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Lung cancer is a leading cause of death worldwide. Although computed tomography (CT) examinations are frequently used for
lung cancer diagnosis, it can be difficult to distinguish between benign and malignant pulmonary nodules on the basis of CT
images alone.Therefore, a bronchoscopic biopsymaybe conducted ifmalignancy is suspected followingCTexaminations.However,
biopsies are highly invasive, and patients with benign nodulesmay undergomany unnecessary biopsies. To prevent this, an imaging
diagnosis with high classification accuracy is essential. In this study, we investigate the automated classification of pulmonary
nodules in CT images using a deep convolutional neural network (DCNN). We use generative adversarial networks (GANs) to
generate additional images when only small amounts of data are available, which is a common problem in medical research, and
evaluate whether the classification accuracy is improved by generating a large amount of new pulmonary nodule images using the
GAN.Using the proposedmethod, CT images of 60 caseswith confirmed pathological diagnosis by biopsy are analyzed.The benign
nodules assessed in this study are difficult for radiologists to differentiate because they cannot be rejected as being malignant. A
volume of interest centered on the pulmonary nodule is extracted from the CT images, and further images are created using axial
sections and augmented data. The DCNN is trained using nodule images generated by the GAN and then fine-tuned using the
actual nodule images to allow the DCNN to distinguish between benign and malignant nodules. This pretraining and fine-tuning
process makes it possible to distinguish 66.7% of benign nodules and 93.9% of malignant nodules. These results indicate that the
proposed method improves the classification accuracy by approximately 20% in comparison with training using only the original
images.

1. Introduction

1.1. Background. Lung cancer is a leading cause of death
worldwide [1]. The disease exhibits a rapidly worsening
prognosis with progression, necessitating early detection
and treatment. Chest radiography and sputum cytology are
widely used screening techniques for the early detection of
lung cancer. If the screening examination reveals suspicious
findings, computed tomography (CT) is performed to pro-
vide a more detailed assessment [2]. CT examinations have

high detection ability and can even reveal small lesions;
therefore, they are indispensable for lung cancer diagnosis
[3]. However, it is often difficult to distinguish between
benign and malignant pulmonary nodules on the basis of CT
images alone.Therefore, a bronchoscopic biopsy is conducted
if the CT examinations indicate malignancy. However, bron-
choscopic biopsies are highly invasive and are associated with
the risk of complications and infectious diseases, because
tissues and cells are collected directly from the patient’s body
[4]. This approach also entails multiple unnecessary biopsies
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for patients with benign nodules. Thus, an imaging diagnosis
with high classification accuracy is essential.

Computer-aided diagnosis (CAD) is a useful tool for
reducing the incidence of biopsies, as it supports diagnosis
by allowing quantitative analysis of medical images with a
computer.

In studies on the use of CAD in lung cancer diagnosis,
various methods have been developed for calculating hand-
crafted features such as nodule shape, and machine learning
has been used to distinguish between benign and malignant
nodules [5–7]. Hand-crafted feature extraction may focus
on the characteristic shapes of nodules. Thus, cases that
do not correspond to the characteristics may be difficult to
classify, and the addition of new features to improve accuracy
may also be difficult. Many recent studies have proposed
classification methods based on deep convolutional neural
network (DCNN), which is a deep learning network [8] that
offer excellent image recognition ability [9–12]. Satisfactory
results have been obtained by automating the conventional
feature extraction approach, even for difficult cases. A recent
trend involves training a DCNN using a deep layer such as
ResNet [13] and DenseNet [14], which are frequently used
in the field of natural images. A deeper neural network
may increase the power of expression [15]. However, the
training necessary to obtain a deeper neural network requires
a sufficient amount of training data, and the amount of
available medical imaging data is limited by ethical issues
and time constraints. Thus, the limited availability of medical
imaging data in comparison with the datasets used for other
image classification tasks presents a problem.

To overcome this problem, we focus on generative
adversarial networks (GANs) [16]. A GAN is an artificial
intelligence model that generates new images that are similar
to training images. The GAN has two networks, called the
generator and discriminator; the generator tries to generate
images similar to the training data, whereas the discriminator
tries to classify whether the generated image is real or
fake. The discriminator’s network is backpropagated so that
errors can be reduced and classification accuracy can be
improved. In contrast, the generator’s network is optimized
to incorrectly classify the generated images. Thus, GAN
training is performed by two competing networks. Using this
technique, enormous volumes of data can be generated from
medical images with limited amounts of original data. The
generated images can also be applied to DCNN training. It
is expected that this approach will avoid ethical problems, as
the generated images do not correspond to real patients.

1.2. Studies Related toGAN. GANshave recently been applied
in various fields, and many studies are also being conducted
on medical images. Most studies on GANs have employed
image-to-image translation [17–19]. For example, Costa et
al. [17] performed vessel segmentation using U-Net and
generated new retinal images using GANs. In addition, good
results have been reported in cross-modality translations,
such as translation from CT images to PET images [18] and
translation from MRI images for treatment planning to CT
images [19]. Although a fully convolutional network (FCN)
is generally used in research on segmentation technology,

methods using GANs have also been developed in this
context, such as that by Dai et al. [20], who performed
the segmentation of lung and heart areas on chest X-ray
images using GANs. GANs have also been used to reduce
the noise in CT images, for example, by Yang et al. [21],
who effectively improved the problem of oversmoothing by
reducing noise from low-dose CT images. Thus, processes
such as segmentation and noise reduction, which were
conventionally performed by various methods, have been
successfully improved by using GANs.

However, few studies have assessed the use of GANs to
improve limited amount of data, which is the problem we
aim to solve here [22, 23]. Frid-Adar et al. [22] increased the
training data available for liver lesion classification using a
GAN with a DCNN. Salehinejad et al. [23] also increased
the number of training samples by using a GAN for lesion
classification in chest X-ray images. Furthermore, the bias
between the normal and abnormal cases was balanced by
changing the number of images generated by the GAN [23].
In both studies, the classification accuracy was improved by
increasing the available data. In these methods, DCNN train-
ing was performed using the original images and the GAN-
generated images together. Although GAN-generated images
are meant to compete with the real images, some may be
obviously dissimilar to real images and can be easily identified
by the human eye. Moreover, some of the GAN-generated
images may be blurred, having a different resolution from
the real images. Therefore, the simultaneous use of real and
generated images for training may be problematic. Hence, we
develop a new method that employs a GAN to increase the
set of image data.

1.3. Objective. The GAN-generated images were not used to
train the DCNN alongside real images, but were instead used
for pretraining. Fine-tuning of the DCNN then proceeded
using the original nodule images. This stepwise training
approach allows the acquisition of rough image features for
lung nodules from the GAN-generated images, followed by
the adjustment of finer parameters using the original nodule
images. Therefore, in this study, we develop a pretraining
method using GAN-generated images to improve DCNN
performance in the classification of pulmonary nodules.

2. Materials and Methods

2.1. Outline. Figure 1 shows an outline of the proposed
method. The volume of interest (VOI) centered on the pul-
monary nodule is extracted from CT images, and images are
created with the axial section and augmented data. To train
the DCNN, pretraining is initially performed with Wasser-
stein GAN (WGAN)-generated nodule images. Benign and
malignant nodules are then distinguished by fine-tuning
using the pretrained DCNN.

2.2. Image Dataset. The CT dataset used in this study was
obtained from Fujita Health University Hospital, Japan. CT
images of 60 cases with pathological diagnosis confirmed by
biopsy were analyzed. They consisted of 27 cases of benign
nodules and 33 cases of malignant nodules, examples of
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Figure 1: Outline of the proposed method to distinguish between benign and malignant nodules.

(a) Examples of benign nodules (b) Examples of malignant nodules

Figure 2: Examples of analytical cases.

which are shown in Figure 2. The benign nodules used in
this study were targeted to be difficult for radiologists to
differentiate because they could not be rejected as being
malignant. Aquilion ONE (Canon Medical Systems) was
used as the CT scanner, and the reconstruction function
was used under the condition that the lung field could be
clearly observed. This study was approved by an institutional
review board, and patient agreement was obtained under the
condition that all data were anonymized.

First, the VOI was extracted such that the nodule was at
the center. The pulmonary nodule area to be analyzed was
specified by the radiologist. The VOI was cube-shaped, and
the size to be extracted was twice the maximum diameter of
the nodule, taking into consideration information regarding
the surrounding structure of the nodule. Next, axial images
were created from the center of the extracted VOI. However,
with only axial images, the number of images obtained from
each case is small. Training a DCNN requires sufficient
training data, and small amounts of training data may result
in overfitting. To prevent such overfitting, the training data
were augmented by image manipulation [24, 25]. To consider

information from adjacent slices, sectional images of the
pulmonary nodule were created, where the slice angles varied
from -40∘ to +40∘ in steps of 5∘ with reference to the axial
images. Furthermore, by rotating and inverting the created
sectional images, the training data were further augmented
to serve as input images to the WGAN and DCNN.

2.3. Generating Pulmonary Nodules. TheGAN methods pre-
viously applied to medical research often use deep convo-
lutional GANs (DCGANs), which use a DCNN to deter-
mine the structure of the generator and discriminator [26].
In the conventional GAN method, training is performed
using the Jensen–Shannon divergence to express the distance
between two probability densities. This method may cause
the training process to be unstable because of the vanishing
gradient problem and the possibility of mode collapse with
the generation of similar images. WGANs were introduced
to address these issues [27]. In WGANs, the loss function
is defined using the Wasserstein distance instead of the
Jensen–Shannon divergence. Thus, the gradient should not
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Figure 3: Architecture of the GAN used for nodule generation.

disappear near the optima parameter value, which stabilizes
the training process.

Figure 3 shows the architecture of the WGAN used to
generate the image dataset. The generator is composed of
four fractionally strided convolution layers. The generator
network takes a vector of 100 random numbers drawn from
a uniform distribution as input and outputs a nodule image
of 64 × 64 pixels. In the fractionally strided convolution
layer, the image is upsampled using zero-padding and a
5 × 5 kernel size. Batch-normalization is applied to each
layer of the network, except the output layer [28, 29]. In
batch-normalization, GAN training is stabilized by applying
normalization throughout the minibatch. The discriminator
is composed of four convolution layers; an image of 64 ×

64 pixels is input to the discriminator, which determines
whether the given image is real or fake.The convolution layers
have a 5 × 5 kernel size, and batch-normalization is applied to
each layer.

We trained the WGANs separately for benign and
malignant nodules. In the real world, there exist variations
such as isolated nodules and nodules infiltrating the pleura.
However, if the WGANs were trained collectively for such
instances, nodular images would not be generated success-
fully. Therefore, training was mainly carried out by selecting
isolated nodules. The number of epochs and the learning
rate were set to 1000 and 0.00005, respectively. RMSprop
was used as the optimization algorithm. WGAN training
was conducted on Ubuntu 16.04 using TensorFlow and Keras
as deep learning APIs. The calculation was accelerated by a
graphics processing unit (NVIDIAQuadro P5000with 16GB
of memory).

2.4. Classification of Pulmonary Nodules. Figure 4 shows
the architecture of the DCNN that was pretrained by the
pulmonary nodule images generated byWGAN.This DCNN
model, based on AlexNet, consists of five convolution layers,
three pooling layers, and three fully connected layers. The
images are resized to 256 × 256 pixels before being fed to
the DCNN input layer. Convolution layer 1 uses 96 filters
with an 11 × 11 kernel, resulting in a feature map of 55 ×

55 × 96 pixels. Pooling layer 1 conducts subsampling that
outputs the maximum value in a 3 × 3 kernel for every two

pixels, reducing the matrix size of the feature map to 27 × 27
× 96 pixels. Thus, after applying five convolution layers and
three pooling layers, the two-dimensional feature map input
to the fully connected layer in one-dimensional form. In the
three fully connected layers, we employ the dropout method
(dropout rate = 0.5) to prevent overfitting. The result is a
DCNN trained by a large number of nodule images generated
using the WGAN.

Next, fine-tuning is conducted using the pretrained
DCNN. The original pulmonary nodule images are used as
the input, and the fully connected layers of the pretrained
DCNN are replaced. The other parts of the DCNN are
retrained using the trained parameters as initial values, with
the number of epochs and learning rate set to 30 and 0.0001,
respectively. Stochastic gradient descent (SGD) is used as
the optimization algorithm. In this study, the DCNN was
trained using the dedicated training program bundled in the
Caffe package [30] on Ubuntu 16.04 and accelerated by a
graphics processing unit (NVIDIAQuadro P5000with 16GB
of memory).

3. Results

3.1. Images Generated by WGAN. Examples of pulmonary
nodule images generated by the WGAN are shown in Fig-
ure 5. In this study, 100,000 images of pulmonary nodules
were generated.TheGAN-generated images included nodule
features such as spicula, and image information of the chest
wall was also expressed.

3.2. Classification Results. For the classification of pulmonary
nodules, the DCNNwas trained and evaluated using the data
generated by the WGAN and the original data, respectively.
The classification performance was evaluated via threefold
cross-validation. In this process, training images were ran-
domly divided into three groups. The numbers of original
and augmented images in each dataset used for training the
WGAN and DCNN are listed in Table 1.

Table 2 presents the classification results with various
numbers of images used for the training stage. We con-
structed five datasets containing up to 100,000 images by



BioMed Research International 5

Table 1: Number of images in each dataset for cross-validation.

Train Type Set 1 Set 2 Set 3
Original Augmented Original Augmented Original Augmented

WGAN Benign 5 1280 6 1536 6 1536
Malignant 11 2816 11 2816 11 2816

DCNN Benign 9 2304 9 2304 9 2304
Malignant 11 2816 11 2816 11 2816

256 x 256 x 1 55 x 55 x 96 27 x 27 x 256 13 x 13 x 384 13 x 13 x 384 13 x 13 x 256
4096 4096

2

conv1 max pool1
conv2

max pool2
conv3

conv4 conv5 max pool3
full1

full2 full3

Input image
(CT images)

Benign
Malignancy

Output

Figure 4: Architecture of the DCNN used for pulmonary nodule classification.

Table 2: Classification results for various numbers of images used
for pretraining.

The number of
generated images

Classification accuracy [%]
Benign Malignant

0 51.9 84.9
20,000 51.9 93.9
40,000 63.0 93.9
60,000 66.7 93.9
80,000 55.6 84.8
100,000 63.0 84.8

increasing the number of pulmonary nodule images gen-
erated by WGAN. The classification accuracy is presented
for each of the five sets used in pretraining. Table 3 gives
the classification results for each of the pretraining methods
with and without data augmentation. We also conducted the
pretraining stage using ImageNet [31], which is natural image
dataset with a large amount of data, to examine the effect
of pretraining using GAN-generated images. From Table 2,
when the number of images generated by WGAN is 60,000,
the classification accuracy of benign nodules reached 66.7%
and that of malignant nodules was 93.9%, which are the
highest scores in both categories. Increasing the number of
generated images to 80,000 decreased the classification accu-
racy. Table 3 indicates that pretraining using GAN produces
better classification results than pretraining with ImageNet.
In addition, data augmentation enhances the accuracy in all
cases. Figure 6 shows the receiver operating characteristic
(ROC) curve drawn by changing the threshold of malignant
probability from 0 to 1.The area under the curve (AUC) of the

proposed method is 0.841, whereas that without pretraining
and augmentation is 0.622.

Table 4 compares the performance of other networkmod-
els. Among these models, the method using GAN-generated
images for pretraining is the most accurate, and AlexNet
produces better classification accuracy than GoogLeNet and
VGG16.

Figure 7 shows the image classification results from
AlexNet when pretraining was performed using 60,000
WGAN-generated images. This approach correctly classified
even the difficult nodules.

4. Discussion

As shown in Figure 5, the WGAN generated images that
captured the benign and malignant nodule features. Benign
nodules often have a rounded shape, and malignant images
could also be generated with spicula and withdrawal into
the pleura. In a previous study, pulmonary nodule images
generated by a DCGAN succeeded in deceiving a radiologist,
indicating the usefulness of the images generated by GANs
[32]. In our proposed method, the WGAN generates more
accurate images of pulmonary nodules, and although no
visual evaluation was not conducted by a radiologist, the
results are worthy of evaluation. However, unlike the original
CT images, the generated images have a low resolution of 64
× 64 pixels. For natural images, GAN technology has been
reported to generate images with resolutions of up to 1024
× 1024 pixels [33]. Newly improved WGAN methods have
also been developed [34]. Thus, applying these methods to
generate high-resolution pulmonary nodule images may lead
to significant improvements in classification performance.
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Table 3: Classification result by the pretraining method.

Pretraining method Data augmentation Classification accuracy [%]
Benign Malignant

None No 25.9 78.8
ImageNet No 33.3 87.9
WGAN (60000) No 63.0 81.8
None Yes 51.9 84.9
ImageNet Yes 40.7 93.9
WGAN (60000) Yes 66.7 93.9

Table 4: Classification result by difference in network models.

Model Pretraining method Classification accuracy [%]
Benign Malignant Overall

Proposed method
(AlexNet)

None 51.9 84.9 70.0
ImageNet 40.7 93.9 70.0

WGAN (60000) 66.7 93.9 81.7

GoogLeNet
None 40.7 84.9 65.0

ImageNet 48.2 87.9 70.0
WGAN (60000) 48.2 97.0 75.0

VGG16
None 29.6 90.9 63.3

ImageNet 33.3 87.9 63.3
WGAN (60000) 48.2 84.9 68.3

From Table 2, some 67% of benign nodules and 94% of
malignant nodules could be distinguished using pretraining
with 60,000 GAN-generated images and fine-tuning of the
pretrained DCNN. In comparison with the results obtained
by training with the full scratch without pretraining, the
proposed approach improves the accuracy for benignnodules
by 15% and that for malignant nodules by 9%. Pretraining
with pulmonary nodule images generated by GAN aids
the acquisition of characteristic information on benign
and malignant nodules. However, when more than 60,000
images were used for pretraining, the classification accuracy
dropped.We think that this is because similar nodule images
are more likely to be included in the training data as the
number of pretraining images increases, possibly leading to
overfitting. It is necessary to investigate this problem in detail
in the future.The lower identification rate for benign nodules
may be because there were fewer benign cases in the original
images. Therefore, we plan to increase the number of benign
cases used in future studies.

As relatively few cases (60) were used in this study, train-
ing using only the original data, with no data augmentation
and pretraining, yielded correct identification rates of 26%
and 79% for benign and malignant nodules, respectively.
Even after pretraining using ImageNet, the rates for benign
andmalignant nodules only improved by a few percent. How-
ever, pretraining using WGAN-generated images improved
the rates for benign and malignant nodules by around 37%
and 3%, respectively. Furthermore, additional data augmen-
tation improved the rates for benign and malignant nodules

by around 4% and 12%, respectively. Data augmentation
and pretraining with WGAN-generated images improved
the accuracy rates for benign and malignant nodules by
40.8% and 15.1%, respectively. These results suggest that the
classification accuracy can be improved by GAN technology,
even for medical images with limited data.

The cases used in this study could not be classified by
image diagnosis alone and were eventually identified by
bronchoscopic biopsy, indicating that even radiologists found
themdifficult to distinguish.The actual diagnostic process for
lung cancer is based on a variety of patient information such
as the incidence of cough and chest pain and the experience of
the respiratory specialists and radiologists who examine the
images. However, the DCNN in the proposed method could
classify pulmonary noduleswith high accuracy on the basis of
CT images alone. Moreover, under actual clinical conditions,
biopsies provide a definitive diagnosis but are highly invasive
procedures.Thus, patients with benign nodules may undergo
unnecessary biopsies. With the proposed method, almost
all cases of malignant nodules and two-thirds of benign
nodules were classified correctly. These results indicate that
the proposed method may reduce the number of biopsies in
patients with benign nodules that are difficult to differentiate
from CT images by over 60%.

In this study, we used original image database. Here,
CT image database is constructed in various projects such
as LIDC-IDRI [35]. At the moment, the number of cases
confirmed by biopsy or surgery is still small. In future,
we would like to evaluate the LIDC dataset when we can
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Figure 5: Examples of images generated using WGAN.
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Figure 6: ROC curve of the proposed method.

use the sufficient number of cases that performed the final
diagnosis. In addition, although this method involves the
analysis of only the CT images, we would like to investigate
whether classification accuracy can be improved further by
considering various information such as positron emission
tomography (PET) information, in future.

5. Conclusion

In this study, we developed a pretraining method using a
GAN for improving the DCNN classification performance of
pulmonary nodules. Experiments showed a correct identifi-
cation rate of 67% for benign nodules and 94% for malignant
nodules. Thus, almost all cases of malignancy were classified
correctly, with two-thirds of the benign cases being also
classified correctly. These results indicate that the proposed

method may reduce the number of biopsies in patients with
benign nodules that are difficult to differentiate from CT
images by over 60%. Furthermore, the classification accuracy
was clearly improved by the use of GAN technology, even for
medical datasets that contain relatively few images.

Data Availability

The source code and additional information used to support
the findings of this study will be available from the corre-
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