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Abstract

The formation of metastases is driven by the ability of cancer cells to disseminate from the

site of the primary tumour to target organs. The process of dissemination is constrained

by anatomical features such as the flow of blood and lymph in the circulatory system. We

exploit this fact in a stochastic network model of metastasis formation, in which only anatom-

ically feasible routes of dissemination are considered. By fitting this model to two different

clinical datasets (tongue & ovarian cancer) we show that incidence data can be modelled

using a small number of biologically meaningful parameters. The fitted models reveal site

specific relative rates of dissemination and also allow for patient-specific predictions of met-

astatic involvement based on primary tumour location and stage. Applied to other data sets

this type of model could yield insight about seed-soil effects, and could also be used in a clin-

ical setting to provide personalised predictions about the extent of metastatic spread.

Author summary

For most cancer patients the occurrence of metastases equals incurable disease. Despite

this fact our quantitative knowledge about the process of metastatic dissemination is lim-

ited. In this manuscript we improve on a previously published mathematical model by

incorporating known biological facts about metastatic spread and also consider the tem-

poral dimension of dissemination. The model is fit to two different cancer types with very

different patterns of spread, which highlights the versatility of our framework. Properly

parametrised this type of model can be used for making personalised predictions about

metastatic burden.

Introduction

For most forms of cancer, occurrence of distant metastases equals incurable disease [1, 2].

Regional metastases, i.e. positive lymph nodes, also implies an inferior prognosis [3, 4]. In

order to diminish the risk of dissemination of the primary tumor, patients commonly receive

adjuvant treatment with radiotherapy and/or some kind of medical oncological treatment.
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Yet, in many cases, the patient is later on faced with residual or recurrent disease [5]. On the

other hand, many patients receive adjuvant treatment with subsequent side effects, even

though their illness would never have disseminated [6, 7]. Hence, increased knowledge about

the extent of metastasis at diagnosis would improve the care of many cancer patients.

Metastatic spread is known to follow certain disease specific patterns [8, 9], but despite the

current state of knowledge, a quantitative understanding of the process of metastatic spread

would improve our ability to optimise therapy and reduce over-treatment. Here will we make

use of stochastic modelling to quantitatively assess the importance of different routes of dis-

semination. In addition, this method also makes it possible to estimate the extent of metastatic

spread based on tumour stage and location. Our approach is versatile and we highlight this by

applying it to two different types of tumours: carcinoma of the oral tongue, which disseminates

primarily through the lymphatic system and ovarian carcinoma, which spreads both intraperi-

toneally, lymphatically and through the blood circulatory system.

The tendency of a primary tumour to form a metastasis is the hallmark of malignant cancer

[10], and the process by which this occurs is a multi-step process [11, 12]. Typically tumour

cells detach from the primary tumour, invade the surrounding stroma and find their way to

local lymph nodes or blood vessels [13]. Although a late stage tumour can release very large

number of circulating tumour cells (CTCs) into the blood stream (up to 4 × 106 cells shed per

gram of tumour per day [14]), the low probability of forming metastatic foci [15] coupled with

the low probability of passing through capillary beds [16] lead to the conclusion that microme-

tastases in for example the liver (for gut malignancies) and the lung (for all malignancies) are

necessary for further hematogenic dissemination [17–19]. These, often microscopic [20],

lesions release CTCs into the arterial side of the circulation (in the case of the lung) [21], and

hence amplify CTC numbers in arterial blood, which otherwise would be low due to the filtra-

tion occurring in the lung capillary bed. A similar process is at work during lymphatic spread

[22], where CTCs get trapped in lymph nodes, where they form micrometastases, which shed

CTCs that travel further downstream in the lymphatic system.

This process is known as secondary seeding, and although it is of paramount importance

for the metasatic process we still have a limited understanding of the steps involved. Here

mathematical modelling can provide a helping hand, since it allows for a quantitative under-

standing of biological processes that are difficult to measure directly.

Mathematical modelling of metastasis dates back to a series of seminal papers by Liotta and

coworkers [23–25]. They considered the release of CTCs from an implanted tumour in mice

and the subsequent formation of lung metastases. Using both deterministic and probabilistic

methods they could derive predictions of how the number of metastatic foci changes over time

and how the probability of being free of metastasis changed [24]. These predictions agreed

well with experimental data and highlights the stochastic yet predictable nature of metastatic

spread.

Another important contribution was made by Iwata et al. [26] who formulated and ana-

lysed a model which accounts for secondary seeding. That model predicts how the size distri-

bution of metastases changes as the disease progresses. Predictions of the model were tested by

Baratchart et al. [27] in a murine model of renal carcinoma, and while the model could predict

the total metastatic burden, it was unable to describe the size distribution of metastases. How-

ever, the model prediction could be improved by assuming interactions between metastatic

foci.

The Iwata model has also been used for connecting presurgical primary tumor volume and

postsurgical metastatic burden and survival [28]. The model was applied to two datasets from

mouse models and one clinical dataset and the analysis revealed a highly nonlinear relation-

ship between resected primary tumor size and metastatic recurrence.

Inferring rates of metastatic dissemination using stochastic network models
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A similar approach has been used by Hanin and coworkers in a model which accounts for

the growth rate of the primary tumour, shedding of metastases, their selection, latency and

growth in a given secondary site [29]. They proved that the parameters of the model are identi-

fiable in the case of Gompertzian growth of the primary tumour, and apply a maximum likeli-

hood method to identify the model parameters in the case of a single patient with a large

number of lung metastases.

Other mathematical models have successfully been applied in order to describe the dynam-

ics of metastatic spread in pancreatic cancer [30] and breast cancer [31].

The importance of secondary seeding was investigated by Scott et al. [19] in the context of

self-seeding [32], the process whereby a primary tumour can accelerate its own growth by

releasing CTCs that return to the site of origin. A careful mathematical treatment of this

hypothesis showed that secondary seeding is indeed required for this pathway to contribute to

primary growth.

Secondary seeding also has an impact on estimates of metastatic efficiency, since undetected

micrometastatic lesions render the apparent spread directly from the primary to target sites

more efficient than it actually is [18].

The idea of metastatic spread occurring on a network, where the nodes represent organs

and the links correspond to routes of spread was first described by Scott et al. [33], and later

modelled quantitatively by Newton et al. [34, 35]. They considered a stochastic model where

the dissemination of cancer cells is modeled as an ensemble of random walkers on the net-

work. The dynamics of the model is determined by a transition matrix, which was obtained by

fitting the model to a large autopsy data set [36]. The entries of this transition matrix give

information about rates of dissemination between different organs.

Here we build on the work of Newton et al., but with secondary seeding in mind, make

modifications which alleviate the problem underdetermination, which plagued their work. In

order to parametrise their model they had to assume that the observed patterns of metastasis

correspond to a steady-state distribution of the model. We instead make use of primary

tumour stage to create a model which is temporal and considerably easier to parametrise.

Focusing on two primary tumours we show that our model is able to estimate the dissemi-

nation rates with high confidence, and crucially allows us to estimate rates between sites,

which are inaccessible if one simply analyses incidence data.

Results

Our aim is to quantify the rate of metastatic spreading by applying a stochastic network

model to clinical data. We will consider two different data sets: (i) A cohort of 141 patients

diagnosed with tongue cancer where metastases mainly occur in the head and neck region

and (ii) data from patients with ovarian cancer obtained from the SEER-database where

metastases occur both regionally and to some extent in distant organs. Regional spread typi-

cally occurs via the lymphatic system and metastases appear in lymph nodes (LN), whereas

distant metastases are mediated by the blood circulatory system and appear in other organs

such as the liver or the lung. Although the two processes are different in some respects they

also share many commonalities. Firstly, the spread of the disseminated tumour cells is con-

strained by anatomical structures, i.e. the lymphatic system and the blood circulatory system.

Secondly, the spread is directed since it is subject to the flow in the system, and lastly, the

formation of metastases at secondary sites affects the downstream rate of formation since

metastases, like the primary tumour, disseminate tumour cells as they grow. These similari-

ties makes it possible to formulate a general mathematical model, which can be tailored to

describe both data sets.

Inferring rates of metastatic dissemination using stochastic network models
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The model consists of a network with sites and directed links [33]. The nodes correspond

to lymph node stations or organs, and can be in either of two states: negative (i.e. containing

no metastases) or positive (containing one or more metastases). The state of each node is a

random variable, and the probability of it being positive depends on the state of the other

nodes, and the rates of shedding between the nodes.

We assume that a positive site sheds CTCs that flow according to the links of the network.

This applies both to the primary tumour and subsequent metastases. For simplicity we do not

consider the size of metastases in this model, since this would require more parameters [37],

and would make it more difficult to fit the model to clinical data. This implies that the state

of each site is a binary variable taking the value 0 if the site is empty and 1 if it contains a

metastasis.

We assume that each cancer cell which is disseminated from a site has the same probability

of forming a metastasis at a downstream site. Since it is known that filtration rates are high

(only 1 in 10 000 cells pass through a capillary bed) [19] we assume that CTCs only flow to

neighbouring sites, e.g. CTCs released on the venous side of the circulatory system can only

give rise to metastases in the lung, since this is the first capillary bed they encounter. This is

also a good approximation for lymphatic spread, where the occurrence of skip metastases, in

which intermediary LNs are negative, is rare [38], and has been suggested to be the results of

undetectable micrometastases [38]. We aggregate the rate of release of CTCs, the survival

probability in the circulatory system and the probability of forming a metastasis in a down-

stream site into a single rate parameter, which we call λ, when flow is from the primary

tumour, and ϕ, when flow is from metastatic sites. This parameter then corresponds to the rate

at which a downstream site becomes positive given a positive site upstream. We assume that

the primary tumour (and secondary lesions) start shedding CTCs upon formation, which

means that we assume a parallel progression model [39], as opposed to a linear model where

shedding from the primary is delayed and occurs after malignant progression.

We include a temporal dimension into the model by using the primary tumour stage as a

proxy for time. This means that we consider the stage as informative about the total number of

CTCs that have been disseminated from the initiation of the tumour up until diagnosis. This is

of course a crude approximation since it is known that tumours progress at different rates and

preferentially disseminate to different sites depending on for example which mutations they

harbour [40]. Although tumours might progress at different rates they still have to pass all the

intermediary stages, and very rarely regress to a lower stage. If we knew the time since tumour

initiation for each patient we would able to infer the rates in absolute terms (e.g. units per

year). However, since we only have information about the tumour stage, and in addition do

not have a mapping from real time to tumour stage, the rates that we infer from clinical data

are only relative, but given a primary tumour of a certain stage the model can still predict the

probability of metastases at different sites. The relative magnitude of the rates also informs us

about the risk of developing new metastases given a certain metastatic burden. This approach

was also taken by Benson et al. who used stage as a proxy for time in a model of metastatic

spread in head and neck cancers [41]. In order to account for the fact that tumour volume, and

therefore stage, typically changes non-linearly with time we also infer the flow rates under the

assumption of exponential tumour growth (see Methods).

We now move on to discuss the models specific to tongue cancer and ovarian cancer.

Lymphatic spread of tongue cancer

The drainage of the lymphatic system in the head and neck area can be described by a network

where the nodes correspond to lymph node stations and the links represent flow between the

Inferring rates of metastatic dissemination using stochastic network models
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stations. The location of the primary tumour determines how much it drains into the different

stations, Tumours of the tongue mainly drain into station I and II, and to some extent to sta-

tion III. Station I drains into II, which in turn drains into III, which drains into IV [38]. The

dissemination network is shown in Fig 1, where the directed links show how CTCs flow in the

system.

Given a primary tumour metastases will eventually form in downstream stations, but the

dynamics of the model crucially depend on the parameters (λI, λII, λIII, ϕI, ϕII, ϕIII). The aim is

therefore to estimate these from clinical data. Our data set contains 141 patients with carci-

noma of the oral tongue diagnosed between 2004 and 2014 and treated at the department of

Oncology at Sahlgrenska University Hospital in Gothenburg (see Methods and S1 Data). For

each patient we have information about the stage of the primary tumour and the presence/

absence of metastasis in LN station I-IV.

In our model we assume that secondary seeding is responsible for all metastases that occur

in sites not directly connected to the primary tumour. This implies that we expect all patients

with station IV positive to also be positive for station III. This is true for all but 2% of the cases

(3 patients), and we therefore exclude these cases from further analysis. Another option would

be correct for potentially undetected micrometastases in station III, but we decided for the

more cautious option of exclusion.

Given the assumption outlined above about a constant downstream flow of cancer cells

and the necessity of secondary seeding the state of the system evolves according to a continu-

ous-time Markov chain with state space that corresponds to all possible states of metastatic

spread (see Methods for details). The flow rates in the network dictate transition rates for the

Markov chain and the probability distribution over the states changes according to a master

equation. Since we know the initial state of the system (no metastasis at tumour initiation)

we can, given a set of parameter values, numerically solve the master equation and obtain the

probabilities of all the metastatic states for all future times. This allows us to estimate the

model parameters by comparing the metastatic state of each patient with solutions to the

master equation and computing the likelihood of the data given certain parameter values

(see Methods).

In order to visually compare the parametrised model outcome to the clinical data we trans-

form the data in the following way. Let us first focus on station I and let nI
t denote the number

of patients with stage t primary tumours that are positive in station I. Here t can take the values

1, 2, 3, 4 corresponding to primary tumour stage T1, T2, T3 and T4. Let Nt denote the total

number of patients with stage t disease. The fraction of patients with stage t tumour with

Fig 1. Schematic of the flow of metastatic cells in the case of tongue cancer. The cancer cells flow from the primary

tumour to lymph node station I,II and III with rates λI, λII and λIII respectively. The flow between lymph node stations

is defined by the rates ϕI, ϕII and ϕIII.

https://doi.org/10.1371/journal.pcbi.1006868.g001

Inferring rates of metastatic dissemination using stochastic network models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006868 April 1, 2019 5 / 20

https://doi.org/10.1371/journal.pcbi.1006868.g001
https://doi.org/10.1371/journal.pcbi.1006868


positive lymph node at station I is then given by

pI
t ¼

nI
t

Nt
: ð1Þ

The same procedure is applied to stations II-IV yielding stage-dependent fractions.

The fraction pi
t can be interpreted as the probability of finding a patient with stage t disease

with a metastasis in LN station i. This quantity can readily be calculated from the model (see

Methods for details).

A comparison of the clinical data and the model fit is shown in Fig 2, where each panel

correspond to a LN station (I-IV). The estimated dissemination rates are shown in Table 1

together with 95% confidence intervals obtained using parametric bootstrap (see Methods).

It is worth noting that the confidence intervals for ϕI and ϕIII obtained from bootstrapping

shows that the variability in flow from the station I to station II is large, ranging from practi-

cally zero to 0.42, the largest of all rates. Also the flow from station III to station IV exhibits a

large variability. With the current amount of the data we can conclude that flow from station

II to III has a large impact on the metastatic process, whereas we are unable to ascertain the

importance of flow from station I to II and from III to IV.

Metastasis in ovarian cancer

Ovarian cancer has the highest mortality rate of the gynecological cancers and a majority of

patients are diagnosed in an advanced stage [42]. Ovarian cancer predominantly metastasises

Fig 2. The data and model predictions for metastatic spread to lymph node station I-IV for primary tongue

cancer. Each panel corresponds to a lymph node station and shows the probability of finding a metastases in the lymph

node as a function of the primary tumour stage. The parameters of the model are given in Table 1.

https://doi.org/10.1371/journal.pcbi.1006868.g002
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within the peritoneal cavity and through the pelvic lymph nodes [43]. In the peritoneal cavity

cancer cells metastasize through a process commonly described as transcoelomic dissemina-

tion, where the cancer cells loose cell-cell contact and exfoliate into the peritoneal cavity. They

float in the peritoneal fluid and are spread across the peritoneal cavity, where they attach to the

peritoneal organs and form a metastatic tumour [44]. Ascites produced in the peritoneal cavity

is drained through lymph vessels in the diaphragm [45], enabling cancer cells to enter into the

blood circulation. Historically, hematogenous metastasis has been regarded as occurring only

in late stages of ovarian cancer. Recent work however, suggest that this mode of dissemination

may be more common than previously thought [46]. In the case of distant metastases, the

most common sites are liver, lung, brain and skin [47].

The data set on ovarian cancer was obtained from the SEER-database (see Methods). As of

2010 SEER contains information about the presence or absence of metastases at diagnosis in

liver, lung, brain and bone. The status of regional LNs (including the pelvis and diaphragm) is

also available.

Given the available data we did not try to model transcoelomic dissemination, and instead

focused on dissemination to local LNs and hematogenic spread to the organs represented in

the SEER database. From a primary tumour located in the ovaries cancer cells can thus either

spread to regional LNs or via the venous blood vessels to the lungs (see Fig 3). Metastases in

regional LNs also allow for dissemination to the lungs, and from there metastatic lesions shed

CTCs to all organs of the body, including the liver, bone and brain (for which we have data).

Again our aim is to estimate the dissemination parameters (λ1, λ2, ϕ1, ϕ2, ϕ3, ϕ4) from clini-

cal data. In this case the data set is considerably larger containing 16 055 patients diagnosed

with ovarian cancer. Again we exclude patients that exhibit skip metastases, leaving us with 15

536 cases (3% of patients are excluded).

Table 1. The parameter estimates for lymphatic spread of tongue cancer.

Parameter estimated value 95% CI

λI 0.09 [0.06, 0.12]

λII 0.19 [0.14, 0.23]

λIII 0.04 [0.02, 0.06]

ϕI 0.09 [9.7 × 10−11, 0.42]

ϕII 0.21 [0.10, 0.33]

ϕIII 0.07 [7.5 × 10−10, 0.15]

https://doi.org/10.1371/journal.pcbi.1006868.t001

Fig 3. The dissemination network for ovarian cancer. The tumour cells spread either via regional lymph nodes or

directly to the lung where they form metastases. From there further dissemination to the liver, bone and brain occurs.

https://doi.org/10.1371/journal.pcbi.1006868.g003
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The primary tumour stage for this data is more refined and each T-stage is divided into

three substages a,b and c, giving us in total 9 different stages (T1a-T3c). We estimate the

parameters of this model in precisely the same way as for the tongue cancer model (see

Methods). Again we compare the parametrised model to the clinical data by calculating the

probability of finding a metastasis in each of the sites considered (regional LN, lung, liver,

brain and bone) as a function of the primary tumour stage, using Eq (1). A comparison

between the data and the model is shown in Fig 4, which shows that the model is able to reca-

pitulate the overall behaviour of the data. Due to the low incidence for bone and brain (in total

22 and 5 cases respectively) the data is quite noisy and the model represents a poor fit for those

sites. The parameter values are collected in Table 2 together with 95% confidence intervals

Fig 4. The data and model predictions for metastatic spread to regional lymph nodes and distant sites for primary ovarian cancer. Each

panel corresponds to a site/organ and shows the probability of finding a metastases at the site as a function of the primary tumour stage. The

parameters of the model are given in Table 2.

https://doi.org/10.1371/journal.pcbi.1006868.g004

Table 2. The parameter estimates for the metastatic dissemination of ovarian cancer.

Parameter estimated value 95% CI

λ1 0.046 [0.0446, 0.0476]

λ2 0.004 [0.0036, 0.0046]

ϕ1 0.007 [0.0054, 0.0094]

ϕ2 0.092 [0.0796, 0.1071]

ϕ3 0.015 [0.0106, 0.0216]

ϕ4 0.004 [0.0008, 0.0062]

https://doi.org/10.1371/journal.pcbi.1006868.t002
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obtained using parametric bootstrap (see Methods). For this data set the uncertainty in the

inferred parameter values is considerably smaller, which can be attributed to the almost hun-

dred-fold larger data set.

Discussion

We have presented a novel method for inferring the rates of metastatic dissemination, and

shown that one can obtain reliable estimates (with small CIs) for both lymphatic and hema-

togeneous spread. Our work builds on previous mathematical models [34], but with addi-

tional biological knowledge we simplify the model structure and make parameter estimates

more reliable. Firstly, we make use of the fact that high filtration rates imply that secondary

seeding is responsible for metastatic spread beyond the first capillary bed/lymph node. This

implies that we do not need to consider all possible links between the sites (e.g. no direct link

between ovary and liver). Secondly, we make use of known anatomical structures and flow

directions to further prune the network (e.g. the flow in the lymphatic system dictates the

topology of the tongue cancer network, see Fig 1). Lastly, we make use of primary tumour

stage as a proxy for time, which means that we can resolve the data temporally. This implies

that we do not have to rely on assumptions about stationarity of the underlying metastatic

process, and instead fit the parameters for the time-dependent problem. We assumed that

tumour stage maps linearly to an arbitrary time scale, which implies that the inferred dissem-

ination rates are estimated with arbitrary and unknown units. In order to investigate how

this assumption affected the inferred parameter values we also considered a model with

exponential growth of the primary tumour (see Methods). That model resulted in similar

parameter values, which suggest that our approach is robust to assumptions about tumour

growth dynamics.

Our method makes it possible to infer dissemination rates between sites and also their con-

fidence intervals. The model does not fit the data perfectly, and although this may have to do

with the scarcity of the data set, we cannot exclude that this may be due to some limitations of

the assumptions used in the model. Traditionally this type of data is analysed by looking at

incidence rates [48]. Our analysis goes beyond this by disentangling incidence rates into dis-

semination rates between different lymph node stations/organs. This means that we can quan-

tify processes that at a first glance seem inaccessible, but which appropriate assumptions and

modelling techniques can help us reveal.

It could be argued that we have used an excessively complex model to fit a data set, which

could be described with four (and five) straight lines (see Figs 2 and 4), and hence four (and

five) parameters corresponding to the slopes of the lines. However, such a model would have

no connection to the underlying biology and would be unable to say anything about the

dynamics that generated the data. In our model on the other hand the parameters have an

immediate biological interpretation. They correspond to the (relative) flow rates of cancer cells

between different anatomical sites, numbers that could be of interest to clinicians when decid-

ing on the extent of surgical resection or radiotherapy. The magnitudes of the flow rates also

reveal the importance of different routes of spread. For example for ovarian cancer we can

conclude that the rate of metastasis formation in the regional lymph nodes is ten times higher

than the direct spread to the lungs.

The flow rates in our model factor in not only physical flow, but also the ability of cancer

cells to survive during transport to the target site, and their ability to form metastases in the

target site. Assuming that the survival in the circulatory system is independent of target site,

knowledge of physical flow would make it possible to estimate the relative rate of metastasis

formation in different target sites. This would correspond to effect of the “soil” in the well-

Inferring rates of metastatic dissemination using stochastic network models
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established seed-soil hypothesis [49, 50]. Unfortunately, lymphatic flow is difficult to measure

[51], and there are currently no estimates of lymphatic flow in the head and neck region. Val-

ues of relative blood flow are however readily available [52], and we can use these to calculate

soil-effect for ovarian cancer with respect to liver, bone and brain. The relative blood flow to

these organs is given by 6.5%, 5% and 1.2% and by dividing these flow rates with ϕ2, ϕ3 and ϕ4,

we get relative metastasis formation rates of 1.42, 0.3 and 0.33. From this we can conclude that

the rate of metastasis formation in the liver is roughly five fold higher compared to bone and

brain. This suggests that ovarian cancer cells are considerably better at colonising the liver

compared to bone and brain, which is in agreement with previous data [53].

We did encounter a couple of issues when it comes to parameter identifiability. In the case

of tongue cancer our model was unable to accurately identify the rates ϕI and ϕIII. In the case

of ϕI the problem arises because we are dealing with a site (station II) which has flow from

both the primary tumour and an upstream site (i.e. station I). With current size of the dataset

(n = 141 patients) we are unable to obtain accurate estimates of the flow into this station. With

a larger dataset we would most likely find more patients who are only positive for station II

making it possible to obtain better estimates for λII and consequently ϕI. The large confidence

interval obtained for ϕIII is due to the low number of cases with metastases in station IV. In the

bootstrap procedure we generate synthetic data based on the estimated parameter values, and

since the actual number of patients with station IV positive is small (only two cases) we some-

times generate data without any prevalence of metastasis in station IV. This results in estimat-

ing the flow rate to ϕIII = 0, which in turn leads to a large confidence interval. This problem

does not appear for the ovarian model since, although the inferred parameter values are small,

the large number of patients in the data set imply that we almost surely generate synthetic data

with some patients positive for metastases in the brain or bone.

From a clinical point of view, this work could be of importance, by contributing to an

increased possibility to predict the risk of future regional and/or distant metastases. Especially

so in the current era, with new treatment modalities emerging and a current development

towards more individualised treatment programs. Although the models are parametrised with

population level data they might still be used in order to make predictions on the individual

level. For example if a patient is diagnosed with tongue cancer of a specific stage the para-

metrised model could provide probabilities of different metastatic states, which could be fac-

tored in with other clinical data to guide treatment. It would also be possible to include the

effect of treatment in the model (e.g. radiation), which would reveal potential benefits of treat-

ing metastatic sites and making the model better suited to describe clinical procedure.

In conclusion we believe that this framework for analysing metastatic spread, which incor-

porates known anatomical constraints and a temporal dimension, allows for novel insights

and will hopefully be of assistance to both cancer biologists and clinicians in the future.

Methods

Ethics statement

For the tongue cancer data approval has been granted by Regional ethical review board in

Gothenburg.

Data

Tongue cancer. After approval from the Regional ethical review board in Gothenburg,

data was obtained from the register of the department of Oncology at Sahlgrenska University

Hospital in Gothenburg. Data for all patients diagnosed with carcinoma of the oral tongue

between 2004 and 2014 were extracted, a total number of 141 cases. Information about
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primary tumour, LN metastases and distant metastases was registered according to the TNM

classification system (AJCC 6th edition until 2009 and 7th edition from 2010 on). T-stage var-

ied from T1 to T4, 78 patients had regional LN metastes (N1—N3) and only two patients had

distant metastasis (M1), in the lung. For patients with positive nodal status, we collected infor-

mation about in which lymph node levels (I-V) metastases were present. Only one patient

exhibited metastasis in lymph node level V, and therefore this level was excluded from the

analysis. Information about involved LN levels was in approximately 50% of the cases retrieved

from radiological examination (CT scans or magnetic resonance imaging), why patients

received primary radiotherapy or surgery was performed without neck dissection. For the

remaining part this information was obtained from the pathology reports performed after pri-

mary surgery including supraomohyoid neck dissection. For each patient we had the following

information:

• T-stage (derived AJCC 6th and 7th edition)

• Presence/Absence of regional LN metastases (calculated from N-stage)

• Localization of regional LN metastases (lymph node levels I-VI)

For further information about the data set please see S2 Data.

Ovarian cancer. The data was obtained from the SEER�Stat case listing database Inci-
dence—SEER 18 Regs Research Data + Hurricane Katrina Impacted Louisiana Cases, Nov 2016
Sub (2000-2014), which is available at https://seer.cancer.gov/seerstat/. We extracted all cases

of ovarian cancer from 2010-2014 with recorded metastases in liver, lung, brain and bone.

From this set of patients we selected those with a T-stage (derived AJCC 7th edition) which

was in the range T1a to T3c. Information about the presence or absence of regional lymph

node metastases was obtained by looking at the N-stage (derived AJCC 7th edition). We con-

sidered patients with N0 to be free of regional LN metastases while all other stages to be indica-

tive of positive LN. The total number of cases that met the above critera was 16 055 and for

each case we had the following information:

• T-stage (derived AJCC 7th edition)

• Presence/Absence of regional LN metastases (calculated from N-stage)

• Presence/Absence of metastases in lung (CS-mets at DX-lung)

• Presence/Absence of metastases in liver (CS-mets at DX-liver)

• Presence/Absence of metastases in bone (CS-mets at DX-bone)

• Presence/Absence of metastases in brain (CS-mets at DX-brain)

Mathematical model

The model consists of N nodes each representing a specific site/organ (excluding the primary

site). A node takes the value 0 at time t if the site is void of metastases and 1 if the site contains

one or more metastases. We assume that once a site has become positive it will remain so for

all future times. Since we have N nodes and each can be in two states we have a state space for

the entire network that contains 2N states. Each state is denoted by a binary string (e.g. 0100

correspond to site 1,3 and 4 being negative and site 2 being positive), but for notational sim-

plicity we enumerate them with integers from 1 to 2N.

The flow rates in the anatomical network dictate transition rates between states. We assume

that a site becomes positive at a rate which equals the sum of flow rates from all positive
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upstream sites. Since the transition rates only depend on the current state (and not the history)

the system can be described as a continuous-time Markov chain with state space {0, 1}N. If we

let Pi(t), where i = 1, . . ., 2N, denote the probability of being in state i at time t, then these prob-

abilities evolve according to the master equation [54]:

dPiðtÞ
dt

¼ QiiPiðtÞ þ
X2N

j¼1

QijPjðtÞ

where Qii� 0 is the rate of leaving state i and Qij is the rate of moving from state j to i. Since

we know that the patient is free of metastasis at tumour intitiation (t = 0), we know that the ini-

tial condition for the master equation is given by P1(t) = 1 and Pi(t) = 0 for 1< i� 2N. Numer-

ical solutions of this equation will be used in order to parametrise the two models.

Since we only have access to the primary tumour stage of the patients in the two data sets

we make the following assumption about the mapping from tumour stage at diagnosis to time

from tumour intitiation to diagnosis. For simplicity we assume that the tumour radius grows

linearly with time, which is a simplification, since it is known that volume and hence radius

grows non-linearily with time [37].

Tumour stage is informed by the linear size of the lesion [55], e.g. for tongue cancer T1 cor-

responds to a primary tumour less than 1 cm in diameter and T2 is a tumour larger than 2 cm,

but less than 4 cm. This means that there is a strong correlation between tumour stage and

thickness [56]. We therefore assume that time from tumour initiation depends linearly on the

stage. Since we have no exact information about the details of this mapping we will for simplic-

ity consider an arbitrary time scale and simply let the stage correspond directly to time since

initiation. Below we challenge this assumption by considering a model in which the primary

tumour volume grows exponentially.

Tongue cancer. We let lymph node station I-IV correspond to node 1-4 in the

network. Since we have four nodes we will have a state space of 24 = 16 metastatic states,

but 4 of these will be inaccessible due to topology of the anatomical network (e.g. 1001 is

not attainable) and we are left with 12 states. The transition rates are shown in Fig 5, where

the nodes now represent states and the arrows show possible transitions and their corre-

sponding ates.

Fig 5. The state transition diagram for the tongue cancer model. Each node corresponds to a possible metastatic

state and is represented by a binary string which signifies which lymph node station is positive or negative. For

convenience the nodes are named from 1 to 12. The rates are obtained from the flow rates in the anatomic network

(Fig 1) by considering the rate at which individual sites become positive based on the state of the other sites.

https://doi.org/10.1371/journal.pcbi.1006868.g005
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The transition matrix is given by

Q ¼

� ðl1 þ l2 þ l3Þ 0 0 0 0 0

l1 � ð�1 þ l2Þ 0 0 0 0

l2 0 � ðl1 þ l3 þ �2Þ 0 0 0

l3 0 0 � ðl1 þ l2 þ �3Þ 0 0

0 l2 þ �1 l1 0 � ðl3 þ �2Þ 0

0 0 l3 þ �2 l2 0 � ðl1 þ �3Þ

0 0 0 l1 0 0

0 0 0 �3 0 0

0 0 0 0 l2 þ �2 l1

0 0 0 0 0 �3

0 0 0 0 0 0

0 0 0 0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

� ðl2 þ �1Þ 0 0 0 0 0

0 � ðl1 þ l2Þ 0 0 0 0

l2 þ �1 0 � �3 0 0 0

0 l2 0 � l1 0 0

0 l1 0 0 � ðl2 þ �1Þ 0

0 0 0 l1 l2 þ �1 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð2Þ

With P = [P1, P2. . ., P12]T we can write the master equation as

dPðtÞ
dt
¼ QP; ð3Þ

which we solve numerically using a first-order Euler forward scheme with initial condition

P1(t) = 1 and Pi(t) = 0 for 1< i� 12, which corresponds to no metastasis at tumour initiation.

To estimate the parameters we make use of a maximum likelihood method. Preferably we

would like to have the time until onset of metastasis for each station in each patient, but we

only have access to data obtained at diagnosis. This information can be used in the following

way: Assume that we observe a patient with a stage τ tumour that has a positive lymph node at

station I and all other stations negative, i.e. the patient is in state 1000. The probability of this

occurring is according to the model given by P2(τ). Now the value of P2(τ) will depend on the

parameters of the model and we therefore write P2(τ, θ), where θ = [λI, λII, λIII, ϕI, ϕII, ϕIII].

The likelihood of the entire clinical data set can now be written

LðyÞ ¼
YN

j¼1

Psj
ðtj; yÞ;
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where sj is the metastatic state of patient j, which can take values 1,2,. . .,12, and τj 2 {1, 2, 3, 4}

is the primary tumour stage of that patient. In order to find the parameters θ that best fit the

data we minimise the negative likelihood −L(θ) using the MATLAB function fminsearch
applied to a numerical solution of (3). This gives us a maximum likelihood estimate

ŷ ¼ ½l̂I; l̂II; l̂III; �̂I; �̂II; �̂III�.

A solution to Eq (3) with parameter values obtained from the maximum likelihood method

is shown in Fig 6. We note that the probability of the metastasis free state (0000) decays over

time while all other probabilities increase over the considered time frame. For large (and unre-

alistic) times all probabilities will tend to zero expect the state corresponding to metastases in

all sites (1111), which will tend to unity.

Confidence intervals for ŷ are calculated using parametric bootstrapping with 100 samples

[57]. This is a numerical method in which the parameter estimates obtained from the maxi-

mum likelihood method are used for generating synthetic data, from which new maximum

likelihood estimates are obtained. Repeating this process results in an empirical distribution

for each parameter, and the confidence intervals are calculated as the 5% and 95% quantiles of

the empirical distributions.

The probability that station I is positive (the solid curve in Fig 2 top-left panel) can be calcu-

lated from the model by summing over the probability of all metastatic states which have 1 in

the first position of the binary string, i.e.

PIðtÞ ¼ P2ðtÞ þ P5ðtÞ þ P7ðtÞ þ P9ðtÞ þ P11ðtÞ þ P12ðtÞ:

In the same way we can write down

PIIðtÞ ¼ P3ðtÞ þ P5ðtÞ þ P6ðtÞ þ P9ðtÞ þ P10ðtÞ þ P12ðtÞ

PIIIðtÞ ¼ P4ðtÞ þ P6ðtÞ þ P7ðtÞ þ P8ðtÞ þ P9ðtÞ þ P10ðtÞ þ P11ðtÞ þ P12ðtÞ

PIVðtÞ ¼ P8ðtÞ þ P10ðtÞ þ P11ðtÞ þ P12ðtÞ:

Fig 6. A solution to Eq (3) with parameter values obtained from the maximum likelihood method. Each curve

correspond to specific state of the system.

https://doi.org/10.1371/journal.pcbi.1006868.g006
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Ovarian cancer. We let regional lymph nodes correspond to node 1 in the network, lung

to node 2, liver to node 3, bone to node 4 and brain to node 5. Since we have five nodes we will

have a state space of 25 = 32 metastatic states, but 14 of these are inaccessible due to topology

of the anatomical network and we are left with 18 states. The transition rates are shown in Fig

7, where the nodes now represent states and the arrows show possible transitions and their

corresponding rates.

We now have an 18-dimensional probability vector P = [P1, P2. . ., P18]T and we can again

write down the master equation

dPðtÞ
dt
¼ QP; ð4Þ

where the matrix Q is defined as above and can be obtained from the state transition diagram

Fig 7. We proceed as above and formulate the maximum likelihood problem that we solve

numerically using MATLAB.

A solution to Eq (4) with parameter values obtained from the maximum likelihood method

is shown in Fig 8. We note that the dynamics are dominated by the metastasis free state

(00000) and the state with only regional LNs positive (10000), while all other states have proba-

bilities less than 0.02. For large (and unrealistic) times all probabilities will tend to zero expect

the state corresponding to metastases in all sites (11111), which will tend to unity.

The probability of finding a patient with metastasis in the regional lymph nodes can be

expressed by summing the probability over all states in which node 1 is positive

PLNðtÞ ¼ P2ðtÞ þ P4ðtÞ þ P8ðtÞ þ P9ðtÞ þ P10ðtÞ þ P14ðtÞ þ P15ðtÞ þ P16ðtÞ þ P18ðtÞ:

Fig 7. The state transition diagram for the ovarian cancer model. Each node corresponds to a possible metastatic

state and is represented by a binary string which signifies which organ is positive or negative for metastases. For

convenience the nodes are named from 1 to 18. The rates are obtained from the flow rates in the anatomic network

(Fig 3) by considering the rate at which individual sites become positive based on the state of the other sites.

https://doi.org/10.1371/journal.pcbi.1006868.g007
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In the same way we can write down

PlungðtÞ ¼ P3ðtÞ þ P4ðtÞ þ P5ðtÞ þ P6ðtÞ þ P7ðtÞ þ P9ðtÞ þ P10ðtÞ þ P11ðtÞ þ P12ðtÞ þ P13ðtÞ

þP14ðtÞ þ P15ðtÞ þ P16ðtÞ þ P17ðtÞ þ P18ðtÞ

PliverðtÞ ¼ P5ðtÞ þ P8ðtÞ þ P11ðtÞ þ P12ðtÞ þ P15ðtÞ þ P16ðtÞ þ P17ðtÞ þ P18ðtÞ

PboneðtÞ ¼ P6ðtÞ þ P9ðtÞ þ P11ðtÞ þ P12ðtÞ þ P13ðtÞ þ P14ðtÞ þ P15ðtÞ þ P17ðtÞ þ P18ðtÞ

PbrainðtÞ ¼ P7ðtÞ þ P10ðtÞ þ P13ðtÞ þ P14ðtÞ þ P16ðtÞ þ P17ðtÞ þ P18ðtÞ:

Exponential tumour growth. In order to assess the impact of our assumption that pri-

mary tumour stage can be used as a proxy for time we also consider a model of tongue cancer

metastasis in which the times corresponding to the different tumour stages are calculated

assuming an exponential growth in tumour volume.

If we assume that tumour volume grows according to

VðtÞ ¼ V0eat

Assuming the tumour to be spherical, the radius, which is used for tumour staging [55],

grows as

RðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3VðtÞ

4p

3

r

¼

ffiffiffiffiffiffiffiffi
3V0

4p

3

r

eat=3 ¼ R0eat=3;

with R0 ¼

ffiffiffiffiffi
3V0

4p

3
q

. If we let Ri denote the radius of a stage i tumour we get that the time at which

stage i is reached is given by

ti ¼
3 ln Ri

R0

� �

a
:

ð5Þ

Fig 8. A solution to Eq (4) with parameter values obtained from the maximum likelihood method. Each curve

correspond to specific state of the system.

https://doi.org/10.1371/journal.pcbi.1006868.g008
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The initial radius of the tumour is set to be equal to the volume of a single cell R0 = 25 μm

and the growth rate is estimated from clinical studies to a ¼
lnð2Þ

40�365
� 6:32 year−1 [58].

The clinical guidelines for determining tumour stage of tongue cancer involve the size of

the lesion but also other factors such as degree of invasion of surrounding tissue [55]. We sim-

plify this by considering the following mapping from tumour stage to tumour size. We let a T1

tumour have a radius of 2 cm, a T2 tumour have radius 4 cm, a T3 tumour have radius 6 cm

and a T4 tumour have radius 8 cm. Of course this is highly simplistic but at least provides us

with a reasonable quantification.

This leads us to a mapping from tumour stage to time from initiation which is shown in

Table 3.

We now use these values (instead of the identity mapping from stage to time) in our maxi-

mum likelihood estimation and obtain the parameter values shown in Table 4. The parameters

obtained with the exponential growth model are generally slightly smaller, although ϕI is an

exception with a larger value compared to the linear model. But more importantly the order

of their magnitudes is the same for both models, i.e. ϕII > λII > ϕI > λI > ϕIII > λIII for both

models.

This suggests that our model of metastatic spread is robust to different assumption about

tumour growth dynamics.
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Table 4. The parameter estimates for lymphatic spread of tongue cancer.

Parameter linear model exponential model ratio

λI 0.09 0.06 0.73

λII 0.19 0.13 0.71

λIII 0.04 0.03 0.70

ϕI 0.09 0.11 1.19

ϕII 0.21 0.17 0.82

ϕIII 0.07 0.06 0.82

https://doi.org/10.1371/journal.pcbi.1006868.t004

Table 3. The mapping from tumour stage to time since initiation for tongue cancer assuming exponential growth.

tumour stage time since initiation (years)

1 3.17

2 3.50

3 3.69

4 3.83

https://doi.org/10.1371/journal.pcbi.1006868.t003
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