
REVIEW ARTICLE

Correspondence:

Jens Fedder, Centre of Andrology & Fertility Clinic,

Odense University Hospital, Odense, Denmark.

E-mail: jens.fedder@rsyd.dk

Keywords:

artificial reproductive treatments, chromatin

structure, DNA fragmentation, intra uterine

insemination, male infertility, spermatozoa

Received: 15-Nov-2016

Revised: 13-Apr-2017

Accepted: 20-Apr-2017

doi: 10.1111/andr.12381

DNA fragmentation in spermatozoa:
a historical review

1,2,3A. S. Rex, 1J. Aagaard and 2,3J. Fedder
1Aagaard Gynaecological Clinic, Aarhus, Denmark, 2Centre of Andrology & Fertility Clinic, Odense
University Hospital, Odense, Denmark, and 3Department of Clinical Research, University of Southern
Denmark, Odense, Denmark

SUMMARY
Sperm DNA Fragmentation has been extensively studied for more than a decade. In the 1940s the uniqueness of the spermatozoa

protein complex which stabilizes the DNA was discovered. In the fifties and sixties, the association between unstable chromatin

structure and subfertility was investigated. In the seventies, the impact of induced DNA damage was investigated. In the 1980s the

concept of sperm DNA fragmentation as related to infertility was introduced as well as the first DNA fragmentation test: the Sperm

Chromatin Structure Assay (SCSA). The terminal deoxynucleotidyl transferase nick end labelling (TUNEL) test followed by others

was introduced in the nineties. The association between DNA fragmentation in spermatozoa and pregnancy loss has been exten-

sively investigated spurring the need for a therapeutic tool for these patients. This gave rise to an increased interest in the aetiology

of DNA damage. The present decade continues within this research area. Some of the more novel methods recently submerging are

sorting of cells with increased DNA fragmentation and hyaluronic acid (HA) binding techniques. The clinical value of these tests

remains to be elucidated. In spite of half a century of research within the area, this analysis is not routinely implemented into the fer-

tility clinics. The underlying causes are multiple. The abundance of methods has impeded the need for a clinical significant thresh-

old. One of the most promising methods was commercialized in 2005 and has been reserved for larger licensed laboratories. Myriads

of reviews and meta-analyses on studies using different assays for analysis of DNA fragmentation, different clinical Artificial Repro-

ductive Treatments (ART), different definitions of successful ART outcome and small patient cohorts have been published. Although

the area of DNA fragmentation in spermatozoa is highly relevant in the fertility clinics, the need for further studies focusing on stan-

dardization of the methods and clinical implementation persists.

INTRODUCTION
Paternal contribution to the fertilization and to the develop-

ment of healthy offspring is of vital importance. There have been

reports of an increased risk of schizophrenia or autism in off-

spring from fathers with increasing age (Sipos et al., 2004;

Reichenberg et al., 2006) and an increased risk of cancer in off-

spring from fathers with increased level of sperm DNA fragmen-

tation because of smoking (Ji et al., 1997). Furthermore, some

spontaneous dominant genetic diseases, epilepsy and some

birth defects are linked to paternal contribution (reviewed in Ait-

ken et al., 2009). In a number of studies, an association between

increased DNA fragmentation in the spermatozoa and subfertil-

ity has been reported. Comparing studies of fertile and infertile

males have shown that the amount of DNA fragmentation is sig-

nificantly higher in the infertile group (Evenson et al., 1999;

Spano et al., 2000; Saleh et al., 2003; Alkhayal et al., 2013;

Oleszczuk et al., 2013). An abnormal chromatin packing is more

recurrent in men with normozoospermia undergoing ART treat-

ment than in fertile men (Alkhayal et al., 2013). If the man has

increased DNA fragmentation in the spermatozoa, a prolonged

Time To Pregnancy (TTP) (Evenson et al., 1999), an increased

risk of a missed abortion (Virro et al., 2004; Lin et al., 2008; Zini

et al., 2008; Kennedy et al., 2011; Dar et al., 2013) and a signifi-

cantly reduced success rate in in vivo fertilization of the partner

have been observed (Spano et al., 2000; Bungum et al., 2004,

2007; Giwercman et al., 2010; Zini, 2011). When seeking fertility

treatment, it seems that sperm DNA fragmentation is of vital

importance when planning the course of treatment. A study

included 131 couples seeking fertility treatment by intrauterine

inseminations (IUI). Twenty-three of the male patients had an
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increased amount of SCSA defined DNA fragmentation followed

by a pregnancy rate of 4% in their partner (Bungum et al., 2004).

A later study including 387 cycles showed that the pregnancy

rate dropped to 3% if the level of DNA fragmentation exceeded

30% (Bungum et al., 2007). In a smaller Danish study including

48 couples, no pregnancies were observed in couples, where the

male DNA fragmentation exceeded 27% (Boe-Hansen et al.,

2006). DNA fragmentation may affect the fertilization rate after

in vitro fertilization (IVF). No clear association between

increased amount of DNA fragmentation and intracytoplasmic

sperm injection (ICSI) has been established. However, DNA frag-

mentation may affect the clinical pregnancy rate (Oleszczuk

et al., 2016) (Bungum et al., 2007; Dar et al., 2013).

It thus seems that an increase in DNA fragmentation primarily

affects in vivo fertility, either by reducing natural conception or

by a significant reduction in successful intrauterine insemina-

tions. It is estimated that up to 20% of males with semen param-

eters otherwise suitable for IUI treatment present with a DFI

˃30%. On this basis, the authors behind this study recommend

that IVF or ICSI being the first choice of treatment if the amount

of DNA fragmentation exceeds 30% (Giwercman et al., 2010;

Bungum et al., 2011). However, in the study from Oleszczuk

et al. (2016) it was found that the fertilization rates might also be

decreased after IVF when DFI by SCSA exceeds 30%. For high

degree of DFI, it thus might be relevant to proceed the treatment

using ICSI (Oleszczuk et al., 2016).

Together, these studies provide important insight into the sig-

nificance of sperm DNA fragmentation when treating couples

for infertility.

With this in mind - why is sperm DNA fragmentation testing

not a standard diagnostic tool in the treatment of the male fertil-

ity patient?

The journey regarding DNA fragmentation in spermatozoa has

been long and began more than half a century ago.

HISTORICAL OVERVIEW

Forties, fifties and sixties

In 1946, Pollister and Mirsky discovered that a large part of the

protein complexes surrounding the DNA in trout sperm was not

composed of histones but of protamines (Pollister & Mirsky,

1946). Later Alfert found that the protamines replace the his-

tones after meiosis in the maturation of the salmon spermatozoa

(Alfert, 1956). Today it is estimated that only 5–15% of the chro-

matin in the human spermatozoa consist of histones and the

major part consists of protamines (Castillo et al., 2015). Along-

side the discovery of the double helix in 1953, Leuchtenberger

et al. (1953) discovered that the amount of DNA from infertile

males had a significantly larger variation compared with fertile

males. Already at this time, it was discovered that the quality of a

sperm sample was more than a question of number and motility

of the spermatozoa (Leuchtenberger et al., 1953).

The seventies

During the seventies, an increasing interest in a possible asso-

ciation between exposure of DNA damaging agents and a possi-

ble reduction in fertility emerged. In 1970, Ringertz et al. used

an assay where bull spermatozoa were heated and the subse-

quent denaturation of the DNA was detected with acridine

orange followed by microfluoriemetry. They realized that the

spermatozoa possessed an increased stability during the

spermiogenesis (Ringertz et al., 1970). A decrease in epididymal

sperm count and weight of the testis was observed in mice after

exposure to irradiation. Subsequently, an increased pre-implan-

tation loss was observed in the female mice (Searle & Beechey,

1974).

The eighties

In the eighties, the technology for molecular biology

advanced. Evenson et al. developed a flow cytometric assay for

detection of DNA fragmentation in spermatozoa (Evenson et al.,

1980). They called the assay Sperm Chromatin Structure Assay

(SCSA). The assay is based on the detection of DNA fragmenta-

tion by flow cytometry. The sperm DNA is denaturized by acid at

sites of DNA strand breaks and subsequent stained with the fluo-

rescent cationic dye Acridine Orange (AO). In this assay, AO

attaches to the DNA in the ratio of approximately two AO mole-

cules per phosphate group (Evenson & Jost, 1994). When the

laser from the flow cytometer illuminates the cells, AO fluoresces

with a green emission when bound to double stranded (db) DNA

and a red emission when bound to singe stranded (ss) DNA. Fur-

thermore, the flow cytometer measures forward scatter and side

scatter of the sample and this can help exclude debris from the

sample. Usually a total of 5000–10,000 cells are analysed. DNA

Fragmentation Index (DFI) is described as the percent wise ratio

of red florescence to green + red fluorescence (Larson et al.,

2000; Evenson et al., 2002; Larson-Cook et al., 2003). SCSA also

measures High DNA Stainability (HDS), which is believed to be

an expression of immature spermatozoa containing excess his-

tones or other abnormal proteins (Evenson et al., 2002; Bungum

et al., 2004).

The nineties

The field of single cell electrophoresis was developed in the

eighties and optimized during the nineties making it possible to

detect DNA fragmentation by the comet assay. The comet assay

was a novel diagnostic tool for DNA fragmentation and was used

to emphasize that spermatozoa from infertile men were more

susceptible to induced damage than spermatozoa from fertile

men. In the comet assay, 200–300 cells are covered with agarose

gel and subsequently lysed. If the DNA is embedded with breaks,

the supercoiling of the DNA is released allowing the DNA to

migrate towards the anode. This migration leaves a comet-like

tail and the fluorescent intensity of the tail relates to the number

of DNA breaks (Hughes et al., 1996; Aravindan et al., 1997).

In the nineties, TUNEL used to detect DNA fragmentation in

human spermatozoa was developed. In this assay a terminal

deoxynucleotidyl transferase labels the DNA strand breaks with

fluorescent dUTP nucleotides. The assay can be performed using

either flow cytometry or microscopy. Thus, both the neutral and

alkaline comet assay and the TUNEL assay are considered ‘di-

rect’ assays as they measure actual DNA strand breaks, whereas

some of the other assays developed measure the DNA suscepti-

bility to denature at sites of ss or ds DNA breaks or a differenti-

ated binding of a dye to ds- or ssDNA (Gorczyca et al., 1993; Zini

& Sigman, 2009; Henkel et al., 2010).

The zeroes

In the zeroes, other methods for determination of DNA frag-

mentation appeared. The DNA Breakage Detection-Florescence
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in situ Hybridization (DBD-FISH) was developed for human

spermatozoa. In this assay, the spermatozoa are fixed in an

agarose matrix and the DNA is transformed into ssDNA by an

alkaline unwinding solution. After the proteins are removed,

the DNA is made accessible to hybridization with relevant

probes that highlight the area for analysis. If the DNA strand

contains increased amount of DNA breaks more probes will

hybridize resulting in an increased fluorescence. This tech-

nique can be used for detecting DNA damage within specific

sequence areas (Fernandez et al., 2000). The Sperm Chromatin

Dispersion (SCD) test was also developed in this decade and

was used to detect spermatozoa with increased amount of

DNA fragmentation. In this assay, the spermatozoa are embed-

ded in an agarose matrix and exposed to a lysing solution.

The relaxed DNA loops prevent dispersion into the surround-

ing area. With specific DNA fluorochromes and a fluorescence

microscope, the dispersed DNA is seen as a halo surrounding

the nuclei. If the DNA is fragmented, little dispersion is

seen resulting in a small halo. This makes it possible to

detects spermatozoa with increased amount of DNA fragmen-

tation (Fernandez et al., 2003). Two years later, an advanced

SCD test was developed as a kit, Halosperm� (Fernandez

et al., 2005).

In 2006, Li et al. developed the ɣH2AX assay to determine dou-

ble strand breaks in human spermatozoa. The assay takes advan-

tage of the fact that some protein-kinases induce

phosphorylation of Ser139 on the histone H2AX. Phosphospeci-

fic antibodies are able to recognize the phosphorylated serine

residue. These are subsequent quantified by a flow cytometer.

Although most histones are replaced by protamines in human

spermatozoa during the spermatogenesis, a small fraction

remains in the nucleosome (around 15%). This fraction also con-

tains the H2AX histone. In a recent study in 2015, Garolla et al.

investigated the predictive value of the method. The pregnancy

rate after ICSI was investigated and the method was compared

with TUNEL. In this study, it was seen that the ɣH2AX percent-

age was higher in the males from non-pregnant couples. This

study also showed that the ɣH2AX has a better predictive value

than TUNEL. In the present form, the method seems to be rather

time consuming, as samples need more than 3 h of preparation

before the flow cytometric analysis can be performed. This com-

pared to the strict protocol from SCSA where samples can be

prepared within few minutes (Li et al., 2006; Garolla et al., 2015;

Evenson, 2016).

The tenths

From the late zeroes and into the tenths the focus concerning

DNA fragmentation shifted from development of methods to the

aetiology of sperm DNA fragmentation. Furthermore, it became

more evident that increased DNA fragmentation could be a valu-

able tool when deciding which type of fertility treatment the

couple should be offered. Several studies added to the viewpoint

that fertility treatment with IUI had very low chance of resulting

in pregnancy if the SCSA-DFI in the spermatozoa was increased.

However, the implantation rate after ICSI is not affected by

increased amount of DNA fragmentation in the spermatozoa, it

has been seen that the risk of early pregnancy loss is increased in

these couples (Carrell et al., 2003; Borini et al., 2006; Gil-Villa

et al., 2009; Brahem et al., 2011; Absalan et al., 2012; Oleszczuk

et al., 2016).

In 2005, Greco et al. showed that ICSI with testicular sperm

resulted in a significantly higher clinical pregnancy rate com-

pared with ICSI where ejaculated sperm was used. This provided

one of the first treatment options for male fertility patients with

increased sperm DNA fragmentation. This study also gave

insight to the aetiology of DNA damage as at least a part of the

DNA damage seemed to appear after the spermatozoa have left

the testis (Greco et al., 2005). Recently, both Esteves et al. and

Pabuccu et al. achieved similar results. Other methods such as

intracytoplasmic morphologically selected sperm injection

(IMSI) and motile sperm organelle morphology examination

(MSOME) have been used in order to circumvent the negative

effects of increased DNA fragmentation. These methods are

based on a real time examination of the spermatozoa under an

increased magnification (up to 9 13.000) which makes it possi-

ble to choose spermatozoa with better chromatin status and

lower aneuploidy rate. If the spermatozoa showed a lack of vac-

uoles, the results improved further (Garolla et al., 2008, 2014;

Gos�alvez et al., 2013). In a recent study, Bradley et al. compared

fertilization rates after physiological ICSI (PICS), IMSI and

extraction of testicular sperm, respectively. They found that the

use of testicular sperm significantly increased the fertilization

rate, pregnancy rate and live birth rate after ICSI for patients

with increased DNA fragmentation (Bradley et al., 2016).

DNA fragmentation and infertility

A substantial amount of literature that strengthened the theory

of a connection between increased DNA fragmentation and

infertility had been published, and in 2015 Zini concluded that

testing for DNA fragmentation should be a part of the routine

male infertility diagnosing (Esteves et al., 2015; Zini, 2015;

Pabuccu et al., 2016).

As the research in the area expanded, several studies show that

the origin of DNA fragmentation can be very diverse. Link has

been seen between increased DNA fragmentation and inadver-

tent effects during the spermiogenesis, increased amount of

oxidative stress, sperm collection methods, storage temperature,

varicocoele, bacterial infections, age, temperature of the testes

and reaction to medicine (reviewed in Gonzalez-Marin et al.,

2012). It is thus possible that the damage to the DNA happens in

multiple steps. This has probably contributed to the blurred pic-

ture of DNA fragmentation. One theory is that the DNA is sub-

jected to damaging events during the spermatogenesis. This

could include nicks in the backbone of the DNA or poor packag-

ing of the chromatin during the replacement of histones. Subse-

quently, the already weakened DNA is more susceptible to

external stressors such as medication, temperature and Reactive

Oxygen Species (ROS) (McPherson & Longo, 1993; Pradeepa &

Rao, 2007).

Antioxidants

The role of antioxidants has been studied extensively in several

areas in the last decade. Regarding spermatozoa, ROS are

believed to play a part in the presence of DNA fragmentation.

ROS play a positive role in several crucial functions such as pro-

liferation and differentiation of cells. However, a pathogenic

effect can occur when the balance between ROS and antioxi-

dants are disturbed. This can result in an excess of ROS, for

example in the reproductive tract or in the seminal plasm. It has

been shown in several studies that antioxidants can have a
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positive impact on some of the primary seminal parameters

(Zini et al., 2009; Abad et al., 2013; Agarwal et al., 2014). The dis-

tribution of dietary supplements to males with increased DFI

have previously shown a significant reduction in DFI and an

increase in the clinical pregnancy rate (Wright et al., 2014). How-

ever, the overall effect of antioxidants remains controversial.

This is mainly because of non-standardized assays for determi-

nation of ROS or antioxidant capacity, diversity in methods for

determination of DNA fragmentation, lack of distinction

between direct and indirect antioxidants and inadequate data on

fertilization and pregnancy rates (Chen et al., 2013).

Novel methods

In the present decade, the magnetic activated cell sorting

(MACS) technique was enhanced. This method was used for the

first time in connection to fertility treatment in the zeroes

(Paasch et al., 2007). In this assay, magnetic particles conjugated

to proteins or antibodies target the cells of interest. This could

be apoptotic surface markers like externalized phospholipid

phosphatidylserine (PS). PS has a high affinity for annexin V,

which cannot cross the membrane. Any conjugation between

the two will therefore happen on spermatozoa with externalized

PS, which is seen in apoptotic cells. The magnetic particles, and

thereby the apoptotic cells, can subsequently be removed by a

magnetic cell separation column (Said et al., 2008).

A novel method where spermatozoa with increased amount

of DNA fragmentation are separated by fluorescence-activated

cell sorting has recently been presented. The spermatozoa are

stained using a YO-PRO staining technique. The researchers

behind the study showed that it is possible to separate the dead

spermatozoa and the spermatozoa with increased amount of

DNA fragmentation from the normal spermatozoa. This makes

it possible to optimize the sperm sample before fertility treat-

ment like ICSI is initiated (Ribeiro et al., 2013). However, recent

research has shown that methods where ICSI is optimized

remains controversial (Tavalaee et al., 2012; Troya & Zorrilla,

2015). Another novel method being investigated in the present

decade is the possibility of detecting damage in spermatozoa

by oligopeptides. A synthetic oligopeptide binds to the dam-

aged DNA. The non-binding end of the oligopeptide consists of

a rhodamine B dye that can be detected with fluorescence

microscopy. There was seen a correlation of the amount of

DNA damage detected with this method and the more classical

methods such as SCD, comet and TUNEL (Enciso et al., 2012).

Another novel method that has been studied in the present

decade is the HA binding technique. HA surrounds the oocyte

only allowing spermatozoa with sufficient expression of specific

receptors to fertilize it. It seems that there is an inverse associa-

tion between the ability of spermatozoa to bind to HA and

chromosomal abnormalities in the spermatozoa (Mokanszki

et al., 2012). In a study, it was found that HA binding test

increased the chance of selecting a spermatozoon with a low

amount of DNA fragmentation possibly optimizing the chance

of pregnancy. A commercial kit has been developed thereby

increasing the availability to the method (Parmegiani et al.,

2010) (Parmegiani et al., 2012). However, in a recent meta-

analysis it was not found that HA binding test increases fertil-

ization rates after ICSI (Beck-Fruchter et al., 2016) and further

research in the area is thus needed for this test to have a rele-

vance in the fertility clinics.

DNA fragmentation and pregnancy loss

Research continuously seems to focus on the possible associa-

tion between sperm DNA fragmentation and recurrent preg-

nancy loss (Coughlan et al., 2015; Leach et al., 2015; Bareh et al.,

2016; Zidi-Jrah et al., 2016). Furthermore, an increasing interest

has supervened regarding the types of fragmentations present in

the DNA (Wei et al., 2015) and how DNA fragmentation can be

reduced in cryopreservation (Ghorbani et al., 2016; Kably-Ambe

et al., 2016; Simonenko et al., 2016). Recent papers have shown

a possible correlation between an increased amount of DNA

fragmentation and some of the natural antioxidants present in

the seminal plasma like superoxide dismutase (Wdowiak et al.,

2015) and glutathione peroxidase (Dorostghoal et al., 2017).

In spite of the effort in the last couples of decades, there is still

a long way to go within the field of DNA fragmentation in sper-

matozoa. Substantial amounts of reviews and meta-analysis

have been published, many of them imploring further studies

with a controlled, randomized study population and more sensi-

tive assays (Lewis et al., 2013; Palermo et al., 2014; Zhao et al.,

2014; Osman et al., 2015).

In Fig. 1, an illustrative view of the historical development of

DNA fragmentation in spermatozoa is presented.

DISCUSSION AND CONCLUSION
In spite of half a century0s research and the widely accepted

conviction that infertility and sperm DNA fragmentation are

linked, this diagnostic tool is not yet a standard care in the fertil-

ity clinics.

Several issues contribute to this. The lack of uniformity in all

assays, (except the SCSA) for analysis of DNA fragmentation and

the absence of a clear clinical threshold, a myriad of studies

using different assay, different clinical ART and diverse out-

comes and small patient cohorts are all contributing factors.

One of the obstacles is the difference in the methods used to

assess the amount of DNA fragmentation present in the sperma-

tozoa. Reviews and meta-analysis compare outcomes of fertility

treatment across methods, which impede the progress of imple-

menting the analysis in the fertility clinics. Another obstacle is

the lack in knowledge concerning the aetiology of DNA fragmen-

tation. There are several theories of the aetiology of DNA frag-

mentation. One is a two-step model for the development of DNA

fragmentation in spermatozoa. In step one, an error in the sper-

matogenesis weakens the DNA and impairs the chromatin

remodelling. This results in spermatozoa with low levels of

nuclear protamine. In the second step, the vulnerable DNA is

more susceptible to oxidative stress (Christensen & Birck, 2015).

Another theory is that DNA fragmentation occurs after an inter-

rupted apoptosis. An increased activity of apoptosis related pro-

teins such as caspase 3 and 7, Fas and cPARP has been seen in

samples with abnormal semen parameter or increased amount

of DNA fragmentation. Apoptosis is believed to be activated by

testicular conditions and oxidative stress. It is speculated that

apoptosis could be the main pathway to DNA fragmentation in

spermatozoa (Sakkas et al., 2004; Manente et al., 2015; Muratori

et al., 2015). An association between chromatin immaturity and

DNA fragmentation has also been seen; which can be suggested

as an accelerator for DNA fragmentation. Chromatin immaturity

is believed to be caused by defects in the spermatogenesis (Sati

et al., 2008). The aetiology of DNA fragmentation is far from
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illuminated and the different theories are not mutually exclusive.

It is possible that chromatin immaturity or oxidative stress trig-

gers the activation of the apoptotic pathway. Furthermore, it is

known that exogenous exposures, such as environment, lifestyle

and health also contribute to increased amount of DNA

fragmentation.

When relating to DNA fragmentation and infertility, the salient

point is implementation in the fertility clinic. It is essential that

this analysis is practicable in the daily work. Furthermore, uni-

formity and reproducibility across laboratories are of crucial

importance. As the association between DNA fragmentation and

pregnancy outcome is well established the analysis can be fully

implemented as a diagnostic tool in the fertility clinics however,

the aetiology of DNA fragmentation has not yet been fully

elucidated.

When comparing outcomes of the different methods, there is

a moderate correlation between SCSA, TUNEL and SCD with

regard to levels of sperm DNA fragmentation. However, the Acri-

dine Orange staining Technique (AOT) does not seem to have a

clinical significance for fertility testing. In the AOT assay, the

amount of DNA fragmentation is determined after a coloration

with acridine orange and a microscopic evaluation. The method

has recently been discredited by Evenson as a result of AO stain-

ing fluorescence fading and artefacts induced by glass/AO inter-

actions (Evenson, 2016). Nonetheless SCSA also uses AO for the

colouration of the DNA, the evaluation by microscopy vs. flow

cytometer seems to be of crucial importance. Additionally, a

study has shown that the neutral comet assay fails to distinguish

between fertile donors and infertility patients. It does, however,

relate to the risk of miscarriage. The alkaline comet assay seems

to have a moderate correlation with SCSA, TUNEL and SCD.

When the predictive values of the methods are assessed, there

seems to be conflicting results regarding predictability for fertil-

ization. It has been reported by Ribas-Maynou in 2013 that the

alkaline comet assay has the highest sensitivity followed by the

TUNEL, SCD and SCSA analysis and subsequently the neutral

comet assay. Chohan et al. found a strong relationship between

SCSA and TUNEL (Chohan et al., 2006; Ribas-Maynou et al.,

2013). Furthermore, a systemic review and meta -analysis from

2016 claims that the comet assay and the TUNEL assay has the

best predictability after IVF or ICSI of the methods assessed

(Cissen et al., 2016).

Other tests, like SCD are available as an easy to use kit but

might be less accurate. However, the comet assay has shown the

best predictability in some studies, it lacks a clear threshold and

the methodology can change among laboratories. Furthermore,

the comet assay as well as the SCD test, suffers by the fact

that the evaluation of DNA fragmentation is estimated in only

200–300 cells. In addition, the comet assay is labour-intensive.

The agreement between TUNEL and SCSA has been seen several

times (Chohan et al., 2006; Ribas-Maynou et al., 2013; Evenson,

2016). When comparing the two flow cytometric assays, the

TUNEL assay requires extensive preparation of the spermatozoa

before analysis can be performed and there is currently a lack of

a strict protocol. This inhibits the implementation of this

method as a diagnostic tool in a clinical setting. SCSA has a strict

protocol developed in 1980 and has been used for fertility assess-

ment in both animal and human spermatozoa. The protocol is

relatively easy and the analysis is not time consuming. It is pos-

sible to analyse up to 50 samples per day for an experienced lab

technician. The analysis by flow cytometer allows evaluation of

10.000 spermatozoa within a minute or two resulting in a more

robust analysis (Evenson et al., 2002; Evenson & Wixon, 2006;

Zini et al., 2009; Evenson, 2013).

In 2005, the SCSA test was commercialized. Two European

laboratories received license to perform the SCSA test. Fertility

clinics were to ship sperm samples to these larger diagnostic

centres in order to obtain a SCSA-DFI value (Evenson, 2011).

As it is encouraged that DFI is determined using the commer-

cial SCSAsoft� software the SCSA analysis have primarily been

restricted to the larger licensed diagnostic laboratories (Even-

son, 2011). In order for the analysis to be implemented into

the individual fertility clinics, an investment in a flow cytome-

ter is required. This has previously been an insurmountable

cost. Recently, smaller bench-top flow cytometers having only

a red and green fluorescent channel and a small air-cooled

Figure 1 Timeline. An illustrative view of the

landmarks and development.
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blue laser has been developed. These are cheaper and require

less space than the larger multichannel flow cytometers, mak-

ing them more suitable for the smaller fertility clinics. More

flexibility concerning software as well as a relocation from the

larger commercial diagnostic labs to the individual fertility

clinic will decrease the costs concerning the analysis thereby

aiding the implementation of the analysis in the fertility

clinics.

Bungum et al. (2011) estimates that 40% of all cases of unex-

plained infertility can be related to increased amount of DNA

damage and suggests a treatment course where patients with

DFI ≥30% measured by SCSA should be referred directly to

IVF/ICSI treatment. Furthermore, it is speculated that even a

moderate increase in DFI (between 20–30% by SCSA) can give

rise to a prolonged TTP – information that the treating physi-

cian can employ when counselling fertility patients and plan-

ning the course of treatment (Bungum et al., 2011). As

mentioned in the introduction, DNA fragmentation also seems

to have implications for the offspring as it is linked to an

increased risk of miscarriage or a number of pathogenic condi-

tions in the offspring (reviewed in Aitken et al., 2009; Sills &

Christensen, 2015). In order for progress within this field a nec-

essary next step is a combination of further clarification of the

aetiology of DNA fragmentation and simplifying and standard-

izing the analysis. While it is very important to standardize all

sperm fragmentation assays for utility in the ART clinic, a bet-

ter understanding on the aetiology of sperm DNA fragmenta-

tion will be needed in order to develop effective therapeutic

strategies for these patients. For couples where the male suffers

from increased amount of DNA fragmentation, ICSI or TESA

are currently the only methods that have shown any positive

effect on the pregnancy rates. Both procedures are invasive

and cannot cope with the increased amount of early pregnancy

loss also seen in this group of patients. The goal must be to

ease the diagnosis of these patients and to clarify the origin of

the DNA fragmentation. This will make it possible to plan a

treatment course with the aim of reducing the amount of DNA

fragmentation and increase the rate of continuous pregnancy

for these couples.

The predictive value of the analysis of DNA fragmentation in

spermatozoa is often criticized. One point of criticism is that the

method cannot predict all failure to conceive. As infertility is the

couple’s problem, one has to consider the fertility of the female

as well. One single test of gamete dysfunction from just one part-

ner of the couple cannot predict the outcome of the fertility

treatment. Determination of DNA fragmentation is not a

replacement of current diagnostic tools for infertility diagnosing.

However, it is a valuable supplement adding independent infor-

mation about the gamete status of the male partner and it is due

time that this analysis becomes a standard tool in the fertility

clinics.
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