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Tumor mutation burden (TMB) is a useful biomarker to predict prognosis and the efficacy

of immune checkpoint inhibitors (ICIs). In this study, we aimed to explore the prognostic

value of TMB and the potential association between TMB and immune infiltration

in lower-grade gliomas (LGGs). Somatic mutation and RNA-sequencing (RNA-seq)

data were downloaded from the Cancer Genome Atlas (TCGA) database. TMB was

calculated and patients were divided into high- and low-TMB groups. After performing

differential analysis between high- and low-risk groups, we identified six hub TMB and

immune-related genes that were correlated with overall survival in LGGs. Then, Gene Set

Enrichment Analysis was performed to screen significantly enriched GO terms between

the two groups. Moreover, an immune-related risk score system was developed by

LASSO Cox analysis based on the six hub genes and was validated with the Chinese

Glioma Genome Atlas dataset. Using the TIMER database, we further systematically

analyzed the relationships between mutants of the six hub genes and immune infiltration

levels, as well as the relationships between the immune-related risk score system and

the immune microenvironment in LGGs. The results showed that TMB was negatively

correlated with OS and high TMB might inhibit immune infiltration in LGGs. Furthermore,

the risk score system could effectively stratify patients into low- and high-risk groups in

both the training and validation datasets. Multivariate Cox analysis demonstrated that

TMB was not an independent prognostic factor, but the risk score was. Higher infiltration

of immune cells (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and

dendritic cells) and higher levels of immune checkpoints (PD-1, CTLA-4, LAG-3, and

TIM-3) were found in patients in the high-risk group. Finally, a novel nomogrammodel was

constructed and evaluated to estimate the overall survival of LGG patients. In summary,

our study provided new insights into immune infiltration in the tumor microenvironment

and immunotherapies for LGGs.
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INTRODUCTION

Gliomas are the most common malignant tumors in the
central nervous system (1). Traditionally, gliomas are divided
into grades I to IV, including astrocytoma, oligoastrocytoma,
oligodendroglioma, and glioblastoma (GBM) (2, 3). The phrase
“low-grade glioma,” which refers to grade I and II gliomas,
is being gradually replaced by term the “lower-grade glioma
(LGGs).” Lower-grade gliomas comprise WHO grades II and III
astrocytomas, oligodendrogliomas, and oligoastrocytomas (4, 5).
Some LGGs tend to progress to WHO grade IV GBM within
months, whereas others remain stable for years. The survival of
patients with LGGs ranging from 1 to 15 years is closely related
to therapeutic sensitivity (6). Because of high intraobserver and
interobserver variability, the histopathological classification of
LGGs has not been adequate for outcome prediction. As a result,
genetic classification is also very important for guiding clinical
decision-making (7). According to the updated classification
system by theWorld Health Organization (WHO) in 2016, LGGs
can be divided into three subtypes based on the mutation status
of isocitrate dehydrogenase 1 (IDH1) and the codeletion status
of 1p/19q, in which both tumor phenotypes and genotypes are
considered (8). Although this classification system of LGGs has
been adopted for molecular diagnosis, the known molecular
markers are currently very limited for explaining the prognosis
of LGGs. Thus, further exploration of the genetic mechanism
and identification of new biomarkers to predict the prognosis of
LGGs is important to develop precise treatments.

The tumor microenvironment plays an important role in
tumor growth and development. Tumor-infiltrating immune
cells are a critical part of the tumor microenvironment that
regulate tumor growth and invasion. These immune cells
include lymphocytes, natural killer (NK) cells, dendritic cells,
macrophages, neutrophils, and so on (9). With the deep
understanding of the tumor microenvironment, immunotherapy
recently has been developed to be a more effective treatment
for aggressive cancers (10–13). For example, multiple therapeutic
antibodies that block immune checkpoints, such as cytotoxic
T lymphocyte associated antigen 4 (CTLA4) and programmed
cell death protein 1 (PD1), showed great effects in treating
non-small-cell lung cancer, kidney cancer, and melanoma (14).
In addition to solid tumors, immune checkpoint inhibitors
(ICIs) have also shown remarkable efficacy in some refractory
hematologic malignancies, such as leukemia and lymphoma
(15). However, immunotherapy could only benefit a subset of
current cancer patients, as some cancers are immunotherapy
insensitive, some patients failed to respond at all, and some
effective cases in the early stage achieved a limited response
followed by tumor progression or recurrence (16). Thus, it is very
important to find more immunotherapy targets and elucidate
a more detailed molecular mechanism of immunotherapy
responsiveness. Previous studies have shown that tumor
mutation burden (TMB) has become a useful biomarker across
many cancer types to predict the efficacy of immune checkpoint
blockade (ICB) (16, 17). TMB is usually defined as the
total number of somatic protein-coding base substitutions, but
in some cases, it also includes insertion/deletion mutations.

Theoretically, TMB should be determined by whole exome
sequencing (WES) which is not routinely used as a clinical
tool owing to its greater cost and complexity (17). With the
development of next generation sequencing technology (NGS),
large NGS-targeted panels are sufficient to substitute WES for
TMB estimation in the clinic (17). Wang et al. found that
TMB has a close relationship with immune infiltration and
the prognosis of various cancers (18). However, few studies
have focused on the relationship between TMB and immune
infiltration in LGGs. Hence, we performed a comprehensive
analysis to further explore the relationship between TMB and the
immune response based on WES and RNA-sequencing (RNA-
seq) data.

Currently, with the rapid development of sequencing
technique, WES and RNA-seq data from many cancers are
available in many public databases, such as The Cancer Genome
Atlas (TCGA) database and Gene Expression Omnibus (GEO)
database. In the present study, we downloaded somatic mutation
and RNA-seq data of LGG patients from TCGA database.
Then, we analyzed the influence of TMB on the immune
microenvironment, and developed an immune-related risk score
system based on six TMB-related immune genes to classify
patients into high- and low-risk groups with distinct prognoses.
Moreover, the risk score system was validated in the Chinese
Glioma Genome Atlas (CGGA) dataset, and a reliable predictive
nomogram model was constructed to evaluate overall survival
(OS) for LGG patients. We believe that the immune-related risk
score system has potential in patient management and that the
selected hub genes can serve as potential therapeutic biomarkers
for LGGs.

MATERIALS AND METHODS

Somatic Mutation, RNA-seq Data, and
Immune-Related Genes
The somatic mutation and RNA-seq expression data and
corresponding clinical data sheets of LGGs were obtained from
the TCGA database (https://cancergenome.nih.gov/) and used
as the training dataset. The “maftools” R package was used to
analyze and visualize the somatic mutation data (19). For RNA-
seq data, only coding RNAs with an expression raw count value
>10 in more than 75% of samples were retained for further
analysis. We downloaded the RNA-seq data and corresponding
clinical information from CGGA database (http://www.cgga.org.
cn/) as the validation dataset. Furthermore, a comprehensive
immune-related gene set was extracted from the Immunology
Database and Analysis Portal (ImmPort) database (https://
immport.niaid.nih.gov) (20).

TMB Scores and Prognostic Analysis
In our study, the TMB score of each sample was calculated
as the number of mutations/length of exons (30Mb). Then,
LGG samples were divided into high and low TMB groups
according the median data and Kaplan–Meier analysis was
conducted between the high and low TMB groups. Moreover,
TMB levels were also assessed according to the WHO grade,
histopathological types, and molecular subtype of LGGs.
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Differentially Expressed Genes (DEGs) and
Gene Set Enrichment Analysis (GSEA)
Using the “limma,” “edgeR,” and “DEseq2” packages in the R
software, the DEGs between the high and low TMB groups
were obtained with the following thresholds: |Fold change| >

1 and False Discovery Rate (FDR) < 0.05. The expression
profiles of genes were converted to log2(x+1) for further
analysis. GSEA was performed between the high and low
TMB groups using the JAVA8 platform. The reference gene
set (c5.bp.v6.2.symbols.gm) was obtained from the MSigDB
database (http://software.broadinstitute.org/gsea/msigdb/). Only
enrichment pathways with a p < 0.05 and FDR < 0.25 were
considered significant. In addition, the intersection between the
DEGs and a list of 1,811 immune-related genes from the Immport
database was selected for further analysis.

Construction and Validation of
Immune-Related Risk Score System
After excluding patients with missing mutation information
and survival time <30 days, 474 samples were subjected to
subsequent analysis. The clinical characteristics of these patients
are shown in Table 1. Then, Kaplan–Meier analysis of the
selected genes was performed to screen for prognostic genes in
the TCGA dataset, which is then validated in the CGGA dataset.
In total, six coding genes were significantly related to OS. To
identify the best prognostic value of these genes, Cox analysis
with least absolute shrinkage and selection operator (LASSO) L1-
penalty was performed using the “glmnet” R package (21, 22).
Finally, an immune-related risk score system was constructed
utilizing Cox regression coefficients to multiply the expression
values of immune genes in each patient. By applying the
“survminer” R package, LGG patients were divided into low- and
high-risk groups based on the optimal cutoff point of their risk
score. Kaplan–Meier survival analysis and the log-rank test were
employed to evaluate the prognostic value of this system. Using
the “survival ROC” R package, we depicted time-dependent
receiver operating characteristic (ROC) curves to evaluate the
sensitivity and specificity of the system. The risk score systemwas
also validated with CGGA database.

TIMER Database Analysis
The TIMER database (https://cistrome.shinyapps.io/timer) is a
web tool for the comprehensive analysis and visualization of
immune cells infiltration among 10,897 tumors from 32 cancer
types (23). Six tumor-infiltrating immune subsets (B cells, CD4T
cells, CD8T cells, macrophages, neutrophils, and dendritic cells)
are included in TIMER. The abundance of the six immune
cell types in the tumor microenvironment is estimated by a
novel statistical method. Tumor immunological, clinical, and
genomic features can be comprehensively explored in the TIMER
database (23). In the “SCNA,” “Survival,” and “Gene” modules,
the association between immune infiltration and somatic CNVs,
clinical outcome, and gene expression, respectively, can be
analyzed. Based on the three modules in the TIMER database,
hub immune-related gene mutation types and the Kaplan–Meier
analysis of immune infiltration cells were evaluated. Moreover,

TABLE 1 | Clinical characteristics of 474 LGG patients from TCGA cohort

included in this study.

Variables Number (%)

Vital status

Alive 353 (74.47)

Dead 121 (25.53)

Age

≤45 284 (59.92)

>45 190 (40.08)

Gender

Female 214 (45.15)

Male 260 (54.85)

Tumor grade

WHO II 229 (48.31)

WHO III 244 (51.48)

Unknown 1 (0.21)

Histological type

Astrocytoma 176 (37.13)

Oligoastrocytoma 127 (26.79)

Oligodendroglioma 171 (36.08)

IDH1 mutation and 1p/19 codeletion status

IDH1-mutant and 1p/19 codeletion 147 (31.01)

IDH1-mutant and 1p/19 non-codeletion 221 (46.62)

IDH1-wildtype 101 (21.31)

Others 5 (1.06)

LGG, lower-grade glioma.

data on the immune infiltration levels of LGG samples were
extracted from the TIMER database to calculate the correlation
with the risk score system.

Development and Evaluation of the
Nomogram
To validate whether the risk score system has an independent
prediction value, univariate and multivariate Cox regression
analyses were performed together with traditional clinical
features (gender, age, pathologic stage, IDH1 and 1p/19q
status, and radiation status). Then, according to the results
of multivariate Cox analysis using the “rms” R package, a
nomogram was generated to predict the 1, 3, and 5-years survival
probability. Calibrations and ROC analyses were used to predict
the accuracy of the nomogram. A concordance index (C-index)
was applied to evaluate the discrimination of the system.

Statistical Analysis
Statistical analyses were conducted using the R software (version
3.5.1) and GraphPad Prism (version 7.0.0), and a p < 0.05 was
considered statistically significant. The log-rank test was used in
the Kaplan–Meier survival analysis. Student’s t-test and Kruskal–
Wallis test were employed in the two-group comparisons.

RESULTS

Landscape of the LGG Mutation Profiles
In total, we analyzed the somatic mutation profiles of 509
LGG patients in the VCF format using the “maftools” package.
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FIGURE 1 | Summary of the of LGG mutation information. (A) Landscape of mutation profiles in LGG samples. Waterfall plot showing the mutation information for

each gene. Different colors represented the different mutation types. (B) Classification of mutation types according to different categories and tumor mutation burden

in specific samples. (C) The coincident and exclusive associations across the top 25 mutated genes. SNP, single nucleotide polymorphism; SNV, single

nucleotide variant.
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As shown in the waterfall plot, IDH1, TP53, and ATRX
mutations are the top three mutated genes in LGG samples,
and IDH1 mutations are found in more than 75% of
LGG samples (Figure 1A). Moreover, missense mutations are
the most common mutation classification, single nucleotide
polymorphisms (SNPs) showed a higher fraction in the variant
type than insertion or deletion, and C>T was the most
common single nucleotide variant (SNV) in LGGs (Figure 1B).
Furthermore, the number of variants in each sample was
calculated, and the mutation types are also shown in box plot
with different colors for LGGs (Figure 1B). The co-occurrence
and exclusive associations between mutated genes are shown in
Figure 1C.

TMB Correlated With OS, WHO Grades,
and Histopathological Types of LGGs
After calculating the TMB value of each sample, all patients
were divided into high and low TMB groups using the
median TMB as the cutoff point. Interestingly, patients in
high-TMB group have an obviously shorter OS than those
in the low TMB group with p < 0.0001 (Figure 2A). We
also found that the TMB levels are positively correlated
with WHO grades (Figure 2B). Moreover, astrocytoma has
higher TMB levels than oligoastrocytoma (p = 0.0121) and
oligodendroglioma (p = 0.0301), but whereas TMB levels
between oligoastrocytoma and oligodendroglioma showed no
statistical significance (Figure 2C). Furthermore, LGG samples
with an IDH1-mutant type have lower TMB levels than IDH1-
wildtype samples; however, the TMB levels in IDH1-mutant and
1p/19q codeletion samples have shown no statistical significance
when compared with IDH1-mutant and 1p/19q non-codeletion
samples (Figure 2D).

Identification of Immune-Related DEGs
Between Low and High TMB Groups
In total, 14,848 coding genes were identified, according to the
annotation information provided in the Ensembl database
(http://asia.ensembl.org/index.html). Based on the limma,
edgeR, and DEseq2 algorithms, 99 genes were identified
as being differentially expressed between the low and high
TMB groups, with thresholds of |Fold change| > 1 and FDR
< 0.05. Among these genes, seven immune-related DEGs
were identified by the ImmPort database for further analysis
(Figure 2E). Moreover, GSEA analysis of the LGG samples
in the high (n = 235) and low (n = 234) TMB groups
was performed. The results showed that LGGs in the high
TMB group were significantly enriched for 273 biological
processes, and the following four immune-related biological
processes were selected: GO_SOMATIC_DIVERSIFICATI
ON_OF_IMMUNE_RECEPTORS (normalized enrichment
score (NES) = 1.76, size = 56), GO_SOMATIC_DIVERS
IFICATION_OF_IMMUNE_RECEPTORS_VIA_GERMLINE_
RECOMBINATION_WITHIN_A_SINGLE_LOCUS (NES
= 1.72, size = 50), GO_IMMUNOGLOBULIN_PRODU
CTION_INVOLVED_IN_IMMUNOGLOBULIN_MEDIATED
_IMMUNE_RESPONSE (NES= 1.60, size= 43), and GO_RESP

ONSE_TO_RADIATION (NES = 1.58, size = 385) (p <

0.05 and FDR < 0.25) (Figure 2F). In contrast, LGGs in
the low TMB group did not enrich for any immune-related
biological processes.

Associations of Hub TMB-Related Immune
Genes With Immune Infiltration
The Kaplan–Meier analysis results showed that six hub immune
genes (BIRC5, CRLF1, GDF15, LTF, PRLHR, and TNFRSF11B)
were highly associated with OS in LGGs. Higher expression
levels of BIRC5, GDF15, LTF, and TNFRSF11B were positively
correlated with poor prognosis, whereas higher expression levels
of CRLF1 and PRLHR were negatively correlated with poor
prognosis (Figure 3). Furthermore, we analyzed the underlying
relationships between mutants of these hub genes with the
immune infiltration microenvironment in LGGs based on the
TIMER database. The results showed that mutants of these
hub immune genes were related to the immune infiltration
microenvironment in LGGs. Among them, mutants of BIRC5,
CRLF1, and GDF15 inhibit the infiltration of several immune
cells; in contrast, mutants of PRLHR promote the infiltration
of several immune cells (Figure 4). Moreover, we found that
the infiltration levels of immune cells (B cells, CD4+ T cells,
CD8+ T cells, neutrophils, macrophages, and dendritic cells)
was negatively correlated with the OS of patients in TCGA
database (Figure 5). In addition, the correlation between the
six hub genes and the level of immune cell infiltration was
also analyzed in TIMER, and the results showed that the
expression of BIRC5, GDF15, LTF, and TNFRSF11B were
positively correlated with the infiltrating levels of immune cells,
whereas the expression of CRLF1 and PRLHR were negatively
correlated (Figure 6).

Construction and Validation of the
Immune-Related Risk Score System
To build an immune-related risk score system in the TCGA
cohort, LASSO Cox analysis was performed to select genes
(Figures 7A,B). Six hub immune genes were included in the
immune-related risk score system. The risk scores formula is as
follows: risk score = 0.222 × expBIRC5 – 0.088 × expCRLF1 +

0.264 × expGDF15 + 0.060 × expLTF – 0.063 × expPRLHR+ 0.357
× expTNFRSF11B (Figure 7C). Then, risk scores were calculated
for each sample. Patients in the TCGA cohort were divided into
high- and low-risk groups by the median value. The Kaplan–
Meier analysis indicated that patients in the high-risk group
have a poorer prognosis than patients in the low-risk group
(p = 4e−13) (Figure 7D). Moreover, the time-dependent ROC
curve analysis demonstrated a promising prognostic prediction
(1-year AUC = 0.89, 3-years AUC = 0.87, 5-years AUC = 0.76)
(Figure 7E).

To validate that the system had robust prognostic prediction
ability, the same risk score formula was applied to the CGGA
dataset. Using the median value of the risk score as a cutoff
point, 274 LGG patients were divided into the high- and
low-risk groups. Consistently, patients in the high-risk group
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FIGURE 2 | Prognostic value of TMB and a comparison of the gene expression profiles in high and low TMB groups. (A) Kaplan–Meier analysis showing that higher

TMB levels correlated with a poor prognosis (p < 0.0001). (B) A higher TMB level was found in advanced grade tumors (p < 0.0001). (C) Comparison of the TMB

levels with the different pathological types. Astrocytoma has higher TMB levels than oligoastrocytoma and oligodendroglioma (p = 0.0121 and p = 0.0301). (D) Lower

TMB levels were associated with IDH1 mutant LGGs (p < 0.01). (E) Identification of TMB-related immune genes. (F) GSEA showed immune-related biological

processes between the high- and low-risk groups.

had significantly poorer prognoses than patients in the low-
risk group (Figure 7F). The ROC analysis also indicated that
the system showed promising prognostic prediction (1-year
AUC = 0.72, 3-years AUC = 0.78, 5-years AUC = 0.76)
(Figure 7G).

Immune Infiltration Landscape in the Low-
and High-Risk Groups
To explore the potential relationship between our risk score
system and the immune infiltration microenvironment, we
analyzed the correlation between the risk score and infiltrating

Frontiers in Oncology | www.frontiersin.org 6 August 2020 | Volume 10 | Article 1409

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yin et al. Immune Prognostic Model for Glioma

FIGURE 3 | Kaplan–Meier analysis of the six hub TMB-related genes (BIRC5, CRLF1, GDF15, LTF, PRLHR, and TNFRSF11B) in TCGA database (A) and CGGA

database (B).
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FIGURE 4 | Immune cell infiltration levels of the six hub TMB-related gene mutants. (A) BIRC5, (B) CRLF1, (C) GDF15, (D) LTF, (E) PRLHR, (F) TNFRSF11B. *p <

0.05, **p < 0.01, and ***p < 0.001.

immune cells using the “TIMER” tool. The result showed that
the risk score was positively correlated with infiltrating immune
cells including B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and dendritic cells (Figure 8A). Moreover, patients
in the high-risk group had higher proportions of immune cell
infiltration, with a p < 0.001 (Figure 8B).

Immune checkpoints play important roles in immune
regulation, and their inhibitors are promising strategies for
cancer treatment. Next, we explored the relationship between
the risk score and the expression of critical immune checkpoints
(PD-1, CTLA-4, LAG-3, TIM-3, and TIGIT). We found that the
risk score showed a significantly positive correlation with PD-
1, CTLA-4, LAG-3, and TIM-3 expression (Figure 8C). Further,
we analyzed the expression of these immune checkpoints in the
high- and low-risk groups, finding that patients in the high-risk
group had higher expressions of PD-1, CTLA-4, LAG-3, and
TIM-3 (p < 0.001), but lower expression of TIGIT (p = 0.001)
(Figure 8D).

Construction and Evaluation of the
Nomogram Model
Next, univariate and multivariate Cox analyses were performed
to comprehensively analyze whether the TMB and immune-
related risk score system were independent prognosis factors
for LGG patients. The univariate Cox analysis results showed
that the TMB and risk score were significantly associated
with OS. However, multivariate Cox analysis along with

clinicopathological variables indicated that only the risk score can
serve as an independent prognostic factor in the TCGA dataset
(HR: 1.92, 95% CI: 1.92 (1.50–2.47), p= 2.33e−07; Table 2).

To systematically predict the prognosis of LGGs, we
constructed a nomogram model based on the risk score and
two independent prognostic factors (age and IDH1 and 1p/19q
status) in the TCGA dataset (Figure 9A). The C-index for the
nomogram was 0.862 indicating a high discrimination ability,
and calibration plot showed excellent concordance for the 1-, 3-
, and 5-years predicted and actual OS probabilities (Figure 9B).
Moreover, the ROC curve analysis also demonstrated a
satisfactory prediction for sensitivity and specificity with a 1-
year AUC of 0.921, 3-years AUC of 0.89, and 5-years AUC
of 0.80 (Figure 9C).

DISCUSSION

Genomic variations are considered a major cause of LGGs
(24). Although great efforts have been made in neurosurgery,
radiotherapy, and chemotherapy, the survival of LGG patients
still ranges widely. Recently, immunotherapy has shown
promising results in the treatment of advanced or aggressive
cancers (25). Although many efforts have been made for glioma
immunotherapy, there is still a lack of reliable molecular
biomarkers to distinguish patients with potential sensitivity
to immunotherapy (26). Hence, it is particularly important
to identify more immune-related prognostic biomarkers that
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FIGURE 5 | Kaplan–Meier analysis reveals that lower immune cell (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells) infiltration levels

are correlated with poor survival outcomes in LGGs (p < 0.05).

can be potential therapeutic targets or can be used to screen
immunotherapy-sensitive patients.

TMB is a novel biomarker to predict cancer
immunotherapeutic response, which has been shown to be
effective for many tumors, such as lung cancer (11), melanoma
(27), and so on. Wang et al. found that a high TMB may
promote cancer-testis antigen expression and inflammatory
response, and patients with a higher TMB could gain a
more favorable prognosis if treated with immunotherapy
in a variety of cancers (18). However, few studies have
focused on the prognostic role of TMB and the association
between TMB and immune cell infiltration in LGGs. Thus,
we aimed to explore the prognostic role of TMB and its
potential association with immune infiltration in LGGs in
this study.

Interestingly, the results of the Kaplan–Meier analysis showed
that patients in high TMB group had a poorer prognosis, higher
tumor grades, and advanced pathological subtypes. A recent
bioinformatics study showed that the high tumor proliferative
activity in high TMB patients may lead to a shorter OS of glioma,

but more experiments are still needed to validate their findings
(28). As high TMB patients usually benefit from immunotherapy
(17, 29), higher TMB glioma patients may be able to achieve a
better prognosis once immunotherapy is widely utilized in the
treatment of glioma. Moreover, GSEA analysis showed that more
immune-related biological processes were enriched in the high
TMB group, indicating that a high TMB enhanced the immune
phenotype. Then, we identified six hub immune genes that were
highly associated with OS in LGGs. Among them, the expression
levels of four genes (BIRC5, GDF15, LTF, and TNFRSF11B) were
negatively correlated with OS, whereas two genes (CRLF1 and
PRLHR) were positively correlated with OS. Analysis with the
TIMER database showed that high immune cells (B cells, CD4+

T cells, CD8+ T cells, neutrophils, macrophages, and dendritic
cells) infiltration was proven to be associated with a poorer
prognosis in LGGs. Indeed, the expression levels of BIRC5,
GDF15, LTF, and TNFRSF11B were positively correlated with
infiltration levels of immune cells, whereas the expression levels
of CRLF1 and PRLHR were negatively correlated. Furthermore,
TIMER database analysis also showed that the mutants of these
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FIGURE 6 | Correlation of hub gene expressions with immune infiltration levels in LGGs. The expression levels of BIRC5, GDF15, LTF, and TNFRSF11B were positively

correlated with infiltrating levels of immune cells (B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell). In contrast, the expression levels of

CRLF1 and PRLHR were negatively correlated with infiltrating levels of immune cells (B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell).

hub immune genes were correlated with immune infiltration
in LGGs.

BIRC5 (survivin), a member of the inhibitor of apoptosis
proteins family, can suppress cell apoptosis and regulate cell
proliferation. BIRC5 is overexpressed in various tumors and
has been found as a prognostic marker in gastric cancer (30),
renal cell carcinoma (31), and breast cancer (32). However, the
function of BIRC5 in LGGs has never been reported. GDF15 is a
member of the growth differentiation factors (GDFs) subfamily

that belongs to transforming growth factor beta superfamily (33).
Peng et al. found that GDF15 might be able to regulate the
expression of PD-L1, and targeting the GDF15/PD-L1 pathway
might be promising for the treatment of GBM patients (33).
The lactoferrin (LTF) gene, an iron-binding protein that is
involved in innate and adaptive immunity, acts as a tumor
suppressor gene in several tumors, including nasopharyngeal
carcinoma (34), prostate carcinogenesis (35), and so on. In
contrast, it appears to be a cancer-promoting factor in LGGs,
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FIGURE 7 | Construction and validation of the immune-related risk score system. (A,B) The six hub genes were all selected by LASSO Cox analysis in TCGA dataset.

(C) Coefficient values for each gene. (D) Kaplan-Meier curves of the OS, risk scores distribution and survival status of each patient in the training cohort (TCGA

dataset). (E) Time-dependent ROC curve analysis of the immune-related risk score system in the training cohort (TCGA dataset). (F) Kaplan-Meier curves of the OS,

risk scores distribution and survival status of each patient in the validation cohort (CGGA dataset). (G) Time-dependent ROC curve analysis of the immune-related risk

score system in the validation cohort (CGGA dataset).

even though further studies are needed to clarify the underling
mechanism. TNFRSF11B is a cytokine receptor and belongs to
the tumor necrosis factor (TNF) receptor superfamily. Deng
et al. demonstrated that TNFRSF11B was a prognostic biomarker
and related to worse survival in LGGs for the first time (36).
CRLF1, cytokine receptor-like factor 1, stimulates neuronal
growth and differentiation and has been proven to be involved
in neuroprotection (37). However, its function in LGGs remains
unclear and our study found that elevated CRLF1 expression was
related to worse survival in LGGs. PRLHR (prolactin releasing
hormone receptor), namely G-protein-coupled receptor 10, is the
receptor for prolactin releasing peptide (PrRP). Previous studies
found that it was associated with the regulation of feeding and
energy balance (38). Su et al. found that PRLHR gene variants are
protective factors in colorectal cancer patients of Chinese Han
population (39). More studies are needed to explore the function
of the PRHLR gene in LGGs.

In this study, we comprehensively studied the role of TMB
in the regulation of immune phenotype in LGGs. Then, an
immune-related risk score system was developed based on the
TCGA dataset and validated with the CGGA dataset. This risk
score system has favorable prognostic prediction ability, which
is independent of traditional prognostic factors, such as IDH1
and 1p/19q status, age, and WHO grade. More importantly, we
constructed a novel nomogram model integrated risk score with
age and IDH1 and 1p/19q status to predict the OS of LGG
patients. According to the risk score system and nomogram,
clinicians can calculate an individual score for a patient and
then can predict the 1-, 3-, and 5-years OS. Using the TIMER
database, we found that higher infiltrating levels of B cells,
CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and
dendritic cells are all negatively correlated with the OS of LGGs.
Furthermore, we explored the correlation between the risk score
and immune cell infiltration in LGGs. The results showed that

Frontiers in Oncology | www.frontiersin.org 11 August 2020 | Volume 10 | Article 1409

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yin et al. Immune Prognostic Model for Glioma

FIGURE 8 | Correlation of the risk score with infiltrating immune cell proportions and immune checkpoints. (A) Correlation of the risk score with infiltrating immune cell

proportions. Pearson’s correlation coefficient values are shown in the heatmap. (B) Violin plot showing the immune cell proportions between low- and high-risk

patients. (C) Correlation of the risk score with the expression of crucial immune checkpoints. Pearson’s correlation coefficient values and level of significance were also

showed. ***p < 0.001 and **p < 0.01. (D) The expression of different immune checkpoints between the low- and high-risk patients is shown in the violin plot.

TABLE 2 | Univariate and multivariate Cox regression analysis in TCGA.

Characteristics Univariate Multivariate

HR (95% CI) p-value HR (95% CI) p-value

Age 1.06 (1.04–1.06) 7.47e−14 1.04 (0.01–4.66) 3.14e−06

Gender 0.98 (0.67–1.41) 0.9

Grade 3.63 (2.37–5.55) 2.99e−09 1.50 (0.90–2.50) 0.12

IDH1-1P/19q status 0.18 (0.12–0.27) 5.5e−14 0.68 (0.48–0.97) 0.03

Radiation 2.23 (1.41–3.53) 6.4e−04 1.06 (0.65–1.74) 0.80

TMB 3.51 (2.46–5.01) 3.59e−12 1.21 (0.74–1.95) 0.45

RS 2.73 (2.30–3.23) 2.71e−31 1.92 (1.50–2.47) 2.33e−07

Gender was defined as 1, female; 2, male; Grade was defined as 1, G2; 2, G3; IDH1-

1P/19q status was given a value of 0, IDH1-wildtype; 1, IDH1-mutant and 1p/19q

non-codeletion; 2, IDH1-mutant and 1p/19q codeletion. Bold values represent statistical

significance (p < 0.05).

patients in the high-risk group had higher infiltrating levels of B
cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and
dendritic cells than patients in the low-risk group. This indicated
that higher levels of immune cell infiltration in the high-risk
group may contribute to the poorer prognosis. These results also
suggested that immune cell infiltration plays a crucial role in the
progression of LGGs. Thus, the risk score system could be used

as a predictor for prognosis and immune cell infiltration, and has
good prospects for clinical application.

Currently, many clinical trials are evaluating the effect of
ICIs in glioma (40). Furthermore, we analyzed the association
between the risk score and the expression of critical immune
checkpoints. The result showed that patients in high-risk group
had higher PD-1, CTLA-4, LAG-3, and TIM-3 expression.
The immunosuppressive microenvironment may lead to a poor
prognosis in these patients. Thus, the patients in the high-risk
group were more likely to benefit from ICIs.

Although a previous study had developed an IDH1-associated
immune prognostic signature for LGGs (36), no study has
systematically explored the relationships between TMB and
immune infiltration and constructed a TMB-related risk score
system in LGGs. Thus, our study provides new insights
into the immune cell infiltration of tumor microenvironment
and immunotherapies for LGGs. However, there were some
limitations to our study. First, this is a retrospective study,
and the results should be further confirmed by prospective
studies. Moreover, more experiments are needed to elucidate the
underlying mechanisms of the selected genes on immune cell
infiltration in the future.

In conclusion, TMB was negatively correlated with OS
and a high TMB might inhibit immune infiltration in LGGs.
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FIGURE 9 | Construction of the nomogram based on TCGA dataset. (A) A nomogram for the quantitative prediction of 1-, 2-, and 3-years survival for LGG patients

based on the RS, age and IDH1 and 1p/19q status. (B) Calibration curves for the nomogram. (C) Time-dependent ROC curves for the 1-, 2-, and 3-years survival

used to assess the nomogram model.

The TMB-related immune-related risk score system can divide
patients into low- and high-risk groups with different outcomes
and immunophenotypes. Moreover, the patients in the high-
risk group are more likely to benefit from ICI treatment in the
future. These findings may aid clinicians in identifying patients
who are most likely to benefit from ICIs and to develop valuable
personalized immunotherapy regimens for LGG patients in
the future.
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