive Properties. To determine whether the conformational
differences observed between the cyclic and linear graft
copolymers affect their macroscopic properties, the thermores-
ponsive behavior of graft copolymers P4−P9 was investigated.
In aqueous solution PNAM homopolymer does not exhibit an
observable cloud point; however, the phase transition temper-
atures of polymers that display LCSTs can be lowered through
the introduction of hydrophobicity to the polymer chain, as
such low molecular weight telechelic PNAM with hydrophobic
end-groups has been reported to display cloud point temper-
atures ranging from 45 to 80 °C, dependent on end-group
identity.66,67 Polymers with a grafted architecture are also
known to display lower phase transition temperatures as a
consequence of the close proximity of their side arms.68,69

Therefore, the grafted architecture of P4−P9 and the presence
of the hydrophobic polycarbonate backbone may lower the
LCST of the PNAM side arms, resulting in an observable cloud
point.
The cloud point temperatures of cyclic and linear graft

copolymers P4−P9 in 18.2 MΩ cm water were determined
spectrophotometrically by measuring the turbidity of the
solutions at 1 mg mL−1, with a 1 °C min−1 heating and
cooling rate. Large differences (ca. 20 °C) were observed
between the cloud point temperatures of the cyclic and linear
graft copolymers and as expected the cloud point temperatures
of both the cyclic and linear graft copolymers increased as
PNAM arm length and consequently the hydrophilic character
of the graft copolymers increased. For graft copolymers with a
PNAM arm length of DP 30, the linear graft copolymer P7
displayed a cloud point temperature of 47 °C, whereas the
cloud point temperature for the equivalent cyclic graft
copolymer P4 was significantly higher at 67 °C (Figure 6). A
small amount of hysteresis was observed during the cooling
cycles for both cyclic and linear graft copolymers. For graft
copolymers with PNAM arm lengths of DP 50 the cloud point
temperature of the linear graft copolymer P8 was found to be
74 °C; however, no cloud point was observed below 90 °C for
the equivalent cyclic graft copolymer P5 (Figure S27).
Meanwhile, no cloud points were observed below 90 °C for
both cyclic and linear graft copolymers with PNAM arm
lengths of DP 110 (P6 and P9). The dramatic difference in
cloud point temperatures between cyclic and linear graft
copolymers provides further evidence of their different solution
conformations and the effect this can have on their macroscopic
properties. Interestingly, this difference did not correlate to a
change in the morphology of the particles as graft copolymers
P4 and P7 with PNAM arm length DP 30, both observed to
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possess a similar spherical morphology by SAXS analysis,
exhibited very different cloud point temperatures. We therefore
propose that this large variation occurs as a consequence of the
larger hydrodynamic volumes of the cyclic graft copolymers in
comparison to the linear graft copolymers, resulting in a greater
number of interactions between the cyclic graft copolymers and
water; thus, dehydration and agglomeration occur at higher
temperatures. Furthermore, the differences observed in cloud
point temperature between the cyclic and linear graft
copolymers are significantly larger than cloud point temper-
ature differences observed between nongrafted cyclic and linear
polymers reported previously in the literature.44−51 This
difference may result from the relatively large molecular
weights of the polymers in this work compared to previous
studies, therefore emphasizing differences in cloud point
temperature, and in contrast to previous work this
unprecedented difference in cloud point temperature allows
us to observe the definitive effect of cyclization on temperature
response for this system.
Solutions of cyclic graft copolymer P4 and linear graft

copolymer P7 were mixed together in different ratios (50:50
and 90:10 P4:P7) in an attempt to tune cloud point
temperature.70 The resulting solutions were found to exhibit
a single cloud point transition indicating that the cyclic and
linear graft copolymers displayed cooperative thermoresponsive
behavior. Interestingly, the resulting cloud point temperatures

of the mixtures were not proportional to the ratio of each
polymer. For the 50:50 mixture the cloud point temperature
was 49 °C, very close to that of pure linear graft copolymer P7
(Figure 6). Meanwhile, the cloud point temperature for the
90:10 mixture was 58 °C approximately halfway between the
cloud point temperatures of pure cyclic and linear graft
copolymers, demonstrating how small quantities of linear graft
copolymer contaminants can dramatically affect the cloud point
temperature of the cyclic graft copolymer. Again, as a
consequence of the large and significant difference between
the cloud point temperatures of the cyclic and linear graft
copolymers the effect of mixing can be clearly observed. This is
in contrast to conventional nongrafted systems where the cloud
points of cyclic and linear polymers are very similar and the
effects of mixing would be less evident.

■ CONCLUSIONS

A series of amphiphilic cyclic graft copolymers with a
hydrophobic polycarbonate backbone and hydrophilic PNAM
side arms were prepared via a combination of ROP, CuAAC
cyclization, and RAFT polymerization. These cyclic graft
copolymers and their linear graft copolymer analogues were
demonstrated to form unimolecular micelles when dispersed in
water, where particles size could be precisely tuned by variation
of PNAM arm length. Detailed structural characterization of the
unimolecular assemblies revealed distinct differences between
the size, morphology, and properties of the cyclic and linear
graft copolymers. For short PNAM arm lengths, cyclic graft
copolymers exhibited larger particle dimensions and greater
loading capacities than the equivalent linear graft copolymers.
As PNAM arm length increased, differences between the
morphologies of cyclic and linear graft copolymer particles were
also observed; the cyclic graft copolymer particles switched
from a spherical to a cylindrical conformation as PNAM arm
length increased whereas the linear graft copolymer particles
remained spherical. Investigation of the thermoresponsive
properties of the graft copolymers also revealed a significant
variation in cloud point temperatures between cyclic and linear
polymers. This research highlights important differences
between cyclic and linear graft copolymers which affects their
behavior as unimolecular micelles and should be considered in
the future development of these materials as drug carriers.
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