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Abstract

The microorganisms that inhabit the human gastrointestinal tract comprise a

complex ecosystem with functions that significantly contribute to our systemic

metabolism and have an impact on health and disease. In line with its impor-

tance, the human gastrointestinal microbiota has been extensively studied.

Despite the fact that a significant part of the intestinal microorganisms has not

yet been cultured, presently over 1000 different microbial species that can

reside in the human gastrointestinal tract have been identified. This review

provides a systematic overview and detailed references of the total of 1057

intestinal species of Eukarya (92), Archaea (8) and Bacteria (957), based on the

phylogenetic framework of their small subunit ribosomal RNA gene sequences.

Moreover, it unifies knowledge about the prevalence, abundance, stability,

physiology, genetics and the association with human health of these gastroin-

testinal microorganisms, which is currently scattered over a vast amount of lit-

erature published in the last 150 years. This detailed physiological and genetic

information is expected to be instrumental in advancing our knowledge of the

gastrointestinal microbiota. Moreover, it opens avenues for future comparative

and functional metagenomic and other high-throughput approaches that need

a systematic and physiological basis to have an impact.

Introduction – a historical perspective

Human beings, similar to other higher organisms, live in

symbiosis with their coevolved microbiota (B€ackhed

et al., 2005). The majority of the human microorganisms

reside in the gastrointestinal tract, where, besides contrib-

uting to the digestion, they perform various other func-

tions that are essential for the human host. These

functions include the production of vitamins, education

of the immune system, communication with the intestinal

cells, and modulation of the host’s behavior (B€ackhed

et al., 2005; Cryan & Dinan, 2012; Rajili�c-Stojanovi�c,

2013). The first report of living creatures in the human

gastrointestinal tract dates from 1681 when Antonie van

Leeuwenhoek reported a variety of ‘little animals’ in his

stool samples and identified what is now thought to be a

Giardia spp. when suffering from diarrhea (Dobell, 1932).

Almost two centuries passed before the first detailed

descriptions of pure cultures of gastrointestinal microor-

ganisms were reported, of which the earliest is most likely

the description of the eukaryal intestinal parasite Pentatri-

chomonas hominis (at the time named Trichomonas

hominis), by Casimir Davaine in 1854 (Hemmeter, 1902).

Since P. hominis, similar to other intestinal Eukarya, has

a very low prevalence, this discovery did not trigger fur-

ther analysis of the gastrointestinal microbiota. However,

intensive studies of the gastrointestinal microbiota fol-

lowed the first cultivation of the intestinal bacterium,

now known as Escherichia coli. From a historical perspec-

tive, this and several other events, here termed turning

points, can be recognized as having impacted the discov-

ery of the gastrointestinal microbiota constituents. These

turning points are evident when the number of described

gastrointestinal tract species is considered in view of time

(Fig. 1).

The first turning point (Fig. 1) marks the first descrip-

tion of a gastrointestinal bacterium, which is the isolation

of Bacterium coli commune (later renamed to E. coli), by
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the German pediatrician Teodor Escherich in 1885 (Shul-

man et al., 2007). The studies that followed shortly there-

after led to the description of representatives of a number

of the major gastrointestinal bacterial groups, including

the genera Bacteroides, Bifidobacterium, and Bacillus as

well as proteolytic cocci (Fl€ugge, 1886; Veillon & Zuber,

1898; Moro, 1900; Tissier, 1900; Passini, 1905; Tissier,

1908; Distaso, 1911). During this period that lasted till

the late sixties of the 20th century, Bifidobacterium and

Bacteroides spp. were considered to be the dominant

groups in the human gastrointestinal tract. Aerobes,

referred as coliforms, streptococci and lactobacilli, were

found as minor groups, while clostridia, staphylococci

and aerobic spore-formers were reported as rare and not

always detectable (Haenel, 1970). However, the vast

majority of the gastrointestinal microorganisms are now

known to be strict anaerobes, and this was for the first

time shown in 1931 (Sanborn, 1931). Therefore, the early

cultivation studies provided only a partial view of the gas-

trointestinal microbiota and it enabled isolation of only a

minority (10–25%) of the gastrointestinal microorganisms

(Finegold, 1969).

The improvements of anaerobic cultivation techniques

by Hungate (1969) marked the second turning point in

the gastrointestinal microbiota research, approximately

50 years ago (Fig. 1). In this second period of the gastro-

intestinal microbiota research that lasted from the early

seventies till the molecular revolution in the beginning of

this century (Fig. 1), it was recognized that the microbi-

ota in the gastrointestinal tract is dominated by bacterial

species that belong to the following genera: Bacteroides,

Clostridium, Eubacterium, Veillonella, Ruminococcus, Bifi-

dobacterium, Fusobacterium, Lactobacillus, Peptostreptococ-

cus, and Peptococcus (Moore & Holdeman, 1974a). Using

strict anaerobic techniques, it was reportedly possible to

cultivate up to 88% of the total microscopic counts in

fecal samples (Moore & Holdeman, 1974a). However, due

to the enormous complexity of the gastrointestinal micro-

biota, many of the hundreds of isolates were not charac-

terized beyond the genus level (Finegold et al., 1974;

Moore & Holdeman, 1974a; Benno et al., 1986). More-

over, as processing of even a single sample yielded an

enormous amount of different isolates, it was physically

impossible to compare these all and make a full descrip-

tion based on the morphological, biochemical and physi-

ological characteristics that could be determined at that

time (Moore & Holdeman, 1974b). Hence, due to these

technical limitations, the gastrointestinal microbiota

remained only partially characterized.

Finally, the third turning point in the gastrointestinal

microbiota research can be ascribed to the incorporation

of molecular techniques about a dozen years ago (Fig. 1).

These include global and culture-independent studies

based on the sequence analysis of the small subunit ribo-

somal RNA (SSU rRNA) that had provided the molecular

basis for microbial taxonomy that is currently used (Wo-

ese et al., 1990). However, the complexity of the gastroin-

testinal tract microbial ecosystem hampers the rapid

application of SSU rRNA-based methods as well as

(meta)genomics (Zoetendal et al., 2008). Hence, the first

gastrointestinal tract study using SSU rRNA sequences

dealt with a single adult sample (Wilson & Blitchington,

1996). Subsequent SSU rRNA-based studies in multiple

adults demonstrated the individuality, temporal stability

and site specificity of the intestinal microbiota with a

diversity that was only partially grasped in cultivation-

based studies (Zoetendal et al., 1998; Suau et al., 1999;

Zoetendal et al., 2001). These novel findings sparked a

revival of the scientific interest in the gastrointestinal mic-

robiota that was initially compared to a Renaissance

(Tannock, 1999). However, the years that followed

showed this to be more of a revolution that incorporated

metagenome and whole-genome characterizations (Nelson

et al., 2010; Qin et al., 2010; Brown et al., 2013).

When integrated with cultivation-based studies, the

analysis of the SSU rRNA gene sequences as phylogenetic

markers enabled rapid identification of the new gastroin-

testinal isolates, and illustrated the need for the reclassifi-

cation of many species. In addition, the SSU rRNA gene

sequences enabled the detection of not yet cultured

microorganisms and their phylogenetic positioning.

Finally, the research field expanded to another dimension

with the application of high-throughput approaches,

including next-generation sequencing of the SSU rRNA

gene sequences or the entire genomic material (Zoetendal

et al., 2008). The latter metagenomic analyses generated a
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Fig. 1. Graphical representation of the cumulative number of

cultured species from Bacteria, Archaea and Eukarya from the human

gastrointestinal tract as a function of time. The arrows indicate the

turning points of the gastrointestinal microbiota research: (1) Isolation

of the first gastrointestinal bacterial species, (2) Introduction of strictly

anaerobic techniques, and (3) Introduction of molecular techniques in

the field of the gastrointestinal microbiota research.
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baseline of over 3 million, mainly bacterial, genes present

in the human gastrointestinal tract (Qin et al., 2010;

Brown et al., 2013) and demonstrated that the majority

of the gastrointestinal microorganisms contain genomes

that have not yet been characterized (Qin et al., 2010; Le

Chatelier et al., 2013).

The present-day view of the gastrointestinal microbiota

composition is quite different than prior to the molecular

revolution. Most importantly, it is evident that still many

of the gastrointestinal microorganisms have not yet been

cultured and this in particular concerns phylogenetically

distinct bacterial groups belonging to the Firmicutes phy-

lum (Rajili�c-Stojanovi�c et al., 2007). Furthermore, several

of the bacterial groups that based on cultivation studies

had been recognized as dominant gastrointestinal genera,

have been reclassified and renamed. Most notably this

concerns the Bacteroides spp. that have been reclassified

into the genera Alistipes, Prevotella, Paraprevotella, Para-

bacteroides, and Odoribacter. Moreover, it is evident that

different members of the Bacteroidetes phylum and not the

Bacteroides genus sensu stricto are dominant in the human

gastrointestinal tract. Furthermore, the abundance of the

Peptostreptococcus spp. demonstrated in cultivation-based

studies, could primarily be attributed to Peptostreptococco-

cus productus (Holdeman et al., 1976). However, SSU

rRNA gene analysis has shown that this species does not

belong to the genus Peptostreptococcocus, and the species

was reclassified first as Ruminococcus productus (Ezaki

et al., 1994) and finally as Blautia producta (Liu et al.,

2008). Today, it is clear that Blautia spp., in contrast to Pe-

ptostreptococcus spp., form one of the most abundant

groups in the human gastrointestinal tract. Many other so-

called dominant genera are still in need for major reclassi-

fication, and the best example of this is the Clostridium

genus, for which a detailed phylogenetic analysis led to a

proposed grouping into 19 clusters (Collins et al., 1994).

Bacteria belonging to the Clostridium spp. are highly abun-

dant in the adult gastrointestinal tract, and in particular,

the members of the species that cluster within the Clostrid-

ium cluster IV (C. leptum group, which major constituent

is the Ruminococcacea family) and the Clostridium cluster

XIVa (C. coccoides group, which resembles the Lachnospir-

aceae family). Furthermore, the Ruminococcus genus is

polyphyletic or paraphyletic and its members cluster

within two families — the Ruminococcaceae and Lachno-

spiraceae. A recent metagenomic study reported that the

abundance of Ruminococcus spp. is a driver of one of the

proposed enterotype status of the microbiota (Arumugam

et al., 2011). However, as the present metagenomic analy-

ses do not provide accurate phylogenetic information, it is

unclear which of the two distinct groups of Ruminococcus

spp., is the actual driver of this enterotype status. This

example illustrates the need for a systematic and detailed

presentation of the microbiota analysis in a phylogenetic

framework.

The extensive period of the studying of the gastrointes-

tinal microbiota, its complexity and its variation between

individuals have generated a massive amount of informa-

tion, which is scattered in the literature. To unify the

knowledge of the gastrointestinal microbiota that has

accumulated since its discovery, we have performed a

search of the publications covering more than a century

(Fig. 1). We found references that link the human gastro-

intestinal microbiota with a total of 1057 intestinal spe-

cies belonging to the Eukarya (92), Archaea (8) and

Bacteria (957; Fig. 2, Supporting information, Tables S1–
S3). These species were analyzed in ARB software-based

database of the SSU rRNA sequences (Pruesse et al.,

2007). The phylogenetic trees presented here were

extracted from the reference phylogenetic tree of the SILVA

database (Yarza et al., 2008). From this phylogenetic and

literature analysis, it is clear that bacteria that cluster

within the phyla Actinobacteria, Bacteroidetes, Firmicutes

and Proteobacteria, are the most diverse and abundant

microorganisms in the adult gastrointestinal tract (Fig. 2).

The gastrointestinal microbiota also contains members of

the less diverse, although in some cases still abundant,

bacterial phyla, including the Verrucomicrobia, Lentisphae-

rae, Synergistetes, Planctomycetes, Tenericutes and the Dei-

nococcus-Thermus group. In addition to these established

phylogenetic groups, the SSU rRNA gene sequences of

not yet cultured bacteria that cluster within the TM7 can-

didate phylum, Melainabacteria and Gemmatimonacetes,

can be detected in the human gastrointestinal tract

(Fig. 2). Several archaeal species that cluster within two

phyla have been detected in the human gastrointestinal

tract. The Euryarchaeota include the methanogens that

are relatively abundant. Among the Eukarya there are

organisms that are highly adapted to the human gastroin-

testinal tract, such as some Candida spp., while many

other eukaryote species can be present at a low abun-

dance and may be passengers. Altogether, our present

analysis confirms that the human gastrointestinal micro-

biota is composed of representatives of all three domains

of life — Bacteria, Archaea, and Eukarya.

The gastrointestinal microbiota research is very

dynamic, and in the last decade, 239 novel gastrointesti-

nal tract species have been detected or described, con-

firming the earlier notion that the majority of the

gastrointestinal microorganisms are cultivable but not yet

cultured. While traditional cultivation media and strate-

gies are efficient in obtaining novel species within the

Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria

phyla, for the detection of the gastrointestinal representa-

tives of the phyla Verrucomicrobia and Lentisphaerae, the

development of specific media and culturing approaches
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was needed (Zoetendal et al., 2003; Derrien et al., 2004).

This suggests that for the cultivation of the gastrointesti-

nal microorganisms belonging to phyla that lack any cul-

tured representatives from the human intestine (e.g.,

TM7 candidate phylum or the Oscillospira genus), alter-

native and creative cultivation approaches should be

developed and applied. Some new and promising devel-

opments include the use of high-throughput solid phase

growth (Ingham et al., 2007), advanced culturing

approaches using gnotobiotic mice (Goodman et al.,

2011), or gel microdroplet culturing (Fitzsimons et al.,

2013). The use of high-throughput culturing systems that

employ a large set of growth media coupled to genomic

characterization has proven to be very fruitful (Lagier

et al., 2012a; Dubourg et al., 2013; Hamad et al., 2013;

Pfleiderer et al., 2013). This recent attention for culturing

the gastrointestinal microorganisms reflects the perceived

need for detailed physiological, ecological and genetic

studies. While a variety of functional metagenomics

approaches have been described and applied, it is the

integration with culturing approaches that is needed to

further advance the understanding of the function of the

intestinal ecosystem in health and disease. The power of

this combination has recently been illustrated with the

example of the abundant mucus-utilizing bacterium, Akk-

ermansia muciniphila as a paradigm (Belzer & de Vos,

2012). Currently, the complete genome of at least one

strain of 225 gastrointestinal species has been fully

sequenced, assembled, and published, while many other

genomic sequencing projects are ongoing (Fig. 2,

Tables S1–S3). The physiological and genetic characteris-

tics of these currently recognized gastrointestinal species

and their association with particular functions of the eco-

system or diseases are systematized in this review that

aims to provide the basis for future comparative and

functional metagenomic and other high-throughput

approaches applied on the gastrointestinal microbiota.

Actinobacteria

Actinobacteria are common and abundant in the human

gastrointestinal tract. They are also known as gram-posi-

tive bacteria with a high G + C content in their DNA. As

they are particularly difficult to lyse and their SSU RNA

needs specific PCR primers to be amplified (Satokari

et al., 2001), this group of bacteria is often underrepre-

sented in molecular surveys of the gastrointestinal micro-

biota (notably in one of the first global studies of the

infants’ microbiota; Palmer et al., 2007). Members of the

orders Bifidobacteriales (in particular Bifidobacterium spp.)

and Coriobacteriales (mainly Collinsella spp.) are highly

prevalent already since early life, while members of the
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order Actinobacteriales are human-associated bacteria that

are subabundant and only scarcely detected in the gastro-

intestinal tract.

Actinobacteria-Bifidobacteriales

Bifidobacterium spp. form a dominant fraction of the

human gastrointestinal microbiota, particularly in infants

(Benno et al., 1984). Bifidobacteria are present in the

abundance ranging between 108 and 1010 cells g�1 of

intestinal content (Finegold et al., 1974; Moore & Hold-

eman, 1974a; Tannock, 1995). The majority of Bifidobac-

terium spp. have been recovered exclusively from human

or animal gastrointestinal samples, and for two species

(B. minimum and B. subtile) that were isolated from sew-

age (Scardovi & Trovatelli, 1974), an intestinal origin can

be suspected, showing the high adaption of this genus to

the gastrointestinal tract. Phylogenetically, Bifidobacterium

spp. form a homogenous group, with 20 cultured species

linked to the human gastrointestinal tract (Fig. 3). The

first Bifidobacterium spp. was recovered from infant feces

in 1900 by Henri Tissier, as a part of his PhD thesis work

(Tissier, 1900). It was named Bacillus bifidus-communis.

Already in 1924, this bacterium was renamed to Bifido-

bacterium bifidum, but Bifidobacterium was not recognized

as an independent genus until 1974 (Biavati et al., 2000).

The members of the Bifidobacterium genus are nonmotile,

anaerobic or microaerophilic bacteria that produce ace-

tate and lactate as major fermentation products from sug-

ars. The degradation of sugars by these bacteria is

Bifidobacterium adolescentis, AF275881
Bifidobacterium stercoris, FJ611793

Bifidobacterium ruminantium, DQ325862
Bifidobacterium angulatum, D86182

Bifidobacterium catenulatum, AF432082
Bifidobacterium pseudocatenulatum, AF333390
Bifidobacterium dentium, D86183
Bifidobacterium kashiwanohense, AB491757

Bifidobacterium bifidum, U25952
Bifidobacterium scardovii, AB437363

Bifidobacterium thermophilum, AB437364

Bifidobacterium longum, M58743

Bifidobacterium mongoliense, AB433856

Bifidobacterium pseudolongum, D86194
Bifidobacterium gallicum, D86189

Bifidobacteriaceae

Collinsella aerofaciens, AB011816
Collinsella stercoris, AB031062

Collinsella intestinalis, AB037383

Collinsella tanakaei, AB490807
Enorma massiliensis, JN887493

Atopobium parvulum, AF292372
Atopobium minutum, X67148

Slackia piriformis, AB601000
Slackia equolifaciens, EU377663

Slackia isoflavoniconvertens, AB566418
Slackia exigua, AF101240

Adlercreutzia equolifaciens, AB306661

Eggerthella lenta, CP001726

Gordonibacter pamelaeae, AM886059
Senegalemassilia anaerobia, FJ508678

Asaccharobacter celatus, NR_041494

Bifidobacterium coryneforme, AB437358

Bifidobacterium boum, D86190

10%

Coriobacteriaceae

Cryptobacterium curtum, AB019260

Bifidobacterium breve, AB006658

Bifidobacterium animalis, AB050137

Scardovia inopinata, AB029087

Atopobium rimae, AF292371

Olsenella profusa, AF292374
Olsenella ulia, AF292373

Paraeggerthella hongkongensis, AY321961

Bifidobacterium thermoacidophilum, AB016246

Fig. 3. Phylogenetic tree of the human gastrointestinal species that belong to the orders of the Bifidobacteriales and Coriobacteriales. GenBank

Accession Numbers of the SSU rRNA gene sequence are provided for each species and the family names are indicated.
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performed through a phosphoketolase pathway, also

known as the Bifido shunt. Bifidobacterium spp. degrade

monosaccharides, galacto-, manno-, and fructo-oligosac-

charides, while some strains are able to ferment complex

carbohydrates such as starch, arabinogalactan, arabic

gum, and gastric mucin (Crociani et al., 1994). As

mother milk’s contains nondigestible oligosaccharides that

can be degraded by Bifidobacterium spp. (Marcobal et al.,

2011), this bacterial group is strongly stimulated in

breast-fed infants resulting in the dominance of Bifidobac-

terium spp. in the gastrointestinal microbiota before

weaning. The Bifidobacterium spp. are assumed to have a

beneficial effect on health (Mitsuoka, 1990) and several

members of the Bifidobacterium genus are commercially

applied as probiotics. The most relevant observation is

that these bacteria have decreased abundance in relation

to a number of diseases including vitamin K deficiency

(Benno et al., 1985), atopic diseases (Kalliomaki et al.,

2001), irritable bowel syndrome (Kerckhoffs et al., 2009;

Rajili�c-Stojanovi�c et al., 2011), and autism (Wang et al.,

2011a). Moreover, Bifidobacterium spp. represent a very

stable component of the gastrointestinal microbiota of

each person, the composition of which hardly changes

throughout years (Rajili�c-Stojanovi�c et al., 2013b).

Remarkably, a recent study of the microbiota of the Haz-

da tribe from Tanzania suggested that these adult hunter-

gatherers do not carry any Bifidobacterium spp., which

was explained by absence of dietary components such as

meat and dairy that could support growth of these bacte-

ria (Schnorr et al., 2014).

Actinobacteria-Coriobacteriales

Coriobacteriales species constitute a frequently detected

group of the gastrointestinal microbiota composed of rep-

resentatives of 12 different genera (Fig. 3). Collinsella is

the most dominant among other members of the order,

and a representative of these rod-shaped, nonmotile obli-

gate anaerobes was for the first time detected in human

feces in 1935 (Eggerth, 1935). Both cultivation- and

molecular-based studies show that Collinsella aerofaciens

is a prevalent and an abundant gastrointestinal microor-

ganism (Moore & Holdeman, 1974a; Benno et al., 1986;

Kageyama et al., 2000). Four different types of Collinsella

aerofaciens were initially recognized and later reclassified

into distinct species (Kageyama & Benno, 2000). Collinsel-

la spp. can ferment a wide range of different carbohy-

drates including complex sugars, such as starch but also

glycogen to produce hydrogen gas, ethanol, formate, and

lactate (Eggerth, 1935; Kageyama et al., 1999a). Experi-

ments with an in vitro model of the human colon showed

that Collinsella spp. along with Bifidobacterium spp. are

the major lactose utilizers in the human gastrointestinal

microbiota (Kovatcheva-Datchary, 2010). Moreover,

Collinsella spp. are capable of deconjugation of bile acids

and their abundance shows significant positive correlation

with plasma cholesterol levels (Lahti et al., 2013).

Eggerthella are assacharolytic bacteria that produce

acids only from glucose, but not from other sugars. The

first representative of this bacterial group was isolated in

1935 by Arnold Eggerth (Eggerth, 1935). These bacteria

produce formate and lactate. Until now, only Eggerthella

lenta and the still not fully characterized Eggerthella sp.

YY7918 are associated with the human gastrointestinal

tract. Eggerthella lenta has been implied in producing

anti-tumor substances that stimulate natural killer cells

(Hatta, 1995), while Eggerthella sp. YY7918 has been

reported to produce s-equol (Yokoyama & Suzuki, 2008),

which has anticarcinogenic properties (Yuan et al., 2007).

Slackia spp. are asaccharolytic bacteria with the com-

mon feature of converting dietary isoflavones. These isof-

lavones have been proposed to prevent hormone-

dependent diseases, while their conversion by gastrointes-

tinal bacteria impacts their biological effectiveness.

Among the bacterial products, s-equol appears to be the

most relevant to human physiology (Yuan et al., 2007).

At least two Slackia spp. are capable of equol production

from isoflavones (Matthies et al., 2009; Jin et al., 2010),

while Adlercreutzia equolifaciens that also belongs to the

Coriobacteriales order, is another gastrointestinal species

capable to produce equol (Maruo et al., 2008). The ability

to produce s-equol is more abundant among microbiota

of Asian than the Caucasian subjects (Song et al., 2006)

and can be explained by the adaptation of the microbiota

to the higher availability of isoflavones — particularly

those derived from soy beans.

Atopobium species are anaerobic bacteria that cluster

within the Actionobacteria phylum, and, in contrast to the

rest of the phylum, contain DNA with a low G + C con-

tent. The main product of their metabolism is lactate,

which is in line with the previous classification of these

bacteria within the Lactobacillus and Streptococcus genera

(Collins & Wallbanks, 1992). Based on the literature data,

it can be concluded that Atopobium spp. are among the

earliest colonizers of the human intestinal tract as they

are reported to be present in gastrointestinal contents of

6-week-old infants (Fallani et al., 2011). However, the

data on Atopobium quantification are based on the appli-

cation of a FISH probe for the Atopobium cluster, which

in addition to Atopobium, hybridizes to species that

belong to the Coriobacterium, Eggerthella and Collinsella

genera (Harmsen et al., 2000). Therefore, it is not clear if

the Atopobium or the other targeted genera are colonizing

the gastrointestinal tract of infants. Bacteria belonging to

the Atopobium cluster are significantly associated with the

major products of protein fermentation, suggesting that
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these bacteria are responsible for protein degradation in

the gastrointestinal tract (Shen et al., 2010; Thompson-

Chagoyan et al., 2011).

Actinobacteria-Actinomycetales

The Actinobacteria of the human gastrointestinal tract

include diverse members of the order Actinomycetales

(Figs 4 and 5 — for clarity the phylogenetic tree of this

numerous order was split into two parts). These bacteria

are rarely detected in human gastrointestinal samples, but

this is most likely due to their low abundance in the gas-

trointestinal tract that is in the range from 102 to

103 cells g�1 of feces (Hoyles et al., 2012). Their low

abundance can explain the fact that many representatives

of this group were detected only in studies that specifi-

cally targeted this group of bacteria (Hoyles et al., 2013),

or in studies that targeted low abundant bacteria within

the gastrointestinal microbiota (Lagier et al., 2012a; Du-

bourg et al., 2013). Various different Actinomycetales spe-

cies, of which many are still uncultured, were identified

in a molecular study of these specific subcommunity

within the gastrointestinal microbiota of healthy humans

of different ages, showing a high prevalence of these bac-

teria (Hoyles et al., 2013). The most diverse and the fre-

quently detected Actinomycetales of the human

gastrointestinal tract include Propionibacterium spp. and

Corynebacterium spp. (Fig. 4). These bacteria typically

colonize the human skin and are found in high abun-

dance in infants that are born using Caesarean section

Corynebacterium coyleae, AF53592

Corynebacterium mucifaciens, AF537600

Corynebacterium glaucum, AJ431634
Corynebacterium sundsvallense, AF537606

Corynebacterium sanguinis, AY850479
Corynebacterium appendicis, AJ314919

Corynebacterium aurimucosum, AY536427
Corynebacterium minutissimum, X84679
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Corynebacterium pseudodiphthericum, AJ439343

Corynebacterium tuberculostearicum, AJ438046
Corynebacterium kroppenstedtii, CP001620
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Corynebacterium xerosis, M59058
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Corynebacterium ammoniagenes, FJ648509

Corynebacterium glucuronolyticum, AF537596
Corynebacterium durum, GQ157960

Dietzia cinnamea, FJ468339
Corynebacterium ulcerans, X81911

Dietzia natronolimnaea, FJ588190
Dietzia maris, FJ468334

Mycobacterium abscessus, AY457071

Mycobacterium avium, AF410479
Mycobacterium fortultum, AJ536039

Gordonia terrae, GQ157157
Rhodococcus rhodochrous, X79288

Rhodococcus equi, AY741716
Rhodococcus erythropolis, FJ506486

Propionibacterium acidipropionici, AJ704569
Propionibacterium jensenii, AJ704571

Propionibacterium granulosum, FJ785716
Propionibacterium avidum, AJ003055

Propionibacterium propionicum, AJ003058

Propionibacterium freundenreichii, GM005015

Aeromicrobium massiliense, JF824798

Propionibacterium acnes, AB042288

Corynebacteriaceae

Mycobacteriaceae

Nocardiaceae

Dietziaceae

Propionibacterineae

Streptomyces misionensis, EF178678

Mycobacterium florentinum, AJ616230

Gordonia rubripertincta, AJ784814

Streptomyces thermovulgaris, AB184303

Streptomyces massiliensis, JX101691

Corynebacterium afermentans, X82054

Corynebacterium ureicelerivorans, NR_042558

Corynebacterium striatum, AY008302

10%

Streptomycetaceae

Gordoniaceae

Nocardiaceae 2
Streptomyces thermoviolaceus, AY029353

Fig. 4. Phylogenetic tree of a fraction of the human gastrointestinal species that belong to the order of the Actinomycetales. GenBank Accession

Numbers of the SSU rRNA gene sequence are provided for each species and the family names are indicated. For the other human gastrointestinal

species that cluster within the Actinomycetales see Fig. 5.
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Arthrobacter albus, EU086816

Micrococcus luteus, EF463057

Arthrobacter oxydans, AJ243423
Arthrobacter polychromogenes, X80741
Arthrobacter castelii, AJ639826
Rothia aerla, AB071952
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Rothia mucilaginosa, GQ159454

Kocuria haiotolerans, DQ979377
Kocuria kristinae, EU379300
Kocuria marina, FJ789660
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Kocuria palustris, Y16263
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Brevibacterium iodinum, FJ652620
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Brevibacterium ravenspurgense, EU086793
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Actinomyces tuicensis, FJ508250
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Actinomyces odontilyticus, GQ158073
Actinomyces grossensis, JN837492
Actinomyces canis, GQ158316

Actinomyces naeslundii, AJ635359

Actinomyces oris, GQ421311

Actinomyces graevenitzii, AY979340
Mobiuncus curtisii, GQ158849

Trueperella bernardiae, X79224
Arcanobacterium pyogenes, EU308588
Arcanobacterium haemolyticum, AJ234059

Georgenia muralis, AJ308598
Cellulosimicrobium cellulans, AY501363
Promicromonospora flava, AM992980

Timonella senegalensis, JN657220

Microbacterium schleiferi, DQ870710

Microbacterium chocolatum, GQ157022
Microbacterium gubbeenense, EU863414

Microbacterium phyllosphaerae, NR_025405

Microbacterium foliorum, EU370406

Microbacterium oleivorans, AJ698725
Microbacterium paraoxydans, AJ491806
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Cellulomonas massiliensis, JN375951

Cellulomonas denverensis, AB491158
Cellulomonas parahominis, AY655731
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Micromonospora aurantiaca, AY569009
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Actinomyces georgiae, X80413

Varibaculum cambriense, AJ491326
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Kytococcus sedentarius, X87755
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Tropheryma whipplei, AF251035
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Microbacterium luteolum, AB004718

Actinomyces urogenitals, AJ243791
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Fig. 5. Phylogenetic tree of a fraction of the human gastrointestinal species that belong to the order of the Actinomycetales. GenBank Accession

Numbers of the SSU rRNA gene sequence are provided for each species and the family names are indicated. For the other human gastrointestinal

species that cluster within the Actinomycetales see Fig. 4.
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(Dominguez-Bello et al., 2010). In adults, Corynebacte-

rium spp. are more frequently detected in the samples of

the upper gastrointestinal tract (Justesen et al., 1984).

Cultivation studies have indicated that Propionibacterium

spp. are the major proteolytic bacteria in the human

intestine (Macfarlane et al., 1986). Propionibacterium spp.

are applied as probiotics as they are major vitamin B12
producers and produce propionate from lactate. In vitro

experiments showed that the metabolic products of two

gastrointestinal Propionibacterium spp. can induce apop-

tosis of colorectal carcinoma cells (Jan et al., 2002).

Bacteria belonging to the Rhodococcus genus are rarely

detected in the human gastrointestinal microbiota but

have been found in an extreme abundance (up to 68%)

in mucosal biopsies of ulcerative colitis patients (Lepage

et al., 2011). Mycobacterium spp., notably Mycobacterium

avium, have also been implied in ulcerative colitis and

the expression of intestinal cells in inflammatory bowel

disease patients appears to have similarities to Mycobacte-

rium infection (Sibartie et al., 2010).

The gastrointestinal Actinomycetales also include Rothia

spp. that are frequently detected in the upper gastrointesti-

nal tract (Ou et al., 2009), but rarely in fecal samples. These

species contribute to the degradation of gluten (Zamakh-

chari et al., 2011) and their abundance and activity might

be relevant for celiac disease and other conditions related

to gluten digestion. Another species of this order— Actino-

myces graevenitzii — which is detected in an increased

abundance in the small intestine of celiac disease patients,

might be a relevant risk factor for the development of this

disease (Ou et al., 2009). Various other Actinomyces spp.

can be detected in low abundance in the fecal samples of

healthy humans (Hoyles et al., 2012; Hoyles et al., 2013),

and while the role of these bacteria in the gastrointestinal

tract is still to be determined, it is noteworthy that an Acti-

nomyces spp. was detected as colonizer of the infant gastro-

intestinal tract using sensitive molecular methods already

in the first days of life (Favier et al., 2002).

Micrococcus spp. are relatively prevalent (present in

20% of the analyzed subjects) in the samples of the upper

gastrointestinal tract in patients predisposed to the devel-

opment of the small intestinal bacterial overgrowth syn-

drome (Bouhnik et al., 1999). Although representatives of

this genus can be detected in the fecal samples (Finegold

et al., 1974), these bacteria typically inhabit human skin.

Similar applies to six Kocuria spp., which are human skin

and oropharynx mucosa commensals (Savini et al., 2010),

although two recent studies have reported presence of

Kocuria spp. in gastrointestinal samples (Lagier et al.,

2012a; Fitzsimons et al., 2013).

The other members of the Actinomycetales order

include the representative species of the following genera:

Brevibacterium, Cellulomonas, and Microbacterium. These

genera are typically associated with other ecosystems,

namely the skin (Brevibacterium), and soil (Cellulomonas

and Microbacterium). Nevertheless, most of these bacteria

are already recognized as relevant for human health, as

many of these species can cause infections of different tis-

sues, particularly in immuno-suppressed patients (Funke

et al., 1997). It has been suggested that gastrointestinal

tract represents the natural niche of these bacteria (Funke

et al., 1997).

Bacteroidetes

The Gram-negative bacteria that belong to the phylum

Bacteroidetes are common, abundant and diverse within

the human gastrointestinal tract. The first Bacteroides spe-

cies — Bacteroides fragilis — was isolated in 1898 as a

human pathogen linked to appendicitis among other clin-

ical cases (Veillon & Zuber, 1898). Although some Bacte-

roides spp. are still considered to be opportunistic

pathogens, several decades of research have testified that

many Bacteroidetes species are highly adjusted to the gas-

trointestinal tract, where they live in high abundance (up

to 1011 cells g�1 of intestinal material; Eggerth & Gagnon,

1933; Moore & Holdeman, 1974a; Benno et al., 1986).

Hence, they perform metabolic conversions that are

essential for the host, often related to the degradation of

proteins or complex sugar polymers. The colonization of

the gastrointestinal tract with the Bacteroidetes is pro-

moted already in infants, as mother milk’s nondigestible

oligosaccharides support the growth of both Bacteroides

and Bifidobacterium spp. (Marcobal et al., 2011). Further-

more, animal model experiments have shown that the

colonization of the normal gastrointestinal tract, as illus-

trated by experiments with pure cultures of Bacteroides

spp., is a result of the recognition and selection by the

immune system of the host (Rakoff-Nahoum et al.,

2004), mediated through the toll-like receptors (Round

et al., 2011; Lopez-Siles et al., 2012) and other specific

host-microorganism interactions (Hooper et al., 2012).

For a long time, it was thought that the majority of

Gram-negative gastrointestinal tract bacteria belonged to

the Bacteroides genus, but in recent years many earlier

designed Bacteroides spp. were assigned to other genera

within the Bacteroidetes phylum. Currently, only four gas-

trointestinal Bacteroides spp. form deep branches in the

phylogenetic tree (Fig. 6), suggesting that these bacteria

(B. ureolyticus, B. galacturonicus, B. pectinophilus, and

B. coagulans) still should be reclassified to other phyloge-

netic groups. A similar situation applies to Anaerorhabdus

furcosa, which is still classified as a member of the Bacter-

oidaceae family, but based on its SSU rRNA gene

sequence clusters within the Firmicutes phylum. The

majority of the gastrointestinal Bacteroidetes spp. belongs
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Bacteroides coprocola, AB200225
Bacteroides coprophilus, AB260025

Bacteroides dorei, AB242143
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Rikenellaceae
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Prevotella ruminicola, AB004909
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Prevotella intermedia, X73965
Prevotella nigrescens, AF414833
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Odoribacter splanchnicus, L16496
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Bacteroides pyogenes, AB200229

Porphyromonas endodontalis, AY253728
Porphyromonas somerae, AY968205

Porphyromonas gingivalis, AF285870

Porphyromonas asaccharolytica, FJ792537
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Dysgonomonas gadei, Y18530

4

Fig. 6. Phylogenetic tree of the human gastrointestinal species that belong to the class of the Bacteroidia. GenBank Accession Numbers of the

SSU rRNA gene sequence are provided for each species and the family names are indicated. Deeply rooted Bacteroides spp., which based on the

SSU rRNA gene sequence cluster within distant phylogenetic groups are depicted in the gray area.
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to the following bacterial families: Bacteroidaceae, Prevo-

tellaceae, Rikenellaceae, and Porphyromonadaceae (Fig. 6).

These bacterial species share the common feature that

they produce succinic acid, acetic acid, and in some cases

propionic acid, as the major end-products. Species

belonging to the genera Alistipes, Bacteroides, Parabactero-

ides, Prevotella, Paraprevotella, Alloprevotella, Barnesiella,

and Tannerella are saccharolytic, while species belonging

to Odoribacter and Porphyromonas are predominantly

asaccharolytic. Some Bacteroides spp. and Prevotella spp.

can degrade complex plant polysaccharides such as starch,

cellulose, xylans, and pectins (Wu et al., 1992; Morotomi

et al., 2009; Sakamoto & Ohkuma, 2012). The Bacteroide-

tes species play also an important role in protein metabo-

lism, as some species have proteolytic activity, assigned to

the proteases that are linked to the cell wall (Macfarlane

et al., 1986; Macfarlane et al., 1988), while some Bactero-

ides spp. have a potential to utilize urea as a nitrogen

source (Yatsunenko et al., 2012). Other important func-

tions of Bacteroides spp. include the deconjugation of bile

acids (Narushima et al., 2006) and growth on mucus (Le-

itch et al., 2007). The Bacteroidetes contribute to the

recently proposed classification of the gastrointestinal

microbiota into enterotypes (Arumugam et al., 2011).

The importance of the Bacteroidetes is further illustrated

by the fact that this group is the most stable component

of the gastrointestinal microbiota over time in healthy

adults (Rajili�c-Stojanovi�c et al., 2013b). Anecdotally, a

unique case report described the microbiota of a critically

ill patient that harbored no Bacteroidetes — this patient

passed away soon after sampling (Dubourg et al., 2013).

Because of their broad metabolic potential, the role of

the Bacteroidetes in the gastrointestinal microbiota is

complex: while the reduced abundance of the Bacteroide-

tes in some cases is associated with obesity (Ley, 2010)

and irritable bowel syndrome (Rajili�c-Stojanovi�c et al.,

2011), this bacterial group appears to be enriched in

patients suffering from type 1 and type 2 diabetes (Larsen

et al., 2010). Moreover, Bacteroides spp. in contrast to

Prevotella spp. were recently found to be enriched in the

metagenomes of subjects with low gene richness that were

associated with adiposity, insulin resistance and dyslipida-

emia as well as an inflammatory phenotype (Le Chatelier

et al., 2013).

Bacteroidetes species that belong to classes Flavobacteri-

ales and Sphingobacteriales are only occasionally detected

in the gastrointestinal tract (Fig. 7, Table S1). With an

exception of Capnocytophaga spp. and Sphingobacterium

spp. that can be detected in the human oral cavity, the

other bacteria of this group are typically associated with

other ecosystems (primarily soil). There is no data about

the role of these bacteria in the gastrointestinal microbi-

ota, but it is noteworthy that several of these bacteria

were detected only in the SSU rRNA gene clone libraries

of the microbiota of inflammatory bowel disease patients

(Frank et al., 2007).

Firmicutes

Firmicutes are the most diverse and abundant group of

the gastrointestinal microbiota, making up over half and

in many cases around 80% of the gastrointestinal micro-

biota of healthy adults. The gastrointestinal Firmicutes are

distributed over four classes: Bacilli, Clostridia, Erysipelo-

trichi, and Negativicutes. Traditionally, this group is con-

sidered to include Gram-positive bacteria with a low GC

Flavobacteriaceae

Sphingobacteriaceae

Dyadobacter beijingensis, DQ335125
Bifissio spartinae, AY056829

Chryseobacterium hominis, AM261868

Flavobacterium lindanitolerans, EF424395

Capnocytophaga sputigena, X67609

Sphingobacterium multivorum, AB100739
Pedobacter daejeonensis, EF660750

Flavobacterium sakaeratica, AB465579
Flavobacterium banpakuense, GQ281770

Flavobacterium oncorhynchi, FN669776
Flavobacterium cheniae, EF407880

Capnocytophaga granulosa, U41348

Cloacibacterium normanense, AJ575430
Wautersiella falsenii, AM084341

Dyadobacter fermentans, NR_074368

Spirosoma linguale, NR_074369
Rudanella lutea, NR_044329

Hymenobacter rigui, HM032896

Capnocytophaga ochracea, AF543298

Cytophagaceae

Unclassified Bacteroidetes

10%

Fig. 7. Phylogenetic tree of the human gastrointestinal species that belong to the classes of the Cytophagia and Sphingobacteria. GenBank

Accession Numbers of the SSU rRNA gene sequence are provided for each species and the family names are indicated.
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content in their DNA, although recent studies have

shown that Gram-positive staining is not a feature of

many Firmicutes. This can be illustrated with Faecalibacte-

rium prausnitzii, which is a Gram-negative-staining bacte-

rium, previously classified within the Fusobacteria phylum

(Duncan et al., 2002a), novel gastrointestinal isolates such

as Christensenella minuta (Morotomi et al., 2012), but

also typical Gram-negative bacteria such as members of

the Veillonellacea family (Marchandin et al., 2010). While

the vast majority of the Firmicutes are indeed low GC

content bacteria, this also, is not a common feature of

the phylum as seen in an example of Anaerofustis ster-

corihominis, which DNA has a content of the GC of

around 70% (Finegold et al., 2004). Most of the Firmi-

cutes, notably the Clostridium spp. and Bacillus spp., are

spore-formers and this property confers special survival

value in and beyond the gastrointestinal tract.

The most abundant gastrointestinal microorganisms

are members of the class Clostridia and within this class

the families Ruminococcaceae and Lachnospiraceae (Tap

et al., 2009; Jalanka-Tuovinen et al., 2011). Another

diverse group of the Firmicutes is the class Bacilli that

includes the genera of Lactobacillus, Enterococcus, and

Streptococcus, which are dominant in the upper part of

the gastrointestinal tract. In line with its enormous diver-

sity, the Firmicutes in the gastrointestinal tract perform a

number of different functions that stretch from health

promoting of some probiotic Lactobacillus spp. to patho-

genic properties of Clostridium difficile. The vast majority

of the currently uncultured gastrointestinal inhabitants

belong to the phylum Firmicutes (Rajili�c-Stojanovi�c et al.,

2007), which illustrates that future research is expected to

dramatically expand our knowledge about the functional

contribution of this group to the ecosystem and the host.

Bacilli

The first representative of the Bacilli class retrieved from

the gastrointestinal tract was a member of Lactobacillales

order and was isolated in 1900 — Bacillus acidophilus

(Moro, 1900). The description of this species is vague,

based on the currently accepted standards, and as the ori-

ginal strain was lost, it is not clear if this species is Lacto-

bacillus acidophilus or one of the other five species

derived from the so-called L. acidophilus group (Mits-

uoka, 1992). Lactobacilli comprise a group of gastrointes-

tinal inhabitants that has received particular scientific

attention (Tannock, 2004), mainly because of the health

claims proposed by Metchnikoff (1908) in the beginning

of the nineteenth century and their later application as

probiotics. Although highly important for the health, Lac-

tobacilli are rarely detected as markers of the gastrointes-

tinal microbiota dysbiosis, but such reports exist and

include a reduced abundance in patients suffering from

inflammatory bowel disease (Keighley et al., 1978; Ott

et al., 2004), type 1 diabetes (Murri et al., 2013). This

might be related to the fact that lactobacilli are only a

minor fraction of the fecal microbiota where they can

reach counts of up to 108 cells g�1 (Simon & Gorbach,

1984), and most of the analysis of the gastrointestinal

microbiota is based on the use of stool samples. In the

small intestine Lactobacillus spp. represent one of the pre-

dominant groups obtained by culturing (Reuter, 2001).

However, while molecular studies could confirm their

presence in the upper intestinal tract, these also showed

that the Lactobacilli are quite variable and not as abun-

dant as other gastrointestinal genera at that location, such

as Streptococcus and Veillonella (Booijink, 2009; Booijink

et al., 2010). This may explain why Lactobacillus spp.

should be part of the diet, as consumed probiotic strains

of Lactobacillus spp. have a beneficial effect on human

health and specific induction of gene expression has been

observed in duodenal biopsies after exposure of Lactoba-

cillus plantarum (van Baarlen et al., 2009). Specific media,

developed already in the 1950s (Rogosa et al., 1951),

enabled the isolation of numerous Lactobacillus spp. Nev-

ertheless, new Lactobacillus spp. from human gastrointes-

tinal tract are still being reported (Roos et al., 2005; Oki

et al., 2012), indicating that even the 38 known gastroin-

testinal Lactobacillus sp. (Fig. 8) are not covering the

group’s full diversity. Several previously misclassified Lac-

tobacillus spp. have now been reclassified into novel gen-

era, including Weissella, Atopobium, Eggerthia, and

Kandleria (Collins & Wallbanks, 1992; Bjorkroth et al.,

2002; Salvetti et al., 2011). Currently, only Lactobacillus

rogosae is strongly outgrouping from the remaining Lacto-

bacillus spp., although even after exclusion of the strongly

outgrouping species, the species show a large degree of

the SSU rRNA gene variation and form several groups in

the phylogenetic tree (Fig. 8) As Lactobacillus spp. pro-

duce lactic acid as the major fermentation production

that can be accompanied with ethanol and carbon dioxide

in some species and under some conditions, traditionally

Lactobacillus spp. are classified into three groups: obli-

gately homofermentative, facultatively homofermentative,

and obligately heterofermentative. However, the phyloge-

netic position of the species does not seem to be related

to their fermentation profile.

In addition to Lactobacillus spp., other related, lactic

acid bacteria can be detected in the gastrointestinal tract.

Members of the genera Leuconostoc and Weissella used to

be considered as occasional and possibly transient mem-

bers of the gastrointestinal microbiota. However, a recent

study showed that Leuconostoc spp. and Weissella spp. are

abundant (representing up to 24% of total microbial

community) and widely distributed in colonic mucosa
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after bowel cleansing (Hong et al., 2011). Moreover, Leu-

conostoc was identified as the most abundant bacterial

genus, representing almost a quarter of the total micro-

bial community in a group of meconium samples of new-

borns, which persisted in the gastrointestinal tract until

7 months of age (Gosalbes et al., 2013). In the same

study, Weissella spp. were also detected as the earliest col-

onizers of the gastrointestinal tract of some newborns.

These bacteria utilize simple sugars and their presence in

the lower parts of the gastrointestinal tract is dependent

on the activity of other gastrointestinal microorganisms

that have the ability to degrade complex sugars, resistant

to human digestive enzymes.

Other relevant gastrointestinal bacteria belonging to the

Lactobacillales order include members of the genera Strep-

tococcus and Enterococcus. These two genera have only

recently been separated, although the presence of the sub-

group within the genus Streptococcus was noticed as late

as in the 1930s (Sherman, 1938). They are one of the

dominant bacterial fractions in the upper part of the

small intestine (Simon & Gorbach, 1986; Reuter, 2001).

Forty-six species of these two genera are known to be gas-

trointestinal inhabitants (Fig. 9). In addition, Streptococ-

cus pleomorphus, which also can be part of the

gastrointestinal microbiota, forms a deep branch in the

SSU rRNA gene sequence–based phylogenetic tree, sug-

gesting that this species should be reclassified into

another genus within the Erysipelotrichaceae family. The

ample presence of the Enterococcus and Streptococcus spp.

can be explained by the fact that the species are oxygen
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Fig. 8. Phylogenetic tree of a fraction of the human gastrointestinal species that belong to the order of the Lactobacillales. GenBank Accession

Numbers of the SSU rRNA gene sequence are provided for each species and the family names are indicated. For the other gastrointestinal species

that belong to the order of the Lactobacillales see Fig. 9.
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tolerant and easily cultivable. The oldest isolate of the

group, Enterococcus faecalis, was for the first time plated

in 1899 from a case of endocarditis (MacCallum & Has-

tings, 1899), and only 7 years later it was recovered from

intestinal samples (Andrewes & Horder, 1906). Both

Streptococcus and Enterococcus spp. are among the first

established species in the infant’s gastrointestinal tract

that can be detected already in the first day of life (Sol�ıs

et al., 2010; Gosalbes et al., 2013). Although this early

presence would suggest an important role in the ecosys-

tem, the data on the role of Streptococcus and Enterococcus

spp. in human health are conflicting. Enterococcus spp.

are widely recognized as opportunistic pathogens,

although these species are common, and can even exhibit

probiotic properties (�O Cu�ıv et al., 2013). The abundance

of a Streptococcus species is decreased in mucosal biopsies

in Crohn’s disease patients (Li et al., 2012), while Strepto-

coccus and Enterococcus phylotypes are found to be
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Fig. 9. Phylogenetic tree of the human gastrointestinal species that belong to the families of Streptococcaceae and Enterococcaceae. GenBank

Accession Numbers of the SSU rRNA gene sequence are provided for each species and the family names are indicated. For the other

gastrointestinal species that belong to the order of the Lactobacillales see Fig. 8.
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increased in fecal samples of colorectal cancer patients

(Wang et al., 2012). However, in the adult gastrointesti-

nal tract, Streptococcus spp. are particularly abundant in

the upper part of the gastrointestinal tract, where they are

active in the process of simple sugar fermentation into

lactate (Zoetendal et al., 2012). Moreover, they may form

a tropic chain with the equally abundant Veillonella spp.

that convert the produced lactate into propionate

(Zoetendal et al., 2012).

Various members of the Bacillales order can be low-

level constituents of the human gastrointestinal microbi-

ota (Figs 10 and 11 — for clarity the phylogenetic tree of

this numerous order was split into two parts). Among

them, a large number of Staphylococcus spp., which typi-

cally are associated with the human skin, can be detected

in the human gastrointestinal tract (Fig. 11). These bacte-

ria are one of the earliest colonizers of the gastrointestinal

tract, particularly in infants that were delivered by cesar-

ean section (Dominguez-Bello et al., 2010). The predomi-

nant early colonization with Staphylococcus spp. is,

however, coupled with several health risks, as it induces

strong stimulation of the immune system, which can be a

trigger for the development of asthma and rhinitis in later

childhood (Johansson et al., 2012). Furthermore, pre-

dominant colonization of the gastrointestinal tract of pre-

mature infants with Staphylococcus spp. is associated with

fatal sepsis (Madan et al., 2012). An increased abundance

of bacteria belonging the Staphylococcus genus, both in
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Fig. 10. Phylogenetic tree of a fraction of the human gastrointestinal species that belong to the order of the Bacillales. GenBank Accession

Numbers of the SSU rRNA gene sequence are provided for each species and the family names are indicated. The species indicated in bold are

based on the SSU rRNA gene sequence clustering within the families that are designated on the figure in contrast to their official classification.

For the other gastrointestinal species that belong to the order of the Bacillales see Fig. 11.
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Bacillus infantis, AY904032
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Fig. 11. Phylogenetic tree of a fraction of the human gastrointestinal species that belong to the order of the Bacillales. GenBank Accession

Numbers of the SSU rRNA gene sequence are provided for each species and the family names are indicated. For the other gastrointestinal species

that belong to the order of the Bacillales order see Fig. 10.
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the upper and lower gastrointestinal tract, is associated

with celiac disease, although the abundance of these bac-

teria can be depleted with the withdrawal of gluten from

the diet of patients (Collado et al., 2009).

Gemella spp. are abundant in the upper gastrointestinal

tract and specially the proximal small intestine (Ou et al.,

2009). While their function in the gastrointestinal tract

has not been determined, these species can include patho-

genic strain that translocate to other organs. For instance,

Gemella spp. have been described as likely causing agents

of endocarditis, particularly in patients that suffer from

gastrointestinal disorders (such as colon cancer; Lopez-

Dupla et al., 1996).

Numerous members of the Bacillus and Paenibacillus

genera have been detected in the samples of the human gas-

trointestinal tract. The first representatives of this group of

bacteria were isolated in 1919 by Marjorie Batchelor, who

reported Bacillus cereus as the most prevalent member of

the aerobic sporogenic bacteria in infant feces (Batchelor,

1919). Members of the Bacillus genus were often reported

in the older cultivation-based studies, but the vast majority

of the species of this genus and related genera were

reported only recently (Hoyles et al., 2012; Lagier et al.,

2012a; Zoetendal et al., 2012). One of these studies was

designed for the targeted cultivation of Bacillus and related

species from human samples (Hoyles et al., 2012). It has

been shown that Bacillus spp. could be retrieved from all

analyzed samples, although these bacteria have very low

abundance of 102–104 cells mL�1 of intestinal content.

Many of the Bacillus spp. isolated in this study exhibited

notable antimicrobial activity. This feature is in line with

the use of several Bacillus spp. as potent probiotics with

immunomodulatory potential (Duc et al., 2004). Little is

known about the function of these bacteria in the ecosys-

tem, but it is noteworthy that two independent studies have

shown that members of the Bacillales order, more specifi-

cally Aneurinibacillus spp., have an increased abundance in

feces of irritable bowel syndrome patients (Krogius-

Kurikka et al., 2009; Rajili�c-Stojanovi�c et al., 2011), while a

significantly higher abundance of Bacillus subtilis was found

in the feces of bottle-fed than breast-fed babies (Benno

et al., 1984).

Clostridia

The class Clostridia clusters bacteria that are dominant

and frequently detected in the lower gastrointestinal tract

that are distributed within the families: Clostridiaceae,

Christensenellaceae, Eubacteriaceae, Lachnospiraceae, Pepto-

streptococcaceae, Ruminococcacea as well as bacteria with

an unclear taxonomic status that are classified within

Clostridiales Incertae Sedis families XI and XIII (Garrity

et al., 2005). Members of the Clostridia class are hetero-

geneous and many of its members were initially assigned

to Clostridium genus and subsequently reclassified into

novel genera. The Clostridium sensu stricto — the real

Clostridium spp. — are grouped around the type species

Clostridium butyricum and belong to the Clostridium clus-

ter I within the Clostridiaceae family (Fig. 12; Stacke-

brandt et al., 1999). In addition to Clostridium spp., the

Clostridiaceae officially groups Sarcina spp., Butyricicoccus

pullicaecorum and Lactonifactor longoviformis, Anoxynatro-

num sibiricum while the latter three, based on their SSU

rRNA gene sequence, should be assigned to various other

Clostridiales families (Figs 13, 14 and 16). The first

human gastrointestinal Clostridium isolate, C. perfringens,

was recovered in 1905 (Passini, 1905). The same species,

previously known as Bacillus aerogenes capsulatus and

Clostridium welchii, was earlier isolated from a case of

endocarditis (Welch & Nuttall, 1892). Both isolation sites

fit the nowadays known properties of C. perfringens,

which is a commensal gastrointestinal bacterium that can

cause bacteraemia (Petit et al., 1999). Up to now, 72

Clostridium spp. have been detected in the human gastro-

intestinal samples, of which 30 belong to the Clostridium

sensu stricto (Fig. 12). The other Clostridium spp. belong

to different families within the Firmicutes phylum, while

Clostridium rectum belongs to the Fusobacteria phylum.

Members of the Clostridium sensu stricto are generally

perceived as pathogenic, although cultivation-based stud-

ies show that C. perfringens and other real clostridia can

be found in densities of up to 1010 cells g�1 intestinal

content of healthy individuals (Finegold et al., 1974), and

up 107 cells g�1 intestinal content of healthy infants

(Mevissen-Verhage et al., 1987). Still, the presence of

these bacteria, notably as seen for C. perfringens in elderly

Irish subjects, is interpreted as an indicator of a less

healthy microbiota (Lakshminarayanan et al., 2013).

The most abundant and diverse gastrointestinal family

is the Lachnospiraceae. This family groups 24 different

genera, most of which can be detected in the human gas-

trointestinal tract. In addition, a number of species that

are officially classified into the genera Clostridium, Eubac-

terium, and Ruminococcus, cluster within the Lachnospira-

ceae based on their SSU rRNA gene sequence (Fig. 13).

Members of the Lachnospiraceae are also among the first

to be established in the gastrointestinal tract. A recent

study showed that Ruminococcus gnavus is an exclusive

representative of this family in 2-months old breast-fed

infants, while infants fed with cow-milk based formula

have a more diverse Lachnospiraceae community (Tan-

nock et al., 2013). Analysis of the microbiota of children

and adults showed that this group of bacteria is predomi-

nant in both young children and in adults, which indicates

the early establishment of these bacteria (Ringel-Kulka

et al., 2013).
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Several members of the Lachnospiraceae family are

butyrate producers including Anaerostipes spp., Butyrivib-

rio spp., Coprococcus spp., Roseburia spp., Eubacterium

rectale- and Eubacterium hallii-related species. Butyrate

can be used as an energy source by the gut epithelial cells,

and it has anticarcinogenic and anti-inflammatory prop-

erties (Hamer et al., 2008). Furthermore, a recent study

shows that butyrate produced by intestinal microorgan-

isms has beneficial effects on glucose and energy homeo-

stasis (De Vadder et al., 2014). The decrease in the

relative abundance of the butyrate-producing Lachnospir-

aceae in the gastrointestinal microbiota is associated with

compromised health status of subjects suffering from

colorectal cancer (Wang et al., 2012), ulcerative colitis

(Rajili�c-Stojanovi�c et al., 2013a), type 1 (Murri et al.,

2013) and type 2 diabetes (Qin et al., 2012). This bacte-

rial group seems to be stimulated by an omnivore diet,

since it is present in lower abundance in vegetarians

(Kabeerdoss et al., 2012). This is an intriguing but not

yet explained finding, as it could be expected that vege-

tarian, plant-based diets, which are rich in fibers, would

favor butyrate production in the colon and promote

health.

The gastrointestinal Lachnospiraceae include Dorea spp.,

which are the major gas producers in the gastrointestinal

tract and its end-products of glucose fermentation include

both hydrogen and carbon dioxide (Taras et al., 2002).

Dorea spp. were found in an increased in abundance in

both pediatric and adult irritable bowel syndrome

patients (Rajili�c-Stojanovi�c et al., 2011; Saulnier et al.,

2011), which probably could explain the symptom of

bloating, experienced by the majority of these patients.
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Fig. 12. Phylogenetic tree the human gastrointestinal species that belong to the family of Clostridiaceae. GenBank Accession Numbers of the

SSU rRNA gene sequence are provided for each species and the family names are indicated. The species indicated in bold are based on the SSU

rRNA gene sequence clustering within the families that are designated on the figure in contrast to their official classification. Deeply rooted

Clostridium spp., which based on the SSU rRNA gene sequence cluster within distant phylogenetic groups, are depicted in the gray area.
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Fig. 13. Phylogenetic tree the human gastrointestinal species that belong to the family of the Lachnospiraceae. GenBank Accession Numbers of

the SSU rRNA gene sequence are provided for each species and the family names are indicated. The species indicated in bold are based on the

SSU rRNA gene sequence clustering within the families that are designated on the figure in contrast to their official classification.
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Blautia is a recently described bacterial genus that

groups several abundant gastrointestinal bacteria that

were previously assigned to the Ruminococcus genus –
notably those related to Ruminococcus obeum (Fig. 14).

The common feature of Blautia spp. is the utilization of

hydrogen and carbon dioxide to form acetate (Bernalier

et al., 1996). Blautia spp. are among the most abundant

members of the entire gastrointestinal tract and can

encompass between 2.5% and 16% of the total microbi-

ota (Zoetendal et al., 2002). This abundant bacterial

group is significantly depleted in elderly subjects (Hayashi

et al., 2003; Biagi et al., 2010) and in mucosal samples of

colorectal cancer patients (Chen et al., 2012). In contrast,

increased levels of Blautia spp. are observed in irritable

bowel syndrome patients (Rajili�c-Stojanovi�c et al., 2011),

but this could reflect the adaption of the ecosystem to

the larger amount of gasses produced by Dorea spp.,

which can be utilized by Blautia spp.

An interesting group within the Lachnospiraceae family

is the misclassified Ruminococcus spp., including R. gna-

vus, R. torques, R. lactaris, and R. faecis. These bacteria

are abundant in the gastrointestinal tract (Holdeman &

Moore, 1974), and apparently associated with a number

of important metabolic functions. R. torques and other

currently uncultured species related to R. torques, are

among the most potent mucus utilizes that enable mucus

degradation by secretion of several different extracellular

glycosidases (Hoskins et al., 1985). Furthermore, the

abundance of these bacteria is strongly associated with

the level of triglycerides in blood serum (Lahti et al.,

2013). Several studies of the microbiota of irritable bowel

syndrome patients and controls have shown that organ-

isms related to these misclassified Ruminococcus spp. are

significantly elevated in patients (Kassinen et al., 2007;

Rajili�c-Stojanovi�c et al., 2011; Saulnier et al., 2011).

Moreover, the abundance of these bacteria is positively

correlated with irritable bowel syndrome symptoms (Mal-

inen et al., 2010) and significantly reduced by probiotics

consumption that reduces these symptoms (Lyra et al.,

2010).

The Ruminococcaceae family is another relevant group

of gastrointestinal bacteria within the Clostridiales order.

It includes the true Ruminococcus spp. — members of the

Ruminococcus sensu stricto namely R. albus, R. bromii,

R. callidus, R. champanellensis, and R. flavefaciens. Several

other frequently detected gastrointestinal genera that are

Faecalibacterium prausnitzii, AJ413954

Subdoligranulum variable, AJ518869
Gemmiger formicillis, GQ898320

Eubacterium siraeum, EU266550

Clostridium methylpentosum, Y18181
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Fig. 14. Phylogenetic tree the human gastrointestinal species that belong to the Clostridium cluster IV, most of which belong to the family of

the Ruminococcaceae. GenBank Accession Numbers of the SSU rRNA gene sequence are provided for each species and the family names are

indicated. The species indicated in bold are based on the SSU rRNA gene sequence clustering within the families that are designated on the

figure in contrast to their official classification. Deeply rooted Ruminococcus spp., which based on the SSU rRNA gene sequence cluster within

distant phylogenetic groups, are depicted in the gray area.
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recognized members of the Clostridium cluster IV (Clos-

tridium leptum group) are either members or are closely

related to this family (Fig. 14). The true Ruminococcus

spp. are an abundant fraction of the human gastrointesti-

nal microbiota that can reach densities of up to

1010 cells g�1 of intestinal content (Finegold et al., 1977).

Being strictly anaerobic cellulolytic cocci, Ruminococcus

spp. were isolated from human gastrointestinal samples

only after the improvement of the anaerobic techniques

and media for studying rumen anaerobes (Hungate,

1947). The first human gastrointestinal Ruminococcus spp.

reported is Ruminococcus bromii isolated in 1972 (Moore

et al., 1972). Similar to the other gastrointestinal bacteria,

the initially defined Ruminococcus spp. are a heteroge-

neous group, which based on the SSU rRNA gene

sequence clusters within the Ruminococcaceae and Lachno-

spiraceae families. Recently, five gastrointestinal Rumino-

coccus spp. were reclassified into Blautia genus, leaving

seven others to be reclassified (Liu et al., 2008; Figs 9 and

10). Bacteria that belong to the Ruminococcus sensu stricto

degrade complex sugars to produce acetate as the major

fermentation product. Both in vitro and in vivo studies

have shown that R. bromii is the major degrader of the

resistant starch in the human gastrointestinal tract (Ko-

vatcheva-Datchary et al., 2009; Walker et al., 2011).

Application of the resistant starch in the diet has a wide

range of health-promoting effects, suggesting the impor-

tance of the metabolic activity of R. bromii for the wellbe-

ing of the host (Higgins & Brown, 2013). The importance

of the members of the Ruminococcus sensu stricto for the

intestinal health is indicated by their reduced abundance

in feces of Crohn’s disease (Kang et al., 2010) and ulcera-

tive colitis patients (Rajili�c-Stojanovi�c et al., 2013a).

Among the Ruminococcaceae family, Faecalibacterium

prausnitzii (previously known as Fusobacterium prausnitzii)

is the most prevalent and abundant gastrointestinal micro-

organism (Holdeman et al., 1976). Faecalibacterium

prausnitzii can utilize glucose, fructose, and fructo-oligosa-

charides, as well as complex molecules such as pectin and

N-acetylglucosamine to produce butyrate, formate and lac-

tate (Duncan et al., 2002a; Lopez-Siles et al., 2012). It is

one of the major butyrate producers in the gastrointestinal

tract, which is a relevant feature because of the health-pro-

moting properties of butyrate. The reduced abundance of

this bacterium is detected in association with Crohn’s dis-

ease (Sokol et al., 2006; Kang et al., 2010) and with colon

cancer (Chen et al., 2012). This bacterium is important for

the gastrointestinal microbiota homeostasis as it has found

to show anti-inflammatory properties in mice (Sokol et al.,

2008) and is associated with a range of metabolic processes

in the human mucosa (Lepage et al., 2011). Health-pro-

moting properties are also exhibited by B. pullicaecorum,

another species with the SSU rRNA gene sequence that is

related to the Ruminococcaceae family. This bacterium is

significantly reduced in inflammatory bowel disease

patients, while its oral administration strengthens the epi-

thelial barrier function in animal models by increasing the

trans-epithelial resistance (Eeckhaut et al., 2013).

The first Eubacterium spp. from a human gastrointesti-

nal sample was isolated already in 1908 when Henri Tis-

sier plated Bacillus ventriousus, later renamed into

Eubacterium ventriosum (Tissier, 1908). The genus Eubac-

terium was for a long time recognized as one of the most

abundant genera of the human gastrointestinal microbi-

ota, with densities of up to 1010 cells g�1 of intestinal

content (Moore & Holdeman, 1974a). However, Eubacte-

rium, similar to Clostridium, is a genus that is very

vaguely described. Defined as anaerobic, rod-shaped,

Gram-positive bacteria that do not form endospores,

Eubacterium genus includes a consortium of distantly

related species. Some Eubacterium spp. have been reclassi-

fied into novel genera within two bacterial phyla —
Actinobacteria and Firmicutes — of which six genera

(Dorea, Collinsella, Eggerthella, Flavonifractor, Mogibacteri-

um and Pseuodramibacter) can be members of the gastro-

intestinal microbiota (Willems & Collins, 1996; Kageyama

et al., 1999a, b; Nakazawa et al., 2000; Taras et al., 2002;

Carlier et al., 2010). Further reclassification of the genus

can be expected, as only four gastrointestinal Eubacterium

spp. belong to the Eubacterium sensu stricto (Fig. 15). In

a recent study of the gastrointestinal microbiota of cente-

narians, Eubacterium spp. (notably those related to Eubac-

terium limosum) were reported as signature bacteria of

the long life, being 10-fold increased in centenarians

(Biagi et al., 2010). It is known that E. limosum has the

ability to transform dietary phytoestrogens into forms

that might have a positive impact on health (Clavel et al.,

2006; Possemiers & Verstraete, 2009). Furthermore,

E. limosum is selectively stimulated by prebiotics that

improve the symptoms of inflammatory bowel disease

patients (Kanauchi et al., 2005).

Mogibacterium is a genus established by reclassification

of the intestinal bacterium – Eubacterium timidum. Mogi-

bacterium spp. are enriched in mucosa-associated micro-

biota in colon cancer patients but not much is known

about this group of bacteria belonging to Clostridium

Family XIII Incertae Sedis (Chen et al., 2012).

Prior to the molecular revolution of the gastrointestinal

microbiota research (Fig. 1), Peptococcus spp. and Pepto-

streptococcus spp. were considered as the dominant and

abundant in the human gastrointestinal tract (Holdeman

et al., 1976). However, the latter research has shown that

these two genera are heterogeneous and led to the major

reclassification resulting in definition of novel genera that

include Anaerococcus, Blautia, Finegoldia, Parvimonas, and

Peptoniphilus (Murdoch & Shah, 1999; Ezaki et al., 2001;
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Tindall & Euzeby, 2006; Liu et al., 2008). All these genera,

with exception of Blautia that is a genus in the Lachno-

spiraceae family, belong to the Clostridiales Family XI

Incertae Sedis (Fig. 16). Among this group of bacteria,

Peptoniphilus asaccharolyticus is the most frequently

detected and also was the first to be cultured and

described (Distaso, 1911). Currently, only two true Pepto-

streptococcus spp. have been recognized as gastrointestinal

inhabitants, although a number of other species that are

officially classified within different genera (predominantly

Clostridium) belong to the Peptostreptococcaceae family

according to their SSU rRNA gene sequence (Fig. 16).

Members of the Peptostreptococcaceae family are, in prin-

ciple, associated with compromised health, and the most

convincing example of this is Clostridium difficile.

Although C. difficile can be present in low numbers in

healthy subjects without exhibiting pathogenic properties

(Ozaki et al., 2004), many strains are toxin producing

and are well-established pathogens that cause severe diar-

rhea. Furthermore, recent studies have shown that Pepto-

streptococcus spp. have an increased abundance in

association with ulcerative colitis (Rajili�c-Stojanovi�c et al.,

2013a) and colorectal cancer (Chen et al., 2012; Wang

et al., 2012). Based on the SSU rRNA gene sequence, the

members of the Peptococcaceae family form two paraphy-

letic groups within the Firmicutes phylum, of which the

group that contains the two human gastrointestinal bacte-

ria is closely related to Negativicutes class and is discussed

in the following section.

In addition to the already mentioned species, five other

gastrointestinal bacteria that officially belong to the Clo-

stridia class, form distinct branches in the phylogenetic

tree (Fig. 17). Two of these gastrointestinal bacteria,

namely Catabacter hongkongensis and C. minuta, form a

separate cluster within the Clostridiales order of the

Clostridia class and are the only cultured representatives

of a phylogenetic group that was previously detected only

in various molecular studies and was in a previous review

designated as uncultured Clostridiales II (Rajili�c-Stojano-

vi�c et al., 2007). These two species are officially assigned

to two different families (Catabacteriaceae and Christense-

nellaceae), although based on the SSU rRNA gene

sequence similarity (96.5%), they should be grouped in

the same family, and, most likely, in the same genus.

Catabacter hongkongensis was isolated in 2007 from a

blood sample, although the intestinal origin of the bacte-

rium was suspected (Lau et al., 2007). This bacterium

was later isolated from patients with acute appendicitis,

but also from other tissues where it was a causative agent

of fatal bacteremia (Lau et al., 2012). Christensenella min-

uta is an intestinal isolate, described in 2012 (Morotomi

et al., 2012). Not much is known about the role of this

group of strictly anaerobic bacteria in the human gastro-

intestinal tract, but it is noteworthy that bacteria that

belong to the Christensenella/Catabacter group were

reported to be dramatically (20-fold) depleted in fecal

samples of ulcerative patients relative to controls (Rajili�c-

Stojanovi�c et al., 2013a) and significantly (fivefold)

depleted in fecal samples of patients with postinfectious

irritable bowel syndrome (Jalanka-Tuovinen et al., 2013).

Two members of the Peptococcaceae family were

reported as members of the human gastrointestinal

Lachnospiraceae (cluster XIVa)
Ruminococcaceae (cluster IV)

Erysipelotrichaceae (clusters XVII & XVIII)

Peptostreptococcaceae (cluster XI)

Eubacterium barkeri, M23927
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10%
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Clostridiaceae (cluster I)
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Fig. 15. Phylogenetic tree the human gastrointestinal species that belong to the family of the Eubacteriaceae and Clostridiales Family XIII

Incertae Sedis. GenBank Accession Numbers of the SSU rRNA gene sequence are provided for each species and the family names are indicated.

The species indicated in bold are based on the SSU rRNA gene sequence clustering within the families that are designated on the figure in

contrast to their official classification. Deeply rooted Eubacterium spp., which based on the SSU rRNA gene sequence cluster within distant

phylogenetic groups are depicted in the gray area.
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microbiota (Fig. 17). These bacteria are officially classified

within the Clostridia class and Clostridiales order,

although based on the SSU rRNA gene sequence they are

closely related to the members of the Selenomonadales

order within the Negativicutes class (Fig. 18). Based on

their SSU rRNA gene sequence, gastrointestinal members

of the Peptococcaceae family will be reclassified either the

Negativicutes class or into another novel class, different

Clostridium lituseburense, EU887828

Peptostreptococcaceae

Clostridium bartlettii, AY438672

Clostridium glycoicum, X76750
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Anaerococcus octavius, Y07841

Fig. 16. Phylogenetic tree the human gastrointestinal species that belong to families of the Peptostreptococcaceae and Clostridiales Family XI

Incertae Sedis. GenBank Accession Numbers of the SSU rRNA gene sequence are provided for each species and the family names are indicated.

The species indicated in bold are based on the SSU rRNA gene sequence clustering within the families that are designated on the figure in

contrast to their official classification.
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Fig. 17. Partially opened phylogenetic tree

the human gastrointestinal species that belong

to the Firmicutes phylum on which five species

that cluster within the three families with low

diversity are indicated.
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from Clostridia sensu stricto. Peptococcus niger is the only

representative of the genus. This strictly anaerobic bacte-

rium has been isolated from various body sites, while the

strain isolated from feces showed an ability to desulfate

and perform other chemical transformation of steroid

molecules (Van Eldere et al., 1987). This feature of

P. niger makes it an important player in enterophatic cir-

culation of various steroid molecules, primarily steroid

hormones, which has a major impact on human metabo-

lism. Another member of the Peptococcaceae family, Des-

ulfitobacterium hafniense, has been reported only once as

an inhabitant of the human gastrointestinal tract (van de

Pas et al., 2001). In contrast to other members of the

genus, the human D. hafniense is not able to use chloro-

ethenes or chlorophenol as terminal electron acceptors

(Smidt & de Vos, 2004). This bacterium is capable of

using sulfite as terminal electron acceptor and hence pro-

duces hydrogen sulfide. Hydrogen sulfide is also produced

by P. niger (Wilkins et al., 1975), and this property that

may be detrimental to health as described below for the

Deltaproteobacteria.

Finally, Halanaerobaculum tunisiense has been identified

by pyrosequencing of the V6 variable region of the SSU

rRNA gene in a recent study that compared efficiency of

culturomics and pyrosequencing approach for studying

the gastrointestinal microbiota diversity (Lagier et al.,

2012a). Halanaerobaculum tunisiense is a recently

described anaerobic bacterium that was isolated from

hypersaline lake in Tunisia (Hedi et al., 2009). Given the

conditions that the isolated strain of this bacterium

requires for its growth (the minimal required NaCl con-

centration of 14%), it is not likely that it represents a

member of the gastrointestinal microbiota, although this

should be confirmed in further studies.

Negativicutes

The Negativicutes include bacteria that were previously

assigned to the Clostridium cluster IX (Collins et al.,

1994; Marchandin et al., 2010), distributed within the fol-

lowing genera: Acidamoinococcus, Dialister, Megamonas,

Megasphaera, Phascolarctobacterium and Veillonella

(Fig. 18). Bacteria of this group used to be classified

within the order Clostridiales, although based on their

SSU rRNA gene sequence, they are distant from other

Clostridiales. Therefore, following the description of a

novel gastrointestinal inhabitant — Negativicoccus succi-

nicivorans, the novel class of Negativicutes and novel

order of Selenomonadales were introduced to accommo-

date the Gram-negative staining bacteria within the Fir-

micutes phylum (Marchandin et al., 2010). The first

record of this bacterial group dates from 1898 when Veil-

lon and Zuber isolated Staphylococcus parvulus, which was

later reclassified as Veillonella parvula, from infected

appendix tissue (Veillon & Zuber, 1898). The Negativi-

cutes are typically isolated from the oral cavity or the

proximal small bowel (Rogosa, 1965; Simon & Gorbach,

1986), but representative species from this group can be

detected in high abundances even in the lower intestinal

tract. In that line V. parvula, can reach densities of up to

1011 cells g�1 of feces (Finegold et al., 1977), while

molecular quantification of Phascolarctobacterium spp.
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Fig. 18. Phylogenetic tree the human gastrointestinal species that belong to the order of the Negativicutes. GenBank Accession Numbers of the

SSU rRNA gene sequence are provided for each species and the family names are indicated.
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showed that these bacteria represent more than 2% of the

total fecal microbiota in some subjects (Paliy et al.,

2009). Members of the Negativicutes are assacharolytic

and utilize end=products of sugar metabolisms of other

gastrointestinal bacteria (such as lactate or succinate) to

produce propionate, forming an important trophic chain.

Propionate is a beneficial product of the gastrointestinal

microbiota as it has anti-inflammatory potential, is uti-

lized by adipose tissue and the liver, plays a role in the

satiety sensation, influences glucose and energy homeosta-

sis, and improves insulin sensitivity (Vipperla & O’Keefe,

2012; De Vadder et al., 2014). In the upper gastrointesti-

nal tract, Veillonella spp. are an indispensable component

of the gastrointestinal microbiota (van den Bogert et al.,

2011) where they form a trophic chain with the lactate

and acetate-producing Streptococcus spp. (Zoetendal et al.,

2012). Currently, there is no evidence about the role of

Veillonella spp. in human health, although several studies

have shown an increased abundance of Veillonella spp. in

fecal samples of irritable bowel patients (Malinen et al.,

2005; Tana et al., 2010; Saulnier et al., 2011), which could

indicate an increased transit of the ileal microbiota to the

lower part of the gastrointestinal tract.

Erysipelotrichi

The Erysipelotrichi constitute a class of bacteria within the

Firmicutes phylum that was introduced into bacterial sys-

tematics in 2009, to accommodate members of earlier

established family Erysipelotrichaceae (Ludwig et al.,

2009). The majority of the human gastrointestinal bacte-

ria that based on their SSU rRNA gene sequence cluster

within the Erysipelotrichi class are still officially classified

within other groups of the Firmicutes (Fig. 19). This indi-

cates that a major revision of this group can be expected

in the future. There are several studies that link Erysipelo-

trichi with compromised health. An increased abundance

of Erysipelotrichi in patients suffering from colon cancer

was reported (Chen et al., 2012). Animal model experi-

ments have shown that members of this group are

increased on high fat, and western type diets (Turnbaugh

et al., 2009; Fleissner et al., 2010), while their increased

abundance is associated with obesity (Turnbaugh et al.,

2006). Furthermore, it has been shown that an increased

abundance of Erysipelotrichaceae correlates with choline

deficiency-induced fatty liver disease (Spencer et al.,

2011), which causes multiple organ dysfunctions. Choline

is an important component of our diet, and recently, it

was found that choline and phospatidylcholine are con-

verted by the intestinal microbiota to trimethylamine,

which is further metabolized to proatherogenic trimethyl-

amine-N-oxide, linking diet and microbiota to cardiovas-

cular disease (Wang et al., 2011b; Koeth et al., 2013).

Tenericutes

Tenericutes is a recently introduced phylum that accom-

modates the Mollicutes class, which was previously posi-

tioned within the Firmicutes phylum. The assignment of

the Mollicutes to the novel phylum was supported by the

unique properties of these bacteria, in particular the lack

of rigid cell walls (Ludwig et al., 2009), although based

Erysipelotrichaceae
cluster XVII

Eggerthia catenaformis, AJ621549
Kandleria vitulina, AB210825

Catenibacter mitsuokai, AB030226
Stoquefichus massiliensis, JX101690
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Clostridium cocleatum, Y18188
Clostridium spiroforme, X75908

Clostridium ramosum, AB595128
Clostridium saccharogumia, DQ100445

Holdemania massiliensis, JX101683
Holdemania filliformis, FJ504519

Solobacterium moorei, AB031057

Anaerorhabdus furcosa, GU585668

Erysipelotrichaceae
cluster XVIII

Erysipelotrichaceae
cluster XVI

Bulleidia extructa, AF220064

Mycoplasma pneumoniae, AF132741

Ureoplasma parvum, AF222894
Ureoplasma urealyticum, AF073450

Mycoplasma hominis, AF443617
Erysipelotrichaceae

Tenericutes

Eubacterium dolichum, L34682
Eubacterium tortuosum, L34683

Eubacterium cylindroides, L34616
Clostridium innocuum, DQ440561

Eubacterium biforme, NR_044731
Streptococcus pleomorphus, DQ797848

Dielma fastidiosa, JF824807

Turicibacter sanguinis, AF349724
10%

Fig. 19. Phylogenetic tree the human gastrointestinal species that belong to the order of the Erysipelotrichi. GenBank Accession Numbers of the

SSU rRNA gene sequence are provided for each species, while the family is divided over Clostridium clusters (Collins et al., 1994). The species

indicated in bold are based on the SSU rRNA gene sequence clustering within the Erysipelotrichi in contrast to their official classification.
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on the SSU rRNA gene sequence, they are interrelated

with the members of the Erysipelotrichi class of the Firmi-

cutes (Fig. 19). The majority of the gastrointestinal Ten-

ericutes are currently uncultured species that are

frequently detected in the molecular surveys. Their detec-

tion even in the studies of the limited depth suggests a

relatively high relative abundance of these bacteria (see

for instance, Suau et al., 1999). Concerning their function

in the gastrointestinal tract, a recent study has shown a

significant positive correlation between the abundance of

the Tenericutes and the levels of trimethylamine-N-oxide,

which is a metabolite that is believed to accelerate athero-

sclerosis (Koeth et al., 2013).

It has been suggested that members of the Tenericutes

are involved in inflammatory bowel disease, as they have

the ability to adhere to and to fuse with epithelial and

immune system cells, which could explain intracellular

epithelial structures in the Crohn’s disease patients’ biop-

sies detected by electron microscopy (Roediger & Macfar-

lane, 2002). A molecular survey has revealed that a

cultured representative of this group — the pathogenic

Mycoplasma pneumoniae — can be detected in mucosal

biopsies of both inflammatory bowel disease patients and

healthy controls alike, although Crohn’s disease patients

had a significantly higher abundance of this bacterium

than ulcerative colitis patients and healthy subjects (Chen

et al., 2001). The first report of the Mycoplasma in the

human gastrointestinal tract dates from 1973 (Bhat et al.,

1973), while specific searches for Ureaplasma urealyticum

and Mycoplasma hominis revealed the presence of these

two species in anal swaps of more than half of the ana-

lyzed subjects (Munday et al., 1981).

Fusobacteria

Fusobacteria are another phylum of the frequently

detected gastrointestinal bacteria, the majority of which

belong to the genus Fusobacterium (Fig. 20). These bacte-

ria are pointed, nonsporulating, Gram-negative, anaerobic

bacilli (Knorr, 1922). The first record of a Fusobacterium

spp. originates from 1886 when Bacillus fusiforme (now

known as Fusobacterium necrophorum) was reported as a

pathogen related to appendicitis (Fl€ugge, 1886). Although

Fusobacterium spp. can be isolated from gastrointestinal

samples of healthy humans in densities of up to

1010 cells g�1 of feces (Benno et al., 1989), this group of

bacteria seems to be relevant for intestinal inflammation.

Recent studies have shown that the majority of cases of

acute appendicitis are associated with a local infection of

Fusobacterium spp. (Swidsinski et al., 2011), while the

increased abundance of Fusobacterium spp. is associated

with ulcerative colitis (Rajili�c-Stojanovi�c et al., 2013a)

and colorectal cancer (Castellarin et al., 2012; Kostic

et al., 2012). The human gastrointestinal tract-associated

Fusobacteria also include representatives of the Leptotri-

chia genus and the misclassified C. rectum (Fig. 20).

Proteobacteria

Bacteria belonging to the phylum Proteobacteria are com-

monly detected in the gastrointestinal samples and this

group of the true Gram-negative bacteria is particularly

diverse, although not very abundant – typically all

Proteobacteria account about 1% of the total microbiota

(Holdeman et al., 1976). Members of five different classes

of Proteobacteria, namely the Alpha-, Beta-, Gamma-,

Delta- and Epsilonproteobacteria can be part of the gastro-

intestinal microbiota, and among them Enterobacteriaceae

within Gammaproteobacteria are the most abundant and

the prevalent group.

Alphaproteobacteria

Gemmiger formicilis was the first and the only bacterium

from the Alphaproteobacteria class that was associated

with the human gastrointestinal tract, throughout the

Fusobacteriaceae

Fusobacterium naviforme, AJ006965
Fusobacterium nucleatum, AF481217

Fusobacterium russii, M58681

Clostridium rectum, X77850
Fusobacterium varium, AJ867036

Fusobacterium mortiferum, AJ867032
Fusobacterium necrogenes, AJ867034
Fusobacterium necrophorum, AJ867038

Fusobacterium gonidiaformans, NR_027588
Cetobacterium somerae, AJ438155

Leptotrichia buccalis, GU561361
Leptotrichia amnionii, AY489565

10%
Leptotrichiaceae

Fusobacterium peridonticum, FJ471668

Fig. 20. Phylogenetic tree the human gastrointestinal species that belong to the phylum of the Fusobacteria. GenBank Accession Numbers of

the SSU rRNA gene sequence are provided for each species and the family names are indicated. The species indicated in bold are based on the

SSU rRNA gene sequence clustering within the families that are designated on the figure in contrast to their official classification.

FEMS Microbiol Rev 38 (2014) 996–1047 ª 2014 The Authors. FEMS Microbiology Reviews
published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

Cultured human gastrointestinal microbiota 1021



20th century (Holdeman et al., 1976; Benno et al., 1986;

Moore & Moore, 1995; Macfarlane et al., 2004). Ironi-

cally, the recent SSU rRNA gene sequence analysis of

G. formicilis indicated that this species has been misclassi-

fied and belongs to Firmicutes (Clostridia/Clostridiales/

Ruminococcaceae) and has almost an identical SSU rRNA

gene sequence as Subdoligranulum variabile (98.3%

sequence similarity). Nevertheless, other representatives of

the true Alphaproteobacteria seem to be a part of the

normal gastrointestinal microbiota. In a recent study, four

alphaproteobacterial species were cultivated from gastro-

intestinal samples (Lagier et al., 2012a). Twenty-four

other members of this subdivision were detected by

retrieving SSU rRNA gene sequences identical to previ-

ously cultured bacteria from gastrointestinal samples

(Fig. 21, Table S1). AlphapProteobacteria seem to be char-

acteristic for the upper part of the gastrointestinal tract as

sequences of these bacteria were detected only in studies

where samples from the upper intestine were included

(Eckburg et al., 2005; Wang et al., 2005), or when the

microbiota of patients with ileal pouch was analyzed

(McLaughlin et al., 2010). There are no data that corre-

late Alphaproteobacteria with any specific function in the

gastrointestinal tract or any disease. However, some

genera are known to perform specific metabolic transfor-

mations — for example, Methylobacterium spp. include

bacteria that can oxidize methylamine or methanol to

generate energy. Although the metabolism of these com-

pounds has not been studied in the gastrointestinal tract,

and the methylotrophic community is not typically asso-

ciated with the human body, a recent study has demon-

strated that methanotrophs are ubiquitous in the human

oral microbiota (Hung et al., 2011). Similarly, it can be

anticipated that they are present in the upper gastrointes-

tinal tract, where SSU rRNA gene sequences of these bac-

teria were detected, and where oxygen needed for their

metabolic activity is present. Sphingomonas spp. include

metabolically versatile aerobic bacteria that can be found

in different environments. Studies of these and most

other Alphaproteobacteria focus on outbreaks of infections

involving these bacteria in immuno-suppressed patients.

However, animal models studies have shown that

Sphingomonas spp. are important for the development of

the immune system of the host, since these species can

stimulate the maturation of invariant natural killer T cells

(Wingender et al., 2012).

Betaproteobacteria

The first bacterium from the Betaproteobacteria class —
Alcaligenes faecalis — was isolated from a human fecal

sample in 1896 (Petruschky, 1896). This asaccharolytic

rod that can utilize urea, a range of amino-acids, and can

produce nitric oxide (NO; Denault et al., 1953) has fre-

Caulobacteraceae

Methylobacteriaceae
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Rhodobacteraceae

Sphingomonadaceae

Rhizobiaceae
Brucellaceae
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Fig. 21. Phylogenetic tree the human gastrointestinal species that belong to the class of the Alphaproteobacteria class. GenBank Accession

Numbers of the SSU rRNA gene sequence are provided for each species and the family names are indicated.
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quently been detected in later studies of the gastrointesti-

nal microbiota. A number of other bacteria within this

class have been detected in recent years, showing that

Betaproteobacteria are diverse and ubiquitous members of

the gastrointestinal microbiota (Fig. 22). Among them,

Sutterella and Parrasutterella are the most frequently

encountered and the abundant gastrointestinal microor-

ganisms (Nagai et al., 2009; Mukhopadhya et al., 2011).

These bacteria are typical for the gastrointestinal microbi-

ota ecosystem, assacharolytic and inactive in classical

microbiological tests. Their abundance is increased in

autistic children (Williams et al., 2012) and in patients

suffering from type 2 diabetes (Larsen et al., 2010).

Hence, it is of interest to define which metabolic transfor-

mations are catalyzed by these bacteria, as they might be

particularly relevant for understanding the global impact

of the gastrointestinal microbiota on human health. Alca-

ligenes faecalis and related bacteria are common gastroin-

testinal tract inhabitants, notably of the ileum. Alcaligenes

spp. may be opportunists that inhabit Peyers’ patches and

signal to the immune system as shown in model animals

(Obata et al., 2010). Moreover, Alcaligenes spp. produce

NO, which is an important biological regulator (Culotta

& Koshland, 1992; Anderson et al., 1993).

Oxalobacter formigenes is another relevant intestinal

inhabitant. It has been isolated in 1985 and described as a

unique intestinal bacterium that degrades exclusively oxa-

late and can reach densities of up to 107 cells g�1 of feces

(Allison et al., 1985). Due to its metabolic activity, O. for-

migenes regulates oxalate concentrations in feces and

urine, and indirectly influences the formation of kidney

stones (Duncan et al., 2002b). This has led to its applica-

tion in probiotic formulations. Recently, it has been

shown that some strains of another intestinal inhabitant

Ancylobacter polymorphus (belonging to the Alphaproteo-

bacteria) can utilize oxalate (Lang et al., 2008), suggesting

that there are alternative pathways for oxalate removal

from the gastrointestinal tract.

Neisseria spp. are inhabiting mucosal surfaces of the gen-

ital, the respiratory and the upper gastrointestinal tract.

Neisseria gonorhhoea and Neisseria meningitis are the most

studied as they are important pathogens causing gonor-

rhoea and meningitis. However, the majority of Neisseria

spp. are nonpathogenic and their presence in the gastroin-

testinal tract samples was detected in the early cultivation-

based studies (Gray & Shiner, 1967; Bhat et al., 1980). The

presence of specific Neisseria spp. in the gastrointestinal

tract was only recently reported in a high-throughput cul-

turing study (Lagier et al., 2012a) and emerged from SSU

rRNA gene sequencing-based studies (Fig. 22, Table S1).

Nonpathogenic Neisseria spp. do not catabolize many car-

bohydrates, while some species are even asaccharolytic, but

they can reduce nitrate. It is known that Neisseria spp. are

able to grow on amino acids and can use sulfur directly

from sulfate (McDonald & Johnson, 1975), but their func-

tion in the gastrointestinal tract has not been exploited.

The human gastrointestinal Betaproteobacteria also

include a number of other species within various genera,
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Fig. 22. Phylogenetic tree the human

gastrointestinal species that belong to the

class of the Betaproteobacteria. GenBank

Accession Numbers of the SSU rRNA gene

sequence are provided for each species and

the family names are indicated.
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which are occasionally reported as members of the gastro-

intestinal microbiota (Fig. 22). Among them, Acidovorax

spp. were found to be ubiquitously present in the colonic

mucosa (Hong et al., 2011), Burkholderia spp. were found

in an increased abundance in hepatic encephalopathy and

were linked to poor cognition and inflammation (Bajaj

et al., 2012), while Variovorax spp. seem to be particularly

abundant in the upper gastrointestinal tract (van den

Bogert et al., 2011). There is no available information

about association of other species with specific gastroin-

testinal sites, diseases or functions of the gastrointestinal

microbiota.

Gammaproteobacteria

Within the class Gammaproteobacteria, nine different fam-

ilies distributed within six different orders have been

detected in the human gastrointestinal samples. Escherichia

coli was the first bacterial isolate of the Gammaproteobac-

teria characterized from human gastrointestinal samples in

1885 (Shulman et al., 2007). Escherichia coli belongs to the

Enterobacteriaceae family, which is the most diverse, pre-

valent and abundant of all gastrointestinal Proteobacteria

(Fig. 23). Most of Enterobacteriaceae members are associ-

ated with diarrhea (Thielman & Guerrant, 2004), although

representatives of this family are not necessarily causing

any symptoms and are actually one of the first to be found

in the newborn gastrointestinal tract (Favier et al., 2002).

The abundance of this bacterial group increases with age,

but it remains subdominant and in elderly subjects repre-

sents about 1% of the total gastrointestinal microbiota

(Hopkins et al., 2001). Escherichia coli is the most preva-

lent representative of this family that is often the most

abundant facultative anaerobe in the gastrointestinal sam-

ples. The different strains of E. coli can exhibit different

properties, varying from probiotic (Kruis et al., 2004) to

pathogenic causing diarrhea or infections on other sites

(Ron, 2006). The majority of other Enterobacteriaceae spp.

are infrequently isolated from gastrointestinal samples

(Bucher & von Graevenitz, 1982; M€uller, 1986). In that

line, a study of dedicated isolation of the Morganella-

Proteus-Providencia group from feces of almost 3000

healthy subjects and patients suffering from enteric dis-

eases, showed that species of this group are subabundant

and have joined prevalence between 10% and 20%,

depending on the health status (M€uller, 1986). Still, the

Enterobacteriaceae is one of the most comprehensively

described gastrointestinal families, which can be explained

by its development as a paradigm for genetic studies and

its clinical relevance (Grimont et al., 1981; Hickman-Bren-

ner et al., 1984; Farmer et al., 1985; Hickman-Brenner

et al., 1985a, b). A specific case is represented by the

so-called adherent-invasive E. coli strains that have been

implied in various forms of inflammation in the gastroin-

testinal tract of human and animal models (Negroni et al.,

2012; Chassaing et al., 2014). Phylogenetically, the Entero-

bacteriaceae is a diverse group and while some genera

form separate clusters (e.g., Yersinia), species of other

genera are mixed up in the SSU rRNA phylogenetic tree

(Fig. 23). The absence of genus-specific SSU rRNA gene

sequences for these genera, could explain a recent the

finding that sequences assigned to E. coli, Salmonella

enterica, Citrobacter koseri, and Enterobacter cancerogenus

appear together (Lozupone et al., 2012).

In addition to the Enterobacteriaceae, representatives of

eight other bacterial families with the Gammaproteobac-

teria class can be detected in the human gastrointestinal

tract (Fig. 24). Among these, members of the Moraxella-

ceae are relatively frequently detected using both cultiva-

tion-based and molecular studies. Within this family,

Acinetobacter spp. are the most diverse and are frequently

detected in infants (Chang et al., 2011; Pandey et al.,

2012), with an increased abundance in infants that

develop allergy (Nakayama et al., 2011). A recent study

has indicated that members of the Gammaproteobacteria

and in particular Haemophilus spp. are elevated in irrita-

ble bowel syndrome pediatric patients (Saulnier et al.,

2011). Members of the same phylogenetic group were

found to correlate with irritable bowel syndrome symp-

tom score in an independent study (Rajili�c-Stojanovi�c

et al., 2011). Haemophilus spp. are relatively frequently

detected in the upper parts of the gastrointestinal tract of

healthy humans of different ages (Justesen et al., 1984;

Ou et al., 2009), but also can be detected inflamed and

stool specimens from children with diarrhea, with rela-

tively low prevalence (M�egraud et al., 1988).

Aeromonas spp. are medically significant as these spe-

cies are implicated in the development of the gastroenter-

itis and diarrhea. The role of these bacteria in human

health has been a subject of a long-lasting debate result-

ing in a conclusion that at least four gastrointestinal spe-

cies (A. caviae, A. hydrophila, A. jandaei, and A. veronii),

are pathogenic (Janda & Abbott, 1998). The presence of

these species in the gastrointestinal tract is not necessarily

inducing any symptoms, although in vitro experiments

have indicated that they are cytotoxic and induce lesions

in the intestinal mucosa (Pitarangsi et al., 1982).

The Succinivibrionaceae family groups strictly anaerobic

bacteria that ferment carbohydrates to produce succinate

and acetate. Representatives of three genera of this family

can be detected in the human gastrointestinal tract: An-

aerobiospirillum spp. are motile, spiral bacteria that are

implicated in the development of diarrhea (Malnick,

1997); while Succinatimonas and Succinivibrio representa-

tives are subdominant bacteria that were isolated from

healthy humans (Table S1).
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Members of the Vibrionaceae are pathogens that cause

acute, self-limiting gastroenteritis (Hou et al., 2011). The

natural habitat of Vibrio spp. is the aquatic ecosystem,

and hence they are only rarely detected in the human

gastrointestinal samples — notably after infection that

induces diarrhea.

Eight different Pseudomonas spp. can be detected in the

human gastrointestinal tract. Among them, Pseudomonas

aeruginosa is the most prevalent and was frequently

reported as a member of the fecal microbiota of healthy

humans (Finegold et al., 1974; Benno et al., 1986).

Although a member of the normal gastrointestinal micro-

biota, Pseudomonas aeruginosa can act as an opportunistic

pathogen in critically ill or immuno-suppressed patients

and cause sepsis as it can interact with our immune sys-

tem (Wu et al., 2005) and can disrupt the intestinal epi-

thelial barrier (Zaborina et al., 2006). Pseudomonas

fluorescens is a less prevalent member of the genus that

has been implicated in the development of Crohn’s dis-

ease (Wei et al., 2002). A recent study showed that Pseu-

domonas spp., among other Proteobacteria, have increased

abundance in infants with colic (de Weerth et al., 2013).

Until today, only two bacteria from Xanthomonadaceae

have been isolated from gastrointestinal samples:

Stenotrophomonas maltophilia from a stool and an ileal

sample derived from atypical clinical cases (Tamura et al.,

1988; Apisarnthanarak et al., 2003), and Lysobacter soli in

a recent high-throughput cultivation of the normal gas-

trointestinal microbiota (Lagier et al., 2012a). In addition,

four other related bacterial species were detected based

on the SSU rRNA gene sequence. These bacteria were

previously isolated from different ecosystems and include

Nevskia ramose and Rhodanobacter ginsenosidimutans

from soil, Pseudoxanthomonas mexicana from sludge and

urine, and Silanimonas lenta from a hot spring. Based on

their low prevalence in the gastrointestinal tract, it is

most likely that Xanthomonadaceae are transient members

of the gastrointestinal microbiota.

Deltaproteobacteria

Sulfate-reducing bacteria that cluster within the d class of

the phylum Proteobacteria inhabit the human gastrointes-

tinal tract where they utilize sulfate that can be diet

derived or released from mucins. Human gastrointestinal

tract-associated sulfate-reducing bacteria include the ace-

tate-utilizing Desulfobacter spp., the lactate-, and H2-uti-

lizing Desulfovibrio spp., and the propionate-utilizing

Desulfobulbus spp. (Gibson et al., 1988). This group of

related bacteria has been subject of numerous studies

because the end-product of their metabolism — hydrogen

sulfide — is a highly toxic compound that inhibits buty-

rate oxidation within the colonocytes (Attene-Ramos

et al., 2006). Hydrogen sulfide overproduction in the gas-

trointestinal tract has been linked to ulcerative colitis and

colon cancer. Although some cultivation, studies showed

an association between the presence of sulfate-reducing
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Fig. 23. Phylogenetic tree the human gastrointestinal species that

belong to the family of the Enterobacteriaceae. GenBank Accession

Numbers of the SSU rRNA gene sequence are provided for each

species and the family names are indicated.
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bacteria and ulcerative colitis, the overproduction of

hydrogen sulfide has a stronger correlation with dietary

protein (Magee et al., 2000) than with dietary sulfate

(Deplancke et al., 2003), challenging the hypothesis that

the metabolic activity of sulfate-reducing bacteria is

involved in compromised health, at least in healthy sub-

jects. Sulfate-reducing bacteria are normally present in

low abundance, of approximately 106–107 cells g�1 (Fite

et al., 2004), and although at least three different genera

of this group of bacteria can be found in the human gas-

trointestinal tract, only Desulfovibrio spp. are character-

ized below the genus level (Fig. 25). In addition, Bilophila

wadsworthia is another member of Deltaproteobacteria

that is present in approximately half of the studied

humans (Baron et al., 1992; Baron, 1997). Bilophila wads-

worthia is capable of utilizing taurine, which is released

by deconjugation of bile salts or present in the diet, and

also generates hydrogen sulfide as the major end-product.

Its involvement in promoting colitis via taurine metabo-

lism in mice has recently been established (Devkota et al.,

2012).

Epsilonproteobacteria

The class of Epsilonproteobacteria is represented by two

main genera in the human gastrointestinal tract: Campylo-
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Fig. 24. Phylogenetic tree the human gastrointestinal species that belong to the class of the Gammaproteobacteria without Enterobacteriaceae

family. GenBank Accession Numbers of the SSU rRNA gene sequence are provided for each species and the family names are indicated.
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bacter and Helicobacter. Campylobacter is a genus that

groups diverse isolates from mucosal surfaces of gastroin-

testinal, oral and urogenital tract. The first report of Cam-

pylobacter isolation from the human gastrointestinal tract

dates from 1946 (Levy, 1946). Campylobacter spp. were

originally described as members of genus Vibrio, and

reclassified into an independent genus in 1973 (Veron &

Chatelain, 1973). Species of this genus are principally con-

sidered to be pathogenic organisms involved in diarrheal

illness. However, Campylobacter hominis has been isolated

from a gastrointestinal sample of a healthy subject (Lawson

et al., 2001), while C. concisus is a clinical isolate that also

has been recovered from healthy individual (Engberg et al.,

2000). Finally, a recent study of the microaerophilic fecal

microbiota of children revealed diverse and prevalent colo-

nization of Campylobacter spp. of gastrointestinal tract of

both healthy and children suffering from inflammatory

bowel diseases (Hansen et al., 2013). The presence of Cam-

pylobacter spp. in the gastrointestinal tract can cause watery

or bloody diarrhea, whereas it also can be associated with

intestinal diseases such as ulcerative colitis (Rajili�c-Stojano-

vi�c et al., 2013a). However, Campylobacter spp. can also

remain asymptomatic, suggesting that at least some species

of this genus are commercial members of the gastrointesti-

nal microbiota.

The Arcobacter genus was introduced to accommodate

an independent cluster identified based on the SSU rRNA

gene sequences, of species that were previously classified

within the Campylobacter genus (Vandamme et al., 1991).

These bacteria are also associated with diarrheal disease,

although the prevalence of their isolation, even from clin-

ical samples is very low (Engberg et al., 2000).

The genus Helicobacter has been derived from Cam-

pylobacter after reclassification of the latter (Goodwin

et al., 1989; Vandamme et al., 1991). Helicobacter spp. are

spiral-shaped bacteria that were detected in human gastric

mucosa as late as in 1906 (Krienitz, 1906). They received

exceptional attention once Helicobacter pylori was discov-

ered to induce the gastric and duodenal ulcers (for recent

review see, Fock et al., 2013). Helicobacter spp. are mainly

located in the stomach but can be detected in the other

gastrointestinal samples of healthy individuals but only

when highly sensitive techniques are applied, suggesting

that they may lyse and disappear in transit from the

stomach (MacKay et al., 2003; Ceelen et al., 2005).

Hence, their prevalence is low in samples from the lower

gastrointestinal tract (Hansen et al., 2013).

Lentisphaerae

Victivallis vadensis is the only species within the phylum

of Lentisphaerae that has been isolated from the gastroin-

testinal tract (Fig. 26). This species was isolated in 2003,

as a bacterium that was able to grow in basal liquid
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Fig. 25. Phylogenetic tree the human gastrointestinal species that belong to the classes of the Deltaproteobacteria and Epsilonproteobacteria.

GenBank Accession Numbers of the SSU rRNA gene sequence are provided for each species and the family names are indicated. The species

indicated in bold is based on the SSU rRNA gene sequence clustering within the indicated family in contrast to its official classification.
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medium containing cellobiose as the sole carbon source,

but not on the same medium solidified with agar (Zoe-

tendal et al., 2003). Further studies have confirmed its

presence in the gastrointestinal tract of humans (Claesson

et al., 2012), indicating the adaptation of this species

(and most likely the entire bacterial group) to the gastro-

intestinal tract conditions. The genome of this bacterium

has been sequenced (van Passel et al., 2011), revealing a

host of functions, but its activity in the gastrointestinal

tract and its impact on the human host remains to be

determined.

Spirochetes

The first report of the Spirochetes in the human gastrointes-

tinal samples dates from 1923 when a cultivation-based

study reported the 28% prevalence of these bacteria in fecal

samples of healthy individuals (Parr, 1923). The Spirochetes

are established pathogens in veterinary medicine and their

pathogenicity in humans has been debated for a long per-

iod of time. Two species of the phylum Spirochetes can be

detected in the human gastrointestinal samples: Brachyspira

pilosicoli and Brachyspira aalborgi (Fig. 26). Their presence

in the gastrointestinal tract is termed intestinal spirochet-

osis, which in clinical cases is associated with abdominal

pain and diarrhea. However, a retrospective review of cases

diagnosed as intestinal spirochetosis revealed that the pres-

ence of Spirochetes in the gastrointestinal biopsies is often

asymptomatic and may not have pathological significance

(Carr et al., 2010). The question of implication of the Spi-

rochetes in clinical cases might be a question of their density

in the gut. These bacteria typically colonize intestinal

mucosa where they attach and penetrate short distances

into the surface epithelial cells (Harland & Lee, 1967). In

clinical cases of spirochetosis they form a dense biofilm that

covers the entire colonic surface, as indicated by scanning

electron microscopy images (Gad et al., 1977). Another

factor might be relevant to the currently undefined role of

the Spirochetes in human health. A recent molecular study

showed that in addition to the two cultured species,

another, currently uncultured Brachyspira spp. is more fre-

quent than the other two Brachyspira spp. in the human

colonic biopsies. Although this study confirmed the

absence of a correlation between these species and physical

complaints, it appeared that B. pilosicoli is associated with

intestinal inflammation (Westerman et al., 2012).

Another relevant group of the gastrointestinal Spiro-

chetes are formed by the Treponema spp. Members of the

Treponema genus were detected in molecular-based studies

of the gut microbiota of five geographically separate rural

African and Native American tribes (De Filippo et al.,

2010; Tito et al., 2012; Yatsunenko et al., 2012; Ou et al.,

2013; Schnorr et al., 2014). Only in one study, a represen-

tative of this group was identified at species level. A

sequence 99% similar to Treponema berlinense was detected

when analyzing the microbiota coprolite (fossilized feces)

taken from archaeological site in Mexico (Tito et al., 2012).

Treponema spp. are in principle considered to be patho-

genic in industrial societies (Giacani & Lukehart, 2014),

but its reproducible detection in the gastrointestinal micro-

biota of isolated rural communities suggest alternative

symbiotic roles played by these bacteria. These might

include degradation of fiber rich foods and enhancement of

anti-inflammatory capability, as suggested by de Fillipo

and coauthors, who were the first to detected Treponema

spp. in healthy human gut (De Filippo et al., 2010).

Synergistetes

Synergistetes is a recently recognized bacterial phylum that

is typically subdominant in the ecosystems where it resides,

and its members can be present in abundance of about
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Fig. 26. Phylogenetic tree the human gastrointestinal species that belong to the different bacterial phyla with limited diversity, and two archaeal

phyla. GenBank Accession Numbers of the SSU rRNA gene sequence are provided for each species and the phylum names are indicated.
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0.01% in human fecal samples (Horz et al., 2006). The first

attempt to detect this group of bacteria in the human gas-

trointestinal tract yielded a sole SSU rRNA gene sequence

that is identical to that of a later on cultured Cloacibacillus

evryensis (Ganesan et al., 2008). Cloacibacillus spp. are

amino acid degrading bacteria that use sulfate as terminal

electron acceptor and that are capable to use mucin as sole

carbon source (Looft et al., 2013). Their presence in the

human gastrointestinal microbiota was confirmed by

several molecular studies. Furthermore, a recent

high-throughput culturomics study retrieved another

gastrointestinal Synergistetes bacterium — Pyramidobacter

piscolens (Lagier et al., 2012a). Pyramidobacter piscolens was

described in 2009, as an asaccharolytic, anaerobic oral

isolate capable of hydrogen sulfide production.

Although a minor group, the gastrointestinal Synerg-

istetes might be relevant for the human health, as indi-

cated by their increased abundance in mucosal samples

associated with colorectal cancer (Chen et al., 2012).

Mucin degradation coupled with hydrogen sulfide pro-

duced by these bacteria might be relevant for the colorec-

tal cancer etiology, since the produced metabolite

increases mucosal apoptosis, goblet cell depletion, and

superficial ulceration (Aslam et al., 1992; Deplancke &

Gaskins, 2003).

TM7 candidate phylum

The TM7 phylum represents a recently recognized, widely

distributed group of yet uncultured filamentous bacteria

(Hugenholtz et al., 2001). These bacteria can be detected

in the human oral cavity and the gastrointestinal tract,

while a recent study of the microbiota along the gastroin-

testinal tract has shown that TM7 bacteria are one of the

common microorganisms, widely distributed among

humans (Stearns et al., 2011). Although the presence of

these bacteria is not determinative of the health status, it

has been shown that different TM7 bacteria inhabit the

gastrointestinal tracts of inflammatory bowel disease

patients and healthy controls (Kuehbacher et al., 2008).

Verrucomicrobia

Currently, only two species within the Verrucomicrbia

phylum have been detected in the human gastrointestinal

tract. Akkermansia muciniphila was described in 2004 as a

unique human gastrointestinal bacterium that is able to

grow on intestinal mucus as a sole carbon source (Derri-

en et al., 2004). This bacterium is widely distributed and

can be detected in fecal material of humans of all age

groups (Collado et al., 2007), and although its abundance

varies between subjects, it is probably one of the members

of the core microbiota. Recent literature shows that

A. muciniphila is important for a healthy host as its

decreased abundance is associated with compromised

health including acute appendicitis (Swidsinski et al.,

2011), ulcerative colitis (Vigsnæs et al., 2012; Rajili�c-

Stojanovi�c et al., 2013a), autism (Wang et al., 2011a),

and atopic diseases (Candela et al., 2012). Finally, the

abundance of A. muciniphila is inversely correlated with

obesity (Karlsson et al., 2012). A recent study suggests

that A. muciniphila plays a pivotal role in obesity as its

duodenal delivery regulates fat-mass gain, metabolic

endotoxemia, adipose tissue inflammation, and insulin

resistance in an animal model experiment (Everard et al.,

2013). Given the very short history of the research related

to A. muciniphila, the wealth of data that support its

beneficial role provides evidence of the remarkable

importance of this bacterium. In addition, one other spe-

cies of the Verrucomicrobia — Prosthecobacter fluviatilis —
has been detected in the study of bacteria of a patient

with ileal pouch (McLaughlin et al., 2010), while

sequences classified within this genus were detected in the

study of the microbiota of infants (Palmer et al., 2007).

Other gastrointestinal bacterial phyla

There are a few gastrointestinal bacterial phyla with low

diversity that have not yet been discussed, including the

Deinococcus-Thermus bacteria, the Melainabacteria the

Gemmatimonadetes and the Planctomycetes (Fig. 26). The

Deinococcus-Thermus bacteria were for the first time asso-

ciated with the human gastrointestinal microbiota in

2006, when uncultured phylotypes within this phylum

were recovered in a molecular survey of the microbiota of

the human stomach (Bik et al., 2006). Several studies

have confirmed the presence of these bacteria in the gas-

trointestinal microbiota, while a recent high-throughput

culturing study detected a single cultivated bacterium of

this phylum (Lagier et al., 2012a). Currently, no particu-

lar function has been assigned to this bacterial group,

although there is evidence that these bacteria are active in

the distal parts of the gastrointestinal tract (Peris-Bondia

et al., 2011).

Molecular studies have retrieved SSU rRNA gene

sequences from the gastrointestinal tract of humans and

other animals that cluster into a distinct clade, related to,

but separate from cultured photosynthetic Cyanobacteria

(Ley et al., 2005). A novel name – Melainabacteria — was

recently proposed for this group of bacteria (Di Rienzi

et al., 2013). Sequences representing these bacteria were

detected in the stomach (Andersson et al., 2008), while

two independent studies have shown that these bacteria

are active in the distal part of the human gastrointestinal

tract (Rajili�c-Stojanovi�c et al., 2008; Peris-Bondia et al.,

2011), which indicates their wide distribution along the
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gastrointestinal tract. The role of these bacteria in the

ecosystem is currently undetermined and although no

cultured representatives are available now, the genomes of

these bacteria have been sequenced and annotated. Based

on the genomic information, it was concluded that these

are motile, strictly anaerobic, fermentative bacteria (Di

Rienzi et al., 2013).

In addition to the bacterial phyla that are reproducibly

detected by many studies of the human gastrointestinal

microbiota, some bacterial phyla are only occasionally

found. For instance, some studies have reported the pres-

ence of the Gemmatimonadetes in the human gastrointes-

tinal tract (Andersson et al., 2008), but even when

present, these bacteria constitute an extremely minor frac-

tion, as indicated by the fact that only one of over 15 000

SSU rRNA gene sequences in the study of the microbiota

of inflammatory bowel disease patients and controls orig-

inated from a Gemmatimonadetes bacterium (Frank et al.,

2007). Furthermore, a few pyrosequencing studies have

reported Nitrospira bacteria in the human gastrointestinal

tract (Hung et al., 2011). It is interesting to note that in

a recent study of the microbiota of pediatric irritable

bowel syndrome patients only one Nitrospira phylotype

was detected by pyrosequencing. However, the further

attempts to retrieve this bacterium revealed that the

detected sequence was actually retrieved from a novel

taxon related to the genus Ruminococcus (Saulnier et al.,

2011). This example testifies to the fact that identification

of sequences based on very short reads, such as those

produced by currently used high-throughput sequencing

technologies, are not always reliable (Werner et al., 2012).

The presence of the Planctomycetes in the human gas-

trointestinal tract was reported only in molecular-based

studies (Wilson & Blitchington, 1996; De Filippo et al.,

2010; Hong et al., 2011). A sequence of an uncultured

bacterium (Gene Bank Accession Number U58225) was

reported in one of the first molecular studies of the

human gastrointestinal microbiota, and was designated as

an uncultured Plantomycetes bacterium (Wilson & Blitch-

ington, 1996). However, the detected SSU rRNA gene

sequence was probably retrieved from a representative of

a new genus within the Lentisphaerae phylum, since it has

the highest similarity (88%) with V. vadensis (that was

isolated and described after publication of the molecular

study). Nevertheless, Plantomycetes might be a part of the

human gastrointestinal microbiota, as a recent review

indicated the detection of a diverse community of the

Planctomycetes in the human gastrointestinal tract (Lagier

et al., 2012b). When analyzing the publicly available data,

we found that only one (JQ287572) had high similarity

(98%) to the SSU rRNA gene sequence of a cultured bac-

terium—Schlesneria paludicola. However, based on the

characteristics of this bacterium (e.g., it grows in the

temperature range 4–32 °C), it is not likely that this bac-

terium resides in the human gastrointestinal tract.

Archaea

Bacteria are the dominant but not an exclusive compo-

nent of the human gastrointestinal microbiota. Archaea,

primarily the methanogenic ones, can be relatively abun-

dant component of the gastrointestinal microbiota with

densities of up to 1010 cells g�1 of feces (Bond et al.,

1971; Miller & Wolin, 1986). In total, eight archaeal spe-

cies have been associated with the human gastrointestinal

tract (Fig. 26, Table S2). In an early cultivation study,

which dates from 1968, a single methanogenic species,

isolated from four of five individuals, was identified as

Methanobrevibacter ruminantium (Nottingham & Hun-

gate, 1968). Today, Methanobrevibacter smithii is recog-

nized as the most abundant, and often an exclusive

methanogen of human gastrointestinal microbiota (Miller

& Wolin, 1986; Dridi et al., 2009), which suggests a pos-

sible misidentification of the isolates in the earlier study.

In addition to M. smithii, Methanosphaera stadtmaniae is

a relatively prevalent, but atypical methanogenic archaea

that reduces methanol and that can be found in human

feces in low concentrations (Miller & Wolin, 1985; Dridi

et al., 2009). Similar to M. stadtmaniae, a recently iso-

lated Methanomassiliicoccus luminyensis can also utilize

methanol in the presence of hydrogen, but these two gas-

trointestinal archaeal species are phylogenetically distant

(Dridi et al., 2012). Methanogenic archaea have been

extensively studied as the process of methane synthesis

from carbon dioxide and hydrogen results in a significant

gas removal in the gastrointestinal tract. The role of

methanogenic archaea might be particularly relevant for

bloating, which is one of the symptoms of irritable bowel

syndrome, and a recent study has shown a highly signifi-

cant (fourfold) reduction of methanogenic archaea in irri-

table bowel syndrome patients relative to controls

(Rajili�c-Stojanovi�c et al., 2011). In addition to methano-

genic archaea, two cultured species of halophilic archaea

have been detected in the study of the microbiota of Kor-

ean subjects (Nam et al., 2008), while the presence of low

numbers of these organisms was confirmed by the analy-

sis of the colonic mucosa of inflammatory bowel patients

(Oxley et al., 2010). In addition to the confirmed pres-

ence of the Euryarchaeota phylum members, the human

gastrointestinal archaea might also include a number of

yet uncultured species within the Thermoplasma and the

Crenarchaeota phylum and putative novel orders, as

detected in molecular-based studies and recently reviewed

(Dridi et al., 2011). The presence of Crenarchaeota phy-

lum representatives was detected by retrieving the specific

partial SSU rRNA gene sequences in a study that dates
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from 2005 (Rieu-Lesme et al., 2005). One of the ampli-

fied SSU rRNA gene sequences (AY887079) shows 97%

sequence similarity with SSU rRNA gene sequence of

Sulfolobus solfataricus, and another (AY887074) 99%

sequence similarity with the SSU rRNA gene of Candida-

tus Nitrososphaera gargensis. It should be noted that both

Sulfolobus solfataricus and Nitrososphaera gargensis are hy-

perthermophilic species, and it is highly unlikely that

these species inhabit the gastrointestinal tract of humans.

Until cultured representatives or at least the full SSU

rRNA gene sequences of the Crenarchaeota species are

obtained in the future independent studies, the presence

of the this archaeal phylum in the human gastrointestinal

tract remains questionable.

Eukarya

Different microeukaryal species can be detected in the

human gastrointestinal tract, and although this group of

organisms is subdominant, it is widely distributed com-

ponent of the gastrointestinal microbiota. The first molec-

ular-based study of this component of the gastrointestinal

microbiota was published only recently (Scanlan & Mar-

chesi, 2008). Very few other studies have been reported

since, and the results of these have been recently summa-

rized (Hamad et al., 2013). The most prevalent human

gastrointestinal Eukarya are yeasts, while a number of dif-

ferent microeukaryal intestinal parasites can be detected

in the human gastrointestinal samples. These species have

been excessively studied by epidemiologists, and although

their presence is in most cases the result of an infection

with contaminated food or water, some species establish

in healthy humans and are probably a part of the normal

gastrointestinal microbiota of some humans (Scanlan &

Marchesi, 2008).

Fungi

The most prevalent Eukarya in the human gastrointestinal

tract are yeast-like fungi and in total 57 intestinal species

distributed between the two phyla, Ascomycota and Basidi-

omycota, have been detected (Fig. 27). The first report of

yeasts in the human gastrointestinal tract dates from 1901

when Candida albicans was isolated from feces of patients

infected with tropical sprue (Kohlbrugge, 1901). A thor-

ough analysis of the yeasts diversity in the gastrointestinal

tract in the early twentieth century showed that yeasts can

be detected in about one out of five subjects and that the

detected yeast community is similar in healthy subjects and

patients suffering from various gastrointestinal disorders

(Anderson, 1917). A recent molecular analysis of the fungal

diversity allowed for detecting low amounts of fungi in any

studied subject (Ott et al., 2008). Among yeasts, Candida

spp. are the most prevalent and there is considerable evi-

dence that C. albicans and C. rugosa are part of the normal

gastrointestinal microbiota, while other Candida spp. are

scarcely detected in gastrointestinal samples (Fig. 27,

Table S3). Candida albicans is early established in the eco-

system, as illustrated by the fact that it can be detected in

over 95% of 1-month-old infants (Kumamoto & Vinces,

2005). Candida spp. are subdominant in the ecosystem and

typically present in densities lower than 106 cells g�1 of

intestinal content (Anderson, 1917; Finegold et al., 1974;

Finegold et al., 1977). Although the natural environment

of Candida spp. is the gastrointestinal tract, where they are

either symbiotic or commensal to the human host, under

specific circumstances these organisms can cause a variety

of candidiasis in different organs of the human body. It has

been proposed that in the developed world the increased

intake of drugs, processed foods and pollutants can cause

overgrowth of Candida spp. and trigger a Candida-associ-

ated complex of symptoms (Schulze & Sonnenborn, 2009).

This might be relevant for gastrointestinal health, as it has

been shown that Crohn’s disease patients and their first rel-

atives have a significantly higher abundance of Candida

spp. compared to the controls (Standaert-Vitse et al.,

2009). Furthermore, there is a considerable overlap

between the symptoms of the irritable bowel syndrome,

and the symptoms of intestinal candidiasis (Santelmann &

Howard, 2005), although the association between the irri-

table bowel syndrome and Candida spp. has not been ade-

quately studied. Other yeasts in the gastrointestinal tract

include several Saccharomyces spp., of which Saccharomyces

cerevisiae was the most reproducibly detected in molecular

studies (Nam et al., 2008; Ott et al., 2008; Scanlan & Mar-

chesi, 2008). Furthermore, Galactomyces geotrichum has

been detected in the human fecal samples using molecular

techniques (Scanlan & Marchesi, 2008) and cultivation

(Gouba et al., 2013; Hamad et al., 2013). In contrast to

Candida spp. that have the gastrointestinal tract as their

natural niche, both Saccharomyces spp. and G. geotrichum

are yeasts that are used in food production and their detec-

tion in fecal samples of humans could be a result of the

dietary intake prior to sampling. This hypothesis is sup-

ported by the results of the recently published gastrointesti-

nal microbiota analysis of adults on extreme diets, as a

number of foodborn microorganisms (including yeasts)

were detected in the gastrointestinal tract of subjects on

animal-based (meat and cheese rich) diet (David et al.,

2014).

Filamentous fungi are another group of Eukarya that

can be present in the human gastrointestinal tract.

Although they are not widely distributed, their presence

was noticed in a number of studies (Finegold et al., 1974;

Finegold et al., 1977; Benno et al., 1986). Several

Aspergillus spp. and Penicillium spp. have been identified
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during a 9-year long culture-based monitoring of an

immunodeficient child’s microbiota (Taylor et al., 1985),

while different species of these two genera have been

detected in recent years using both cultivation on various

media (Gouba et al., 2013), or molecular-based methods

(Scanlan & Marchesi, 2008). Many of these species are

associated with dietary sources, as they are used as start-

ers for cheese production or ripening, whereas some are

just food contaminants. Having in mind their source, and

instability (as illustrated in the results of longitudinal fol-

low up of fungal microbiota; Scanlan & Marchesi, 2008),

it is likely that these fungi are not a constant and func-

tionally relevant part of the gastrointestinal microbiota.

Eukarya-intestinal parasites

The gastrointestinal tract of humans can be inhabited by

a number of different micro-eukaryotes that belong

to the phyla: Apicomplexa, Amoebozoa, Ciliophora,

Metamonada, Micosporidia, Parabasalia, and Stramenopiles

(Fig. 28). Some of these organisms are pathogenic infec-

tious agents, which after ingestion (through contaminated

water or food) can cause gastrointestinal symptoms, most

frequently diarrhea. Because of their clinical significance,

these organisms, which are often referred as intestinal

protozoa, are relatively thoroughly studied as infections

agents. Little attention has been given to these organisms

in terms of their role in the ecosystem, but as several

studies have shown that some of these species can be pres-

ent in the healthy human gastrointestinal tract, it is

reasonable to expect that future research will reveal the

true role of these organisms in the gastrointestinal

microbiota.

A number of Eukarya classified within the phylum of

Apicomplexa in addition to Micosporidia form a group of

intestinal spore-forming protozoa that cause intracellular

Aspergillus niger, GQ903338

Aspergillus versicolor, AB008411
Aspergillus sydowii, EU278600

Aspergillus flavipes, AB008400

Penicillium chrysogenum, AY593254
Penicillium camemberti, GQ458039

Penicillium roqueforti, GQ458035
Penicillium brevicompactum, AF548085

Penicillium decumbens, FJ458446

Cladosporium sphaerospermum, HM347335
Beauveria bassiana, AY245649
Verticillium leptbactrum, AB214657

Isaria farinosa, AB080087
Isaria fumosorosea, AB032475

Candida rugosa, AB013502

Candida parapsilosis, AY055856
Candida tropicalis, EF375615

Candida albicans, M60302
Candida dubliniensis, X99399

Candida kruisii, DQ173672

Kluyveromyces hubeiensis, AY324966
Saccharomyces servazzii, AY251628

Candida glabrata, X51831
Candida edaphicus, AB247500

Zygosaccharomyces bisporus, X84638
Torulaspora pretoriensis, X84638

Saccharomyces cerevisiae, EF153844

Kazachstania telluris, AY046236

Candida pararugosa, GQ139517
Galactomyces geotrichum, AB000652

Trigonopsis vinaria, AB018135

Psathyrella candolleana, DQ465339
Asterophora parasitica, AJ496255

Bjerkandera adusta, AF026592
Phanerochaete stereoides, AB084598

Trichosporon asahii, AB001726
Trichosporon caseorum, AJ319754

Trichosporon cutaneum, X60182

Rhodotorula mucilaginosa, AB021668
Malassezia globosa, EU192364

Malassezia restricta, EU192367
Malassezia pachydermatis, EU192366

Ajellomyces capsulatus, AF320009
Ajellomyces dermatitis, AF320010

Botryotinia fuckeliana, DJ062819

Criptococcus carnescens, AB085798
Criptococcus neoformans, AE017342

Criptococcus fragicola, AB035588

Aureobasidium pullulans, AY137506

Aspergillus penicillioides, AB002078

Candida intermedia, AB013571

Candida austromarina, AB013560

Candida solani, AB054566

Torulaspora delbrueckii, AB087379
Candida humilis, AB054678

Kluyveromyces marxianus, AB054675
Lachancea waltii, X89527

10%

Fungi-Ascomycota

Fungi-Basidiomycota
Fig. 27. Phylogenetic tree the human

gastrointestinal Fungi. GenBank Accession

Numbers of the SSU rRNA gene sequence are

provided for each species and the phylum

names are indicated.
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infections, primarily in the epithelial cells of the

gastrointestinal tract. All Apicomplexa species that can be

retrieved from the human gastrointestinal tract are con-

sidered to be pathogenic (Farthing, 2006). Cryptosporidi-

um parvum is the most widely distributed representative

of the group, and it has a high prevalence of infection in

children of the developing world (Checkley et al., 1997).

Although infections with Cryptosporidium parvum can be

asymptomatic, even when it does not cause diarrhea, this

organism affects absorption of nutrients and has a nega-

tive effect on weight gain of children (Checkley et al.,

1997).

Blastocystis spp. (classified within the Stramenopiles) are

single-celled protozoan organisms. Blastocystis spp. was

for the first time isolated from the human gastrointestinal

tract in 1911 and was reported under name Blastocystis

enterocola, which was, at the time, designated as yeast

(Alexieff, 1911). According to the current convention, all

Blastocystis isolated from humans are identified as Blasto-

cystis hominis, although their SSU rRNA gene sequence

analysis showed that nine different phylotypes of these

organisms can be detected in the human gastrointestinal

tract (Arisue et al., 2003; Scanlan & Marchesi, 2008). This

‘within species’ diversity of the B. hominis can explain the

fact that the role of Blastocystis in human disease is still

not defined (Zierdt, 1991). Longitudinal study of the

Eukarya in the human gastrointestinal tract has shown

that Blastocystis spp. are stable and frequently detected

organisms in healthy subjects (Scanlan & Marchesi,

2008). Although some authors have suggested the link

between Blastocystis and intestinal diseases such as

diarrhea, irritable bowel syndrome and inflammatory

bowel disease, the detection of Blastocystis in 105 patients

suffering from various gastrointestinal diseases and 96

healthy controls, indicated that Blastocystis is equally fre-

quent in patients and healthy subjects, although different

phylotypes of Blastocystis are associated with different

health status (Dogruman-Al et al., 2008). Another recent

study could establish a significantly higher incidence of

Blastocystis in ulcerative colitis patients, when compared

to controls (Cekin et al., 2012).

Neobalantidium coli is the only representative of the

Ciliophora phylum. Neobalantidium coli is the largest pro-

tozoan parasite that infects humans, but its natural hosts

are pigs. Although the organism can reproduce within the

intestinal lumen of humans without attacking the tissues

and therefore remain asymptomatic, the infection with

this species is typically followed by diarrhea and bloody

stools (Katz et al., 1982).

The Amoebozoa that can be detected in the human gas-

trointestinal tract include Endolimax nana and Iodamoeba

b€utschlii and six Entamoeba spp. (Table S3). The SSU rRNA

gene sequence is available only for five Entamoeba spp.

(Fig. 28). While most of the intestinal Amoebozoa are non-

pathogenic, there is sufficient evidence that Entamoeba his-

tolytica is pathogenic for humans and causes amebiasis —
dysentery or amebic colitis with a high mortality rate (Fote-

dar et al., 2007). Entamoeba histolytica was the first

described 1875, although the species name Entamoeba

histolytica was assigned later, in 1903 by Fritz Schaudinn

Blastocystis homins ,ST7 AF408427

Entamoeba dispar, Z49256
Entamoeba histolytica, X65163

Entamoeba moshkovskii, AF149906
Entamoeba hartmanni, AF149907

Entamoeba coli, AF149914

Enterocytozoon bieneusi, ABGB01000454

Stramenopiles

Amoebozoa

Microsporidia

Cyclospora cayetanensis, AF111183

Sarcocystis hominis, AF176945
Sarcocystis suihominis, AF176937

Cystoisospora belli, JX025651

Cryptosporidium parvum, AF108865
Cryptosporidium hominis, AAEL01000242

Neobalantidium coli, AF029763

Dientamoeba fragilis, AY730405
Pentatrichomonas hominis, AY758392

Encephalitozoon cuniculi, AL391737
Enterocytozoon intestinalis, L19567

Enteromonas hominis, AF551180
Giardia intestinalis, AF199449

Apicomplexa

Ciliophora
Metamonada

Fornicata
10%

Blastocystis homins ,ST9 AF408426
Blastocystis homins ,ST6 AB091237
Blastocystis homins ,ST5 AB070988
Blastocystis homins ,ST8 AB070992

Blastocystis homins ,ST4 AY244620
Blastocystis homins ,ST1 AB023578
Blastocystis homins ,ST2 AY618265

Blastocystis homins ,ST5 EF467654

Cryptosporidium meleagridis, AF112574

Fig. 28. Phylogenetic tree the human gastrointestinal microeukarya. GenBank Accession Numbers of the SSU rRNA gene sequence are provided

for each species and the phylum names are indicated.
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(Saklatvala, 1993). There are several studies that show the

successful detection of Entamoeba spp. in clinical samples

using molecular methods, typically in stool samples taken

from patients with diarrhea. Molecular studies of the Euk-

arya as part of the ecosystem in the human gastrointestinal

tract already confirmed the presence of two Entamoeba spe-

cies: Entamoeba coli (Scanlan & Marchesi, 2008) and Ent-

amoeba hartmanni (Hamad et al., 2013) in the

gastrointestinal tract of a healthy man.

Members of the phyla Micosporidia, Parabasalia and

Metamonada are micro-eukaryotic organisms that contain

flagella and are often commonly termed as flagellates.

Micosporidia are obligate intracellular protozoan parasites

that spread in the environment via spores. Four species

of Micosporidia can infect the human gastrointestinal tract

— Enterocytozoon bieneusi (Desportes et al., 1985), En-

cephalitozoon intestinalis (Weber et al., 1994), Encephalito-

zoon cuniculi (Franzen et al., 1995), and Retortamonas

intestinalis (Jones-Engel et al., 2004; Fig. 28, Table S3).

Retortamonas intestinalis, for which SSU rRNA gene

sequence is not available, is the oldest isolate of this

group that was for the first time cultured in 1879

(Hogue, 1933). Other Micosporidia were isolated from the

gastrointestinal tract of a subject infected with HIV (Des-

portes et al., 1985). The presence of Micosporidia in the

gastrointestinal tract is typically associated with diarrhea,

mostly in immuno-suppressed patients, although spores

of these organisms can be detected in gastrointestinal

samples of asymptomatic subjects (Cegielski et al., 1999;

Mungthin et al., 2005; Wichro et al., 2005). If asymptom-

atic, the presence of Micosporidia in the gastrointestinal

tract is associated with malnutrition.

Among Parabasalia, two species can be associated

with the human gastrointestinal tract. Pentatrichomonas

hominis is generally regarded as a harmless commensal

organism, although it is occasionally designated as a

causal agent of diarrhea. This organism, which actually

represents the oldest gastrointestinal isolate retrieved in

1854, has a low prevalence of the human gastrointestinal

tract colonization that varies from 0.1% to 30.9%

depending on the geographical location (Honigberg,

1990). In 1918 another member of this group, Dient-

amoeba fragilis was reported as a commensal in the

human gastrointestinal tract. However, the latter

research has suggested that D. fragilis might be associ-

ated with a number of diseases including diarrhea,

abdominal pain, anorexia, irritable bowel syndrome or

allergic colitis (reviewed in Johnson et al., 2004). The

uncertainty of the pathogenicity of D. fragilis might be,

similar to B. hominis, due to the presence of different

phylotypes, since two different phylotypes of this species,

with 2% SSU rRNA gene sequence divergence, have

been identified (Johnson & Clark, 2000).

The Metamonada phylum includes Giardia lamblia

and two rarely detected and principally nonpathogenic

species — Enteromonas homins and R. intestinalis (Katz

et al., 1982). Giardia lamblia is the most common flagel-

late of the human gastrointestinal tract. When ingested,

typically via contaminated food or water, G. lamblia

attaches to the mucosal surface of the duodenum or

jejunum and multiplies by binary fission (Wolfe, 1992).

Infection with G. lamblia is termed giardiasis, and

although it may remain asymptomatic, giardiasis can be

followed by a range of symptoms that include steator-

rhoea, diarrhea and weight loss (Wolfe, 1992). It is not

clear why some infections are asymptomatic, but already

in the 1970s, it was suggested that the symptoms might

depend on the relation between the parasite and the

enteric gastrointestinal microbiota (Tandon et al., 1977).

Postinfective to the giardiasis, patients might develop a

range of novel symptoms that resemble those of the irri-

table bowel syndrome (Hanevik et al., 2009). This con-

dition, which can be developed after infection with

other infectious agents, such as Campylobacter spp., is

recognized as postinfectious irritable bowel syndrome

(Spiller & Garsed, 2009). A recent study showed that

the bacterial fraction of the gastrointestinal microbiota

of the postinfectious irritable bowel syndrome patients

have a distinct composition relative to controls, which

most likely reflects a consequence of an intensive inter-

action between the ecosystem and the infectious agent

(Jalanka-Tuovinen et al., 2013). This illustrates that

infectious agent, although not true members of the gas-

trointestinal microbiota should be kept in mind when

studying the gastrointestinal microbiota, as their short-

and long-term impact on the microbiota composition

and function can be profound.

Concluding remarks

The knowledge generated during more than a century of

studying the human gastrointestinal microbiota has

shown that this ecosystem is indeed a forgotten organ of

the human body. The wealth of data about the gastroin-

testinal microbiota is highly scattered in time as well as

in space — a caveat that this review aims to correct in an

attempt to systematize the generated knowledge. We have

given particular attention to the diversity and the defined

functions of the abundant and important microbiota

groups. Our inventory reports 1057 cultured gastrointesti-

nal species, while many more are still expected to be cul-

tured. Although cultivation of the gastrointestinal

microbiota is laborious, it is an essential step for the

detailed physiological and biochemical characterization of

the individual gastrointestinal isolates that is needed for

the progress of this research field. This has been
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increasingly recognized and the recent high-throughput

culturing studies have proven that cultivation can be used

as a powerful methodology in discovery of currently

unknown gastrointestinal inhabitants (Lagier et al., 2012a;

Dubourg et al., 2013; Pfleiderer et al., 2013). The future

cultivation of the remaining majority of the gastrointesti-

nal microbiota is expected to improve our understanding

of this ecosystem, while this review can serve as a baseline

for the gastrointestinal microbiota diversity and function

when the first 1000 intestinal species had been discovered.
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