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Abstract: The use of sensor technology in sports facilitates the data-driven evaluation of human
movement not only in terms of quantity but also in terms of quality. This scoping review presents
an overview of sensor technologies and human movement quality assessments in ecologically-
similar environments. We searched four online databases to identify 16 eligible articles with either
recreational and/or professional athletes. A total of 50% of the studies used inertial sensor technology,
31% vision-based sensor technology. Most of the studies (69%) assessed human movement quality
using either the comparison to an expert’s performance, to an exercise definition or to the athletes’
individual baseline performance. A total of 31% of the studies used expert-based labeling of the
movements to label data. None of the included studies used a control group-based study design
to investigate impact on training progress, injury prevention or behavior change. Although studies
have used sensor technology for movement quality assessment, the transfer from the lab to the field
in recreational and professional sports is still emerging. Hence, research would benefit from impact
studies of technology-assisted training interventions including control groups as well as investigating
features of human movement quality in addition to kinematic parameters.

Keywords: inertial measurement unit; movement pattern; objective assessment; vision-based

1. Introduction

The ability to perform movements in a controlled and optimal way describes an
individual’s movement quality [1–3]. Athletes train optimal movement patterns to increase
their movement quality which benefits their performance, fitness, and supports injury
prevention. One way to quantify movement quality is to use standardized tests, such as
the Functional Movement Screen [4]. Although these tests are standardized, they suffer the
limitations of subjective quality assessment, such as inter-rater reliability or the different
scoring experience of raters [4].

Additional data sources can help to make a more objective assessment. Video assis-
tance in training has supported trainers and athletes for several decades now, and the use
of wearable inertial and vision-based sensor technologies for training assistance increased
over the last decade [5–7]. In addition, the worldwide restrictions of the COVID-19 pan-
demic enhanced the demand of technology-assisted training at home, in particular, in the
recreational sport sector [8,9]. This becomes apparent from the numerous digital sports
solutions that have entered the consumer market since 2020, such as the VAHA fitness
mirror (VAHA, etone Motion Analysis GmbH, Berlin, Germany) [9].

The types of data relevant for movement quality assessment depend on various factors,
such as the athlete’s skill level, physical condition and training goals [10]. Furthermore,
the techniques and motion patterns present in the respective sport, and the definition
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of movement quality influence the selection of features. For example, in rehabilitation
and physical therapy, performance indicators such as joint angles and range of motion
derived from wearable sensors have been investigated as potential features of movement
quality [11,12].

In recreational and professional sports, characteristics and methods of performance
evaluation have been investigated. However, they have been mainly concerned with
quantitative human motion tracking, technique segmentation, or load management [6,13].
In order to provide an overview on objective technology-assisted assessment of human
movement quality currently used in sports, a synthesis of the existing literature is needed.
To the best of our knowledge, no review has yet synthesized the current literature on
sensor-based movement quality assessment. The aim of this scoping review is to map
out the extent to which the application of sensors for objective human movement quality
assessment and monitoring in recreational and professional sports has been established.

2. Materials and Methods
2.1. Scoping Review Protocol

The used research methodology was based on the standard Joanna Briggs Institute’s
(JBI) approach and was conducted with the Guide for Scoping Reviews of the University of
South Australia [14]. As a review protocol, the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) was used. As
recommended by JBI, the Population/Concept/Context (PCC) framework was used to
determine the review questions and to derive and iteratively refine the search strategy as
well as inclusion and exclusion criteria.

This scoping review investigates the assessment of human movement quality using
sensor technologies in sports with two questions:

• What sensor technologies have been used to assess human movement quality in sports?
• What types of human movement quality have been assessed and operationalized

using sensor technologies in an ecologically close environment?

The PCC framework for this scoping review is given in Figure 1. The population
includes recreational and professional athletes, independent of league, age and skill level.
Professional athletes are defined as active sportspeople who earn or earned money in
performing their sports such as former and active competitors in elite sports or instructors
and/or coaches. Two concepts derived from the review questions are investigated: The
concept of human movement quality, which includes an overview of assessment methods
and definitions of human movement quality in sports, and the concept of sensor technology
that determines which technological assistance has been used in order to assess human
movement quality in sports. The context is given by the ecologically-similar or rather close
environments of each sport discipline. As an example for running, this could be a running
track, a usual running route, or a treadmill; for rowing, the rowing boat on the water or the
rowing machine. Hence, laboratory studies were included when the setting was deemed
sufficiently close to the real world (e.g., dancing in-lab is similar to dancing in-field).

Figure 1. PCC framework of the current scoping review.
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2.2. Eligibility Criteria

Inclusion criteria: Peer-reviewed articles written in English were included when
sensor technologies were used for assessing quality of human movement, motion and/or
movement quality in sport disciplines in their ecologically close environments. Papers
were excluded when they did not cover the population, concept and context of the PCC
scoping review framework.

Exclusion criteria: Studies with non-healthy human populations were excluded (i.e.,
patients, robots, animals, etc.). Papers were not considered when they did not cover the
concept of human movement quality. Hence, papers related to human action recognition,
gesture detection, physical activity recognition, quality management, sensor quality, quality
of life, sleep quality, quality of health and to gait quality in the context of rehabilitation were
excluded. Papers not using sensor technologies for the assessment of human movement
quality and not within the context of sports (e.g., clinical setting, sleep, daily tracking, etc.)
were not included.

2.3. Information Sources and Search

The systematic database search was conducted on 21 December 2021. Two subject-
specific databases (PubMed and SPORTDiscus) and two multidisciplinary databases (Sco-
pus and Web of Science) were selected. Based on the PCC framework, alternative keywords
were identified and used to refine the keyword search. The relevant keywords were
identified, combined and simplified with truncation and phrase searching, as given in
Listing 1. The search strategy was adapted for Scopus by adding AND before NOT. Further
modifications to meet the requirements of the other databases were not necessary.

Listing 1. Keywords and refinement of population and context derived from PCC framework.

(”human movement quality” OR “human motion quality” OR “motion quality” OR
“movement quality“ OR “quality of human motion” OR “quality of human movement”)
AND (sensor*)
AND (sport* OR “physical activit*” OR exercise* OR activit*)
NOT (robot* OR animal* OR sleep OR patient* OR clinic*)

2.4. Selection of Sources of Evidence

After the strategic database search, duplicates were removed via EndNote X9 (Clar-
ivate, Philadelphia, PA, USA) and the remaining articles were screened three times: the
initial title screening was conducted by one reviewer (VV) using keywords in EndNote title
search that are in contradiction with the PCC framework. For example, if the terms disease,
disorder, signal quality, or rehabilitation were in the title, the article was excluded.

The consecutive title and abstract screening was performed by two reviewers (VV, SK).
The blind review was performed with Rayyan [15].

Afterwards, the full-text analysis of the remaining articles was conducted by two
reviewers (VV, SK) to determine the final number of included papers. The disagreements
between the two reviewers were discussed and decisions were made based on the inclusion
and exclusion criteria.

2.5. Data Charting Process

All reviewers developed the data-charting form. Two reviewers (VV, SK) were re-
sponsible for data extraction. Together with the other two reviewers (HS, TS) the extracted
data were consulted and discussed. The PRISMA flow diagram was used to represent the
numbers of inclusion and exclusion of the records, see Figure 2 [16].
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Figure 2. PRISMA flow diagram.

2.6. Data Items

For each included article, key metadata (aim of the research, year of publication, first
author’s affiliation and country of origin, main outcomes relevant for this review, future
research/outlook) and intervention type (study design and duration) were extracted.The
excerpted characteristics of the study population consisted of the distribution of recre-
ational and/or professional athletes, number of participants, mean age, sex distribution,
sport discipline with type of investigated movements, setting, skill level, control group
characteristics, and the country where the study was conducted. Furthermore, the method-
ology information of each article was extracted (definition of human movement quality,
metrics and features for assessing quality, validation method, device/sensor manufacturer
and model name, type of sensors, data type, sensor configuration/placement, type of data
transmission and sampling frequency).

2.7. Synthesis of Results

We grouped the identified studies by professional athletes, recreational athletes, and
the cross product of the two and included the summary of sport disciplines, type of investi-
gated movements and characteristics of the study participants. Moreover, we grouped the
information related to the concepts of sensor technology and human movement quality
into the categories of vision-based sensor technology, inertial sensor technology, other,
or a combination of sensor technologies. Finally, we included a narrative synthesis of
definitions of human movement quality, terms related to human movement quality and
sensor configurations in the included studies. Data reconciliation and figure generation was
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performed at RStudio [17], version 1.3.1093, with R version 4.1.2 [18] and the R packages
tidyverse [19], viridis [20], treemap [21] and ggpubr [22].

3. Results

The search identified 424 publications. Figure 2 includes the distribution of the articles
from the four databases. After removing duplicates, the title screening of the remaining 405
papers consisted of 273 papers that failed to meet the eligibility criteria. The consecutive
blinded title and abstract screening of the remaining 132 articles resulted in 41 eligible
and 91 excluded papers. After the full-text screening, 16 articles were included in this
review [23–38], consisting of journal articles and conference proceedings from 2017 to 2021
(see Figure 3).

Figure 3. Distribution of included journal articles and conference proceedings between 2017 and 2021.

3.1. Study Populations and Sport Disciplines

Study characteristics related to the population and the context of recreational and pro-
fessional sports are given in Table 1. In total, 405 participants were included in the studies,
with the majority of 92.6% being recreational athletes (375). Two studies of karate and
alpine skiing included only professional athletes (2 and 19, respectively) [33,38]. Ten articles
included solely recreational athletes performing body-weight exercises, Nordic walking,
pair dance or treadmill running [23–28,32,35–37]. Four studies included recreational and
professional athletes in the fields of karate, table tennis, triathlon and canoeing [29–31,34].
None of the included studies tested the effects of the use of the technology or the qual-
ity assessment by considering control groups. A total of 110 participants were female
(29.3%), 265 male (70.7%), and the rest did not report sex. In seven studies, more male than
female participants were included. Two studies included only male participants [30,32].
Two other studies investigated more female than male participants [26,38]. One paper
recorded a balanced dataset of 17 female and 17 male participants [28]. Due to drop-outs,
the sex composition in one paper differed between first (given in Table 1) and second
experiment with 18 female and 37 male participants [23]. Four studies did not report the
sex composition [29,33–35].
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Table 1. Sport disciplines, types of movements, reported skill level and setting in which the studies were conducted (n = 16).

Reference Sport Discipline Movement Skill Level Setting Sample Size
(Recreation:Professional)

Age
(Mean ± SD)

Sex Ratio
(Female:Male)

Professional sports

Emad et al., 2020 [33] karate seven Hein Shodan
katas black belt martial arts studio 2 (0:2) 22.5 ± 2.1 not given

Snyder et al.,
2021 [38] alpine skiing carving and drifting

ski instructors and
current or former

competitive alpine skiers
on-piste 19 (0:19) 34.6 ± 7.8 11:8

Recreational sports
O’Reilly et al.,

2017 [23] weight exercise deadlift exercise prior experience with the
deadlift in laboratory 80 (80:0) 24.7 ± 4.9 23:57

O’Reilly et al.,
2017 [24]

body-weight
exercise lunge

prior and regular
experience with lunges

for at least one year
in laboratory 80 (80:0) 24.7 ± 4.9 23:57

Derungs et al.,
2018 [25] Nordic walking gait novices without any

experience

indoor walking strip
in university sports

hall
10 (10:0) 26.4 1:9

Santos et al.,
2018 [27]

Brazilian pair dance
Forró

basic movement
Basico 1

6 yrs of experience (2),
<1 yr experience (2),

no experience (3), do not
dance regularly (6), had

experience with Forró (1)

individual private
dance course 7 (7:0) not given 3:4

Vonstad et al.,
2018 [26]

exergaming
weight-shifting

two stepping
exercises

local exercise group for
elderly not given 11 (11:0) 69.3 ± 4.0 6:5

McAllister
et al., 2019 [28]

body-weight
exercise bilateral squat healthy young adults not given 34 (34:0) 22.2 ± 2.9 17:17

Dajime et al.,
2020 [32]

body-weight
exercise

bilateral and
unilateral squat and

forward lunge

without injuries or pain
impairing the
performance

not given 31 (31:0) 23.1 ± 3.1 0:31
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Table 1. Cont.

Reference Sport Discipline Movement Skill Level Setting Sample Size
(Recreation:Professional)

Age
(Mean ± SD)

Sex Ratio
(Female:Male)

Li et al., 2021 [35] body-weight
exercise

28 kinds of strength,
stretching and
combination

exercises

not given

indoors without
equipment, with sofa
and white walls, and

with sofa and
wallpapers

15 (15:0) not given not given

Müller et al.,
2021 [36]

body-weight
exercise

squat, push-up and
bent-over row

healthy and engaging in
regular physical activity not given 16 (16:0) 30.3 4:12

Simoni et al.,
2021 [37]

treadmill
running gait

run at least twice per
week (20 min each) for

last 6 months and familiar
with a treadmill

on treadmill 33 (33:0) 40.0 ± 10.0 12:21

Professional and recreational sports

Niewiadomski et al.,
2019 [29] karate two Shotokan katas

martial arts education in
karate with >15 yrs

experience (2), 10 yrs
experience (2), 5 yrs

practicing (3)

in laboratory 7 (5:2) not given not given

Ren et al., 2019 [30] table tennis backhand block experts and novices indoor 20 (10:10) 23.6 ± 2.1 0:20

Weich et al., 2019 [31] triathlon transition run from
cycling to running run 10 km below 50 min

simulating triathlon:
outdoor (200 m or
400 m run) and on

cycling trainer

34 (21:13) 26.6 ± 6.9 10:24

Liu et al., 2020 [34] canoeing canoeing stroke
coaches and novices

(training experience > 1yr
and 25–30 h a week)

on water 6 (4:2) not given not given
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Three studies did not report the age of their participants [29,34,35]. One paper docu-
mented the age range instead of giving mean and standard deviation (18–54 years) [27].
Two studies worked with participants with mean ages of 30.3 years [36] and 26.4 years [25],
however, standard deviations were not given. The skill levels of the participants varied
between novice and expert. Specific expert levels are given when only professional ath-
letes were included (e.g., black-belt professional players [33] or former FIS Alpine World
Cup athletes [38]). When only recreational athletes were included, main inclusion criteria
were stated as being healthy and showing certain years of experience (if not beginners
were recruited). When recreational and professional athlete types were included, the skill
levels are given in years of experience and education level (expert versus novice [29,30],
coach versus trainee [34]). The skill level of subjects were not stated once [35], however
participants were assumed to be recreational because it included a data collection of several
participants of common fitness actions.

The origin country of study participants was not given except for one (Marquette,
MI, USA and Konstanz, Germany [31]). Four articles stated that they recruited from local
exercise groups [26], Chinese sports teams [30,34] or their institution [27]. Six articles
reported ethical approvals [23,24,28,32,37,38], three reported informed consents prior data
collection [25,31,34], and seven did not report any ethical information [26,27,29,30,33,35,36].

All included articles described observational experiments. Five of the articles reported
sport-specific environments and were conducted in the ecologically valid environment:
either outdoor [34,38] or indoor [27,30,33]. Seven studies reported ecologically close en-
vironments, such as the treadmill for running [37], an indoor walking strip for Nordic
walking [25], or the laboratory for body-weight exercise [23,24] and karate [29]. Li et al. [35]
described the indoor setting for exercising with different backgrounds for the data collec-
tion. Weich et al. [31] used indoor and outdoor environments to simulate the triathlon
transition run from cycling to running. Four articles did not report where the studies
were conducted, but from figures a lab-like environment for the exercise studies could be
assumed [26,28,32,36].

3.2. Human Movement Quality and Sensor Technologies

The used sensor technologies, metrics for human movement quality and main out-
comes are given in Table 2. Three articles aimed at introducing a technology-assisted system
that tracks the athletes’ movements, reporting their mistakes, and supporting athletes in
improvement [33,34,37]. Snyder et al. [38] extended the skiing activity recognition chain
with a Principal Component Analysis (PCA)-based model to assess skiing movement qual-
ity in comparison to expert judgment. Two articles proposed frameworks to measure the
movement quality of exercises, one as an extension of a fitness action recognition [35], and
the other as a description of low and high level feature engineering and assessment in com-
parison to expert judgment [29]. Six articles evaluated data-driven models and algorithms
to classify either correct and aberrant execution of body-weight exercises [23,24,26,36],
dance performance related to rhythm in comparison to expert judgment [27], or to classify
kinematic features into the existing Movement Competency Screen (MCS) score [32]. Weich
et al. [31] aimed at determining movement pattern variations and providing precision
measurements for isolated runs and runs after a previous tiring activity as cycling. Similar,
McAllister et al. [28] focused on movement symmetry during a bilateral squat. Two articles
focused on skill or technique analysis: one estimates Nordic walking skills based on mis-
takes beginners typically perform [25], and the other designed features for backhand block
technical analysis [30].
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Table 2. Used sensor technologies, quality features and main outcomes of the assessments (n = 16).

Reference Sensor Sampling Frequency Feature(s) of Movement Quality Validation Method
and Metric Main Outcome

Vision-based sensor technology

Niewiadomski et al.,
2019 [29]

Qualisys Motion Capture
system with 10 cameras 250 Hz

Global movement quality score
weighting 6 mid-level features

representing the six criteria
Stability, Posture, Power, Kime,

Rhythm and Coordination
derived by using 16 low-level

features from 3D positions

Pearson’s correlation
between rating of karate

experts and computed score

Case study on karate shows high
correlation between proposed scoring for
karate students and expert ratings (r = 0.84
and r = 0.75) and encourages adaption of

framework to other sports and fusion with
additional data sources

Emad et al., 2020 [33] Microsoft Kinect v2 30 fps Joint coordinates

Confusion matrix of SVM,
k-NN, DT and F-DTW

using expert-labeled moves
(correct and incorrect

performed karate katas)

F-DTW provided highest accuracy
(91.07%) for classification of each kata and

its one typical mistake

Dajime et al., 2020 [32] Microsoft Kinect v2 30 fps

Joint position-based derivation of
time-domain (e.g., initial contact

and peak knee flexion) and
variability-domain features (e.g.,

ROM range of motion and
wobble)

Sensitivity, specificity,
accuracy and AUC using

cross-validation to evaluate
performance of multiclass

logistic regression model to
map to the Movement

Competency Screen (MCS)
scores labeled by an expert

Kinect-based system is suitable to assess
movement quality in sensitivity

(0.66–0.89), specificity (0.58–0.86), and
accuracy (0.74–0.85)

Li et al., 2021 [35]

3D camera
(Realsense Depth Camera)

and
2 action cameras (GoPro

Hero 7)

30 fps (3D camera),
60 fps (action

cameras)

Action quality score from global
score function and ICP score

based on 2D or 3D skeleton data
features

Spearman’s rank
correlation as reference for
evaluating action quality to

determine similarity
between feature trajectories

of coach and subject

Three evaluation metrics for efficient
fitness action assessment as part of a

framework using skeleton data
constructing local and global action

features to apply on introduced Fitness-28
dataset and small-scale open data

Simoni et al., 2021 [37] Logitech Brio 4 K 30 Hz Synchrony and Harmony Index

Correlation analysis with
vCAD traditional index of
gait quality from optogait

system

Validity of Harmony and Synchrony indices
need further research to how well they
reflect harmony, synchrony, inter- and

intra-segmental coordination and variability
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Table 2. Cont.

Reference Sensor Sampling Frequency Feature(s) of Movement Quality Validation Method
and Metric Main Outcome

Inertial sensor technology (accelerometer, gyroscope, IMU)

O’Reilly et al., 2017 [23] 5 IMUs (Shimmer 3) 51.2 Hz

Binary and multi-class labels of
deviation using 17 time-domain
and frequency-domain statistical
features for each repetition from
each sensor signal: mean, RMS,

standard deviation, kurtosis,
median, skewness, range,

variance, maximum, minimum,
energy, 25th percentile, 75th

percentile, fractal dimension and
level crossing-rate

10 sensor combinations to
develop random forest

personalized and global
classification evaluated by

leave-one-out-cross-
validation, accuracy,

sensitivity and specificity
on data with induced

deadlift deviations and
naturally occurring

deviations labeled by
experts

Personalized classifiers showed higher
evaluation metrics (90–96%) in

comparison to global classifiers (57–89%)
to determine acceptable and aberrant

technique, and additionally in the
multi-label classification to determine
exact deviation (accuracy over 81% for
induced deviations and over 78% for

naturally occurring deviations)

O’Reilly et al., 2017 [24] 5 IMUs (Shimmer 3) 51.2 Hz

Binary and multi-class labels of
deviations using 16 time-domain
and frequency-domain statistical
features for each repetition from
each sensor signal resulting in

240 kinematic features per sensor
or rather using 20% of the

top-ranked features

10 sensor combinations to
develop random forest

classification evaluated by
leave-one-subject-out-cross-

validation, accuracy,
sensitivity and specificity

on data with induced
deviations labeled by

experts

Random Forest classifier with 400 trees of
five-IMU system achieved 90% accuracy,

80% sensitivity, and 92% specificity

Derungs et al., 2018 [25] 14 IMUs (Xsens MTx
sensors) 50 Hz

Skill grade based on
stride-by-stride statistical

features from accelerometer,
gyroscope and magnetometer

and selected by PCA and
Gradient Descent Boosting (GDB)

for each mistake type

Root-mean-square-error
(RMSE), normalized RMSE

(nRMSE), and the
mean-absolute-error (MAE)

using
leave-one-participant-out
cross-validation to assess
performance of Bayesian

Ridge Regression, Ordinary
Least Square, Support
Vector Regression and
AdaBoostR on expert

graded data

Mistake-driven movement skills
estimation approach estimated mistakes
with nRMSE of 24.15% and regression

maps skill progress across training
sessions
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Table 2. Cont.

Reference Sensor Sampling Frequency Feature(s) of Movement Quality Validation Method
and Metric Main Outcome

Santos et al., 2018 [27]
Smartphone accelerometer
via Forró Trainer app (no
operating system given)

not given

Ratio BPM (beats per minute)
between BPM of song and BPM
of user, consistency describing

rhythm variation of user

Confusion matrix
comparing algorithm

outcome trained with five
expert Forró dancers and

dance teacher evaluation on
correct dance rhythm

Accuracies over 80% when comparing
subjective and objective rhythm evaluation
and provision of six key themes for future

qualitative evaluation

Weich et al., 2019 [31] 2 inertial sensors
(RehaWatch by Hasomed) 300 Hz

Individual-run-ratio, stable
running section and

overall-run-ration based on
kinematic-based parameter for
changes in individual running
pattern/style and parameter
describing smoothness of run

Paired t-tests on individual
data of a triathlon run in

comparison to an isolated
running split

At start of running split it takes between 7
and 17 minutes until athletes’ rhythm of

their individual running style is achieved

Liu et al., 2020 [34] 12 self-made MEMS inertial
sensors 360 Hz

33 to 6 (reduced by
neighborhood component
analysis) time-domain and

frequency-domain features of
four joint angles

Accuracy and AUC to
evaluate performance of

SVM, Logistic Regression,
Decision Tree and XGBoost
to classify between coach

and novice

Validation of joint angle-based sensor
fusion algorithm as extension of

traditional stroke quality feature set
(stroke rate (cadence), stroke length, stroke
variance, propulsion/recovery phase ratio
(rhythm) and stroke force) and suitable to
distinguish novice from coach (accuracies

over 94.02%)

Müller et al., 2021 [36]

4 sensor boards with
gyroscope and
accelerometer

(Thunderboard Sense 2)

95 Hz

Statistical features through
feature subset selection:

Minimum, difference, mean,
variance and standard deviation

of acceleration and angular
velocity for each sensor’s axis

Confusion matrix in
particular F1-score using

within-subjects,
leave-one-subject-out and
10-fold cross validation to
assess personalized and

hybrid models on correct
and incorrect instructed

movement data

Generic quality assessment is more
difficult than activity recognition

suggesting use of personalized or hybrid
models in the future (F1-scores > 0.95)
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Table 2. Cont.

Reference Sensor Sampling Frequency Feature(s) of Movement Quality Validation Method
and Metric Main Outcome

Snyder et al., 2021 [38] 2 IMUs (Movesense) 54 Hz Edge angle, radial force, speed,
symmetry

Pearson correlation to
compare expert rating of

three skiers of different skill
level to mean score of each

run generated by PCA
model trained with 19

professional skiers

First step towards evaluating skiing
quality to distinguish highly and minor

skilled skiers determining scores that
correlate more with skiing dynamics
(r = 0.71) than with the skiing quality

(r = 0.59)

Other sensor technology or combinations

Vonstad et al., 2018 [26]
3D Motion Capture system
(Vicon Motion Systems Ltd),

force plate (Kistler Inc)

100 Hz (Motion
capture system), 1000

Hz (force plate)

Statistical features mean, median,
standard deviation, sum,
variance, minimum and

maximum joint center positions
of shoulders, hips, knees and

ankles

Confusion matrix using
Leave-One-Group-Out

Cross-Validation to assess
classification performance
of Random Forest, k-NN
and SVM on correct and

incorrect instructed
movement data

Random Forest, k-NN and SVM are
suitable for classifying correct and

incorrectly performed exercises with
accuracy over 94.9%

McAllister et al.,
2019 [28]

3D Motion Capture system
(Qualisys Track Manager

with 13 Oqus cameras and
23 optical tracking

markers), two portable
force plates (Bertec Inc),
wireless EMG sensors

(Delsys)

100 Hz
(Motion Capture
system and force
plate), 1925.93 Hz

(EMG sensors)

Symmetry between left and right
side in kinematic, kinetic and

muscle activity at the ankle, knee
and hip: correlations

representing similarity and RMS
representing magnitude

difference

ANOVA to test significant
differences in symmetry

measures

Significant differences in symmetry
decreased from kinematic to the kinetic
and to muscle activity suggesting to not

rely exclusively on kinematic observation
to assess quality

Ren et al., 2019 [30]
14 EMG and IMU sensors

(Delsys trigno wireless
system)

not given
Normalized path, joint angle,

phase duration, RMS of
acceleration, speed entropy

Statistical analysis of
kinematic parameters

between skilled and novice
athletes

Significant differences between
professional and novice athletes can be

used to estimate skillfulness and adaption
of features to other movements besides

backhand block

AUC: Area under Curve; DT: Decision Tree; EMG: electromygraphy; F-DTW: Fast Dynamic Time Warping, IMU: Inertial Measurement Unit; k-NN: k-nearest neighbour; MEMS:
microelectromechanical systems; PCA: Principal Component Analysis; RMS: Root Mean Square; SVM: Support Vector Machine.
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3.2.1. Definitions of Human Movement Quality

A thorough introduction to movement quality is given by Niewiadomski et al. [29]
as a measure of the “general excellence of a specific movement realization in terms of the
judgment given by an expert observer”. Dajime et al. [32] defined movement quality as
the recognition of strength imbalance between the agonist and antagonist muscle pair,
over-reliance on a dominant limb, and the inability to control center of mass. Moreover,
McAllister et al. [28] described this asymmetry in kinematic observation by extending the
symmetry concept of kinematic, kinetic and muscle activity components of movements
during a parallel squat. Simoni et al. [37] additionally mentioned the harmony of synchrony
in gait as quality parameter. Others mentioned and investigated the correct rhythm of
performances, such as in dance [27]. Rhythm, in this example, was defined as the repetitive
movement pattern with accents in sync with the speed of the music.

In general, human movement quality was described as the degree to which replications
of the original movements can be performed in comparison to either an expert or profes-
sional [30,33–35,38], or to a defined performance of an exercise [24,26,30,36]. Another way
was to evaluate the movement quality by expert elicitation, e.g., physiotherapists [23,36],
dance teachers [27] or strength and conditioning specialists [32], or expert ski cross ath-
letes [25], who marked correct and incorrect movements, different skill levels, labels of
typical mistakes or even common movement competency scores. Another possibility to
assess human movement quality was the comparison of performance-related features and
models with athletes themselves as the individual-specific control [31,37].

3.2.2. Terms used for Human Movement Quality

More variations of the term “human movement quality” than “human motion quality”
were found in the included articles (see Figure 4). The variations of “human movement
quality” included truncations (e.g., “movement quality”), alterations (e.g., “quality of
movement”) and specifications (e.g., “skiing movement quality” or “quality of technical
movements”). Further related terms were used such as “performance quality” (included in
two articles), “technical quality” and “action quality” with variations: “quality of perfor-
mance”, “technical quality of a performance”, “technical completion quality” and “quality
of action execution”. The term “execution quality” was found in two other more speci-
fied combinations: “exercise execution quality” and “physical activity execution quality”.
Three articles mentioned exercise-related terms: “quality of the exercise”, “quality of the
personalized exercise” and “physical exercise quality”. More specific related terms were a
combination of “quality” and the investigated types of movements: “gait quality”, “quality
of dance”, “running quality”, “skiing quality” and “stroke quality”. Six related terms
were identified which do not mention “quality”: “acceptable technique”, “technique clas-
sification”, “acceptable and aberrant lunge technique”, “ deviations in lunge technique”,
“movement precision”, and “skillfulness”.

Figure 4. Representation of the most occurrences and alterations of the terms related to “human
movement quality” and “human motion quality”.
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3.3. Sensor Configuration

The number of sensors, types and names of sensors, as well as the sampling frequency
is given in Table 2, grouped by the used sensor technology. In Figure 5 the distribution of the
sensor technologies to the sport disciplines is given. Five articles used vision-based sensor
technology with either standardized marker models for the Motion Capture System [29],
or by placing the (3D) camera in front [32,33,35] or behind the athlete [37]. Eight articles
used inertial sensor technologies with either multiple Inertial Measurement Units (IMUs)
ranging from 2 to 14 sensors attached onto the body or the sports equipment [25,38], or
built-in inertial sensors of smartphones or other smart devices [27,31]. Combinations of
sensor technologies were comprised of Motion Capture systems in addition to one force
plate [26], or two force plates and electromyographic (EMG) sensors [28]. Ren et al. [30]
focused on EMG and IMU sensor data. Two included articles did not precisely state the
total number of used sensors: Ren et al. [30] mention a total of 14 collected signals, but not
how many sensors were used to produce these signals. The number of used MEMS sensors
described in Liu et al. [34] was counted by the scoping review’s authors using the figures
of the article.

Figure 5. Overview of used sport disciplines and sensor technologies.

4. Discussion

Overall, the scoping review identified 16 articles that discussed human quality as-
sessment using sensor technologies in sports between 2017 and 2021. The main finding
of the scoping review is that there are numerous preliminary works preparing for lon-
gitudinal studies of human movement quality assessment in training. This ranges from
articles discussing classification problems into correct/incorrect executions and/or skill
grades [23–26,32–34,36], expanding feature sets for specific sport qualities [30,34,37,38],
comparisons between objective and subjective evaluation [25,27,29] as well as documenting
insights about movement quality [28,31].

Nevertheless, none of the identified studies included control groups to determine the
effect or impact of technology-assisted training on the performance of the athletes. This
finding supports the often reported need for Randomized Controlled Trials (RCTs) with
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larger and balanced populations in digital sports [5,39,40]. This is also reflected by sample
sizes ranging from two to 80 participants with almost no sex balancing. Taking the average
of all reported sex ratios, female participants were underrepresented (29%). A balanced
data set was reported only once [28].

Concerning the study settings, the transfer from the lab to the field is still emerging.
The majority of studies (44%) were conducted in ecologically close sport settings, and 31%
even in the ecologically valid environment. The remaining 25% of studies did not report
whether the environment was indoor or outdoor, but indoor lab settings were assumed
based on the presented figures in the articles.

The use of sensor technologies for quality assessment is more often studied in recre-
ational sports than in professional sports. So far, the transfer of in-field use of specialized
technology from elite to recreational sports was reported [6]. The majority of studies in
this review (88%), however, were at least partially conducted with recreational athletes
aiming to support in human movement quality assessment. This reflects the interest and
acceptance of technology assistance in performance evaluation and improvement tracking
in recreational athletes [9,10].

One review question was to collect what sensor technologies have been used so far to
assess human movement quality in sports. The majority of studies (81%) either used optical
or inertial sensor technology. The remaining articles reported combinations of kinematic,
kinetic and/or muscle activity rather than focusing on kinematic parameters. The challenge
and potentials of comparing different sensors and the fusion of different sensor types has
been repeatedly reported in various reviews, in particular on wearable technologies [6,40].
Further studies are required to determine how athletes could benefit from knowledge of
more than kinematic quality features.

This scoping review showed that for human movement quality assessment, besides the
established motion capture systems such as Vicon or Qualisys, inertial sensor technology
and combinations in technology-assisted training has been used and investigated so far.
Due to the reported developments of frameworks, self-made apps and sensor systems,
the area of inertial sensor technology can be characterized as active, explorative, and
emerging [6,41]. A point of criticism could be that not all studies reported their reasoning
behind their sensor selection. These missing reports about sensor selection support the
problem described by Kremser and Mayr [42].

The second review question was what types of human movement quality have been
assessed and operationalized using sensor technologies in the field. On the extended
activity recognition chain model by Brunauer et al. [43], the majority of included studies
in this scoping review focused on solving a classification problem to identify correct and
incorrect executions of the movements rather than identifying the movements themselves in
a continuous signal. Considering all included articles, human movement quality assessment
can be defined as the classification of acceptable and aberrant performance of mainly
body-weight exercises or other sports that feature sequences of motions such as karate
where mistakes can be observed by kinematic features. Moreover, movement quality
assessment was rated as more difficult than movement recognition due to individual-
specific differences, general and sport-specific features. Movement quality consists of
more than kinematic features, representing symmetry of the athletes’ bodies [28,31,36].
Besides muscle activity, further physiological features to further support movement quality
assessment, such as breathing rate, were not included within the studies, although there is
recent activity in this area (e.g., [44]). Niewiadomski et al. [29] mentioned a physiological
layer in their concept, but have not yet included it in their described case study.

The scoping review found that the performance was often compared between coach
and novice and used for skill level estimation. The challenge of missing objective es-
tablished ground truths about human movement quality in various sports is tackled in
different ways. Either by using expert-labeled data as training data sets for machine learn-
ing algorithms, including intentionally incorrect executions, or using experts’ data as the
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ideal to compare against. The minority of studies used the individual’s current movement
quality as a baseline [28,31] or technology-based reference measures [37].

Although technology-assisted training in sports is described as objective evaluation,
one could argue that since the training of human movement quality assessing algorithms
is performed on labeled data by experts or data collected from experts, a subjective bias
is within these comparisons or data sets. Since this encompasses the thought of being
as good as someone, it neglects the fact of individual training progress and movement
quality improvement. Nevertheless, a ground truth should be considered, but instead of
having one blue print of a coach, data from athletes of the same skill level or training goals
should be considered in the future as templates. Since the origin countries of participants
were several times not given, although they could have been assumed, e.g., participants
from Italy for study of Simoni et al. [37], for future studies, we recommend additionally
mentioning the nationality or even ethnicity. With regard to technological literacy, the
level of technological readiness of self-made systems should be included, and studies
of technology acceptance and usability could extend the knowledge base of technology-
assisted training. Furthermore, the data collection of induced incorrect executions poses a
problem in terms of ethics and replication for the in-field use. In the future, investigations
using the common and not so common sensor technologies, such as smart garments or
sensor-equipped sports equipment, could promote the understanding and assessment of
human movement quality in recreational and professional sports.

Limitations: The results are up to date until December 2021. Furthermore, the possi-
bility cannot be excluded that relevant papers were not considered due to the determined
PCC framework and choice of keywords in our search strategy.

5. Conclusions

The main aim of this scoping review was to present an overview of which sensor
technologies have been used, as well as what types of human movement quality have been
assessed so far in recreational and professional sports. In summary, studies focused on the
use of inertial sensor technology comparing kinematic features to experts’ performance in
recreational sports, in particular in motion-sequence-focused sports such as body-weight
exercises. However, none of the included articles used a control-group-based design to
investigate impacts of technology-assisted training interventions, for example in terms of
performance improvement, injury prevention or behavior change. Hence, future studies
should not only continue to develop technology-assisted monitoring systems for human
movement quality but also investigate the effects of the digital interventions in ecologically
valid environments in recreational and professional sports. Furthermore, more studies are
required to understand the concept of human movement quality in addition to kinematic
features and their impact on the athlete’s fitness and health in different sport activities.
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