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Since the early beginnings, in the 1950s, hematopoietic stem cell transplantation (HSCT) 
has become an established curative treatment for an increasing number of patients with 
life-threatening hematological, oncological, hereditary, and immunological diseases. This 
has become possible due to worldwide efforts of preclinical and clinical research focusing 
on issues of transplant immunology, reduction of transplant-associated morbidity, and 
mortality and efficient malignant disease eradication. The latter has been accomplished 
by potent graft-versus-leukemia (GvL) effector cells contained in the stem cell graft. 
Exciting insights into the genetics of the human leukocyte antigen (HLA) system allowed 
improved donor selection, including HLA-identical related and unrelated donors. Besides 
bone marrow, other stem cell sources like granulocyte-colony stimulating-mobilized 
peripheral blood stem cells and cord blood stem cells have been established in clinical 
routine. Use of reduced-intensity or non-myeloablative conditioning regimens has been 
associated with a marked reduction of non-hematological toxicities and eventually, non-
relapse mortality allowing older patients and individuals with comorbidities to undergo 
allogeneic HSCT and to benefit from GvL or antitumor effects. Whereas in the early 
years, malignant disease eradication by high-dose chemotherapy or radiotherapy 
was the ultimate goal; nowadays, allogeneic HSCT has been recognized as cellular 
immunotherapy relying prominently on immune mechanisms and to a lesser extent on 
non-specific direct cellular toxicity. This chapter will summarize the key milestones of 
HSCT and introduce current developments.

Keywords: hematopoietic stem cell transplantation, milestones, conditioning, HLA typing, stem cell source

iNTRODUCTiON

Seven decades ago, scientists working on the Manhattan Project in the United States discovered 
that the hematopoietic system was the most radiation-sensitive tissue. In 1945, the plutonium and 
the atom bomb ended World War II by striking Japan with over 200,000 fatalities. Subsequently, 
scientists began to explore ways of protecting humans from irradiation. In 1949, Jacobson and 
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colleagues made the observation that mice were able to survive 
otherwise lethal irradiation when their spleen was exteriorized 
and protected from irradiation (1). Furthermore, intraperitoneal 
injection of spleen cells (1) or infusion of bone marrow (BM) 
cells (2) achieved the same protective effect resulting in animals’ 
survival. In the late 1950s, engraftment of donor-derived BM cells 
in lethally irradiated mice and dogs was reported (3, 4). Later on, 
with the concept of using irradiation for therapeutic elimination 
of leukemia, the use of conditioning regimens for successful trans-
plantation was introduced into clinic. Thomas performed the first 
ever BM transplantation (BMT) for acute leukemia patients. He 
conditioned the patients with total body irradiation (TBI) and 
high-dose chemotherapy to get rid of the underlying disease and 
then infused BM, which led to hematological reconstitution (5). 
Unfortunately, major complications including graft failure, graft 
rejection, graft-versus-host disease (GvHD), and/or death from 
opportunistic infections led to poor transplant outcomes, and no 
patients who were transplanted in the late 1950s and early 1960s 
survived.

In 1958, van Rood and colleagues recognized that, dur-
ing pregnancy, about one-third of women formed antibodies 
against human leukocyte antigens (HLA), which made it pos-
sible to unravel the genetics of HLA (6, 7). Thereafter, numerous 
studies elucidated the role of these antigens in hematopoietic 
stem cell transplantation (HSCT) leading to an improved 
understanding of the importance of HLA typing and thus, 
improved donor selection strategies. In 1968, van Bekkum, 
Balner, and colleagues (8) had successfully developed a HSCT 
protocol in monkeys and shared that information not only 
in the Netherlands but also with Good and coworkers in the 
United States. That same year, three patients, two in the United 
States and one in the Netherlands, all suffering from a con-
genital immune deficiency, were succesfully transplanted with 
hemopoietic stem cells from a HLA-identical sibling donor (9). 
In 1972, Thomas and colleagues reported the first experience 
with allografting for severe aplastic anemia (SAA) (10). In the 
following years, more centers were able to perform allogeneic 
HSCT successfully in patients with hematologic malignancies 
including acute leukemia.

In the 1970s, a major concern was the limitation of allogeneic 
grafting to HLA-identical sibling pairs. Only about one-fourth 
of the patients in need had a suitable stem cell donor. In 1979, 
Hansen and colleagues performed the first successful marrow 
graft from an unrelated donor (URD) for a patient with leukemia 
(11). After establishing URD registries in numerous countries 
and their cooperation under the umbrella of the BM donors 
worldwide (BMDW), an increasing number of patients have 
received allogeneic HSCT.

The use of peripheral blood stem cells (PBSC) or cord 
blood (CB) instead of BM for HSCT has meantime become 
a routine part of transplantation. Until the early 1919s, only 
myeloablative (MA) conditioning, including cyclophosphamide 
(CY), busulfan (BU), and/or TBI, was in clinical use (12, 13). 
In the mid-1990s, introduction of fludarabine (FLU) (14, 15) 
and reduction of doses of alkylating agents (16) as well as TBI 
dose (17), established non-MA (NMA) or reduced-intensity 
conditioning (RIC).

In the following sections, we will describe the current develop-
ments in allogeneic HSCT focusing on conditioning therapies, 
donor selection, and stem cell sources.

CONDiTiONiNG THeRAPY FOR HSCT

For successful HSCT, it is necessary that the incoming donor stem 
cells have sufficient graft space and support for proliferation and 
differentiation. Therefore, the existing host stem cells must be 
eradicated from the host stem cell niche in the BM, or suppressed 
from growth in order for donor stem cells to engraft adequately. 
It is also crucial that recipients are immunocompromised to 
prevent rejection of the incoming donor cells by the host immune 
system. The pretransplant conditioning regimen suppresses 
and functionally eradicates the host immune system and thus 
allows donor stem cells to home in the BM microenvironment 
without the risk of graft rejection. Finally and most importantly, 
the conditioning therapy eradicates the underlying malignant 
disease. This provides long-term disease control by reducing 
leukemic cells to a minimum, which allows final elimination 
by graft-versus-leukemia (GvL) effects. An exception to this 
rule due to a deficiency in their own immune system are infants 
suffering from severe combined immunodeficiency (SCID) (18) 
and patients with SAA with an identical twin donor who may be 
grafted without conditioning therapy (19).

Types of Conditioning Regimens
Many different conditioning treatments exist, but a generally 
accepted definition is of two types: MA conditioning and NMA/
reduced-intensity conditioning (19).

Myeloablative conditioning is of high-dose intensity consist-
ing of a single agent or combination of agents that eradicate the 
patient’s hematopoietic cells in the BM and induce long-lasting 
trilineage aplasia. This strategy includes TBI and/or alkylat-
ing agents at doses that will not allow autologous hematologic 
recovery resulting in profound pancytopenia within days from 
the time of administration (19). Pancytopenia is life-threatening 
and fatal unless patients’ hematopoiesis is restored by infusion 
of hematopoietic stem cells (HSCs). TBI has been the primary 
therapeutic modality for allogeneic HSCT for patients with 
hematological malignancies. TBI has retained wide usage during 
the last decades due to its excellent immunosuppressive proper-
ties, activity against a wide variety of malignancies including 
ones refractory to chemotherapy, penetration of sanctuary sites 
such as the central nervous system (CNS) and the relative lack 
of non-hematologic toxicities when given at high doses. Most 
frequently, fractionated TBI of 12–14  Gy given over 3–4  days 
has been combined with CY at a dose of 120 mg/kg body weight 
(BW) administered over 2 days (20) as initially used for successful 
BMT in the late 1970s (13). Since patients with lymphoma previ-
ously given dose-limiting local radiotherapy to the mediastinum 
experienced a high incidence of fatal interstitial pneumonitis 
syndrome (IPS) following TBI (21), non-TBI-containing condi-
tioning regimens were explored. Chemotherapy regimens also 
allowed to avoid the long-term sequelae of TBI including cata-
racts, sterility, growth, and developmental problems in children 
and secondary malignancies such as myelodysplasia (MDS) (22). 
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TABLe 1 | Frequently used conditioning regimens in various transplant 
centers worldwide.

intensity Regimen Comments

Myeloablative CY/TBI Profound pancytopenia, require 
stem cell support, substantial 
non-hematological toxicities

BU/CY

Non-myeloablative FLU/TBI Minimal cytopenia, do not require 
stem cell supportTLI/ATG

Low dose TBI

Reduced intensity FLU/MEL Intermittent cytopenia, reduced 
non-hematological toxicitiesFLU/BU

FLU/CY

CY, cyclophosphamide; TBI, total body irradiation; BU, busulfan; FLU, fludarabine; TLI, 
total lymphoid irradiation; ATG, antithymocyte globulin; MEL, melphalan.
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BU is an alkylating agent with profound MA properties and 
marked activity against a variety of malignancies. A regimen of 
BU at a dose of 4  mg/kg/day for 4  days combined with CY at 
a dose of 120 mg/kg BW has been widely administered for the 
treatment of malignant and non-malignant diseases followed by 
allogeneic HSCT (12, 20). Few studies compared chemotherapy 
regimens with TBI-based conditioning. Two randomized studies 
demonstrated the equivalency of BU/CY and CY/TBI in patients 
with chronic myeloid leukemia (CML) in chronic phase receiv-
ing HLA-identical allografts (23, 24). One randomized study in 
patients with acute myeloid leukemia (AML) given HLA-identical 
transplants showed superiority for CY/TBI conditioning due to a 
lower relapse rate (25).

Although MA conditioning therapy provides rapid hemat-
opoietic engraftment of donor cells, it also causes myelotoxicity, 
considerable morbidity, and mortality (20). Tissues containing 
proliferating cells such as gonads, hair follicles, oral mucosa, and 
the gastrointestinal (GI) tract are most susceptible, followed by 
the lung and other organs such as liver and, to a lesser extent, the  
renal and cardiac system. Besides mucositis, nausea, diarrhea, 
peripheral neuropathies, alopecia, and skin rash have been 
reported after MA conditioning. High-dose BU has been associ-
ated with interstitial pneumonitis, hepatic sinusoidal obstructive 
syndrome (26), and increased risk of chronic GvHD (27). The 
endothelial system has been increasingly recognized as an addi-
tional highly sensitive target, and this may explain some of the 
observed other organ toxicities (28).

Non-myeloablative conditioning can be defined as a regimen 
that will cause minimal cytopenia, little early toxicity, and does not 
require hematopoietic stem cell support (17, 19). Nevertheless, 
NMA conditioning regimens are immunosuppressive to the 
extent that, when followed by granulocyte-colony stimulating 
factor (G-CSF) mobilized PBSC or BM infusion, donor lympho-
hematopoietic cells can engraft with at least mixed donor/recipi-
ent chimerism (29). The final elimination of host hematopoiesis 
is then achieved by graft-versus-hematopoietic and GvL effects 
of the donor immune cells resulting eventually in full donor chi-
merism (17). Since Storb and colleagues demonstrated in the dog 
model that 2 Gy of TBI in combination with systemic immuno-
suppression allowed establishment of stable mixed hematopoietic 
chimerism after BM infusion of a DLA-identical littermate (30), 
low dose TBI at a dose of 2 Gy on the day of graft infusion has 
become a well-established NMA regimen (17, 20). Furthermore, 
low dose TBI has been combined with FLU at a dose of 90 mg/m2 
over 3 days (17, 20). The Stanford group combined total lymphoid 
irradiation of 8–12 Gy delivered over 11 days and antithymocyte 
globuline (ATG) administered over 5 days in order to facilitate 
the presence of natural killer/T cells that suppress GvHD, but 
retain GvL effects (31).

Non-myeloablative conditioning regimens usually exert 
minor antitumor effects and rely mainly on the subsequent GvL 
effects of the reconstituted donor immune cells for eradication of 
the underlying disease.

Reduced-intensity conditioning regimens try to fill the gap 
between MA and NMA conditioning therapies. The concept 
of RIC is based on the idea of preventing the high toxicity and 
mortality associated with MA conditioning regimens in patients 

with advanced age or relevant comorbidities but providing 
sufficient immunoablation to prevent graft rejection (20). The 
goal of RIC is not always complete tumor eradication and thus 
complete destruction of host hematopoiesis but sufficient control 
of the underlying disease by cytotoxic therapy followed by the 
immune-mediated effects of donor graft cells (20). Although 
intensity of regimens applied vary considerably, all investigators 
aimed at replacing cytotoxic components of the conditioning 
regimen with less toxic, but immunosuppressive, agents to enable 
hematopoietic engraftment. A commonly used RIC regimen con-
sists of FLU at a dose of 125–150 mg/m2 administered over 5 days 
in combination with melphalan at a dose of 100–140 mg/m2 given 
over 2 days showing efficacy in patients with AML and MDS (32). 
Slavin and colleagues reported a regimen consisting of FLU, BU, 
and ATG in patients both with hematologic malignancies as well 
as genetic disorders resulting in neutropenia and complete or 
partial donor chimerism in all patients (16). A sequential regimen 
of cytoreduction with FLU, cytarabine, and amsacrine followed 
by 3 days of rest and then 4 Gy of TBI, ATG, and CY (FLAMSA 
regimen) achieved promising results in patients with high-risk 
AML and MDS including ones with primary refractory disease 
and adverse risk cytogenetics (33). Subsequent replacement of 
TBI with BU further improved outcomes (34).

During the last few years, a variety of new agents have been 
introduced for RIC therapies including other alkylating agents 
such as high-dose treosulfan, clofarabine, or thiotepa in order to 
improve patients’ outcome by reducing relapse rates in individu-
als with advanced disease stages prior to HSCT (35).

Table 1 summarizes the currently and most frequently used 
conditioning regimens for allogeneic HSCT.

Selection of Conditioning Therapy in HSCT
There is, as yet, no standard decision-making criteria for choos-
ing a conditioning regimen for HSCT. Due to the scarcity of 
available direct comparative data from randomized clinical trials, 
assessing the efficacy of the various conditioning treatments is 
difficult. Before making a choice for a given patient, clinicians 
should consider relevant comorbidities, disease status, patient’s 
age, risk of rejection, and risk of relapse. In many diseases, MA 
conditioning therapy achieves a higher control of underlying 
malignancy, but this is at the risk of increased toxicity and higher 
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incidence of transplant-related mortality (TRM). In contrast, RIC 
regimens have been associated with a higher relapse risk espe-
cially in patients with advanced stage of disease (36–38). Dreger 
and colleagues reported that RIC contributed to 18% of 1-year 
TRM (39), while MA conditioning generally contributes to over 
30% of 1-year TRM, respectively (40).

In a multicenter retrospective study, Martino and colleagues 
reported the outcome of 836 patients receiving HLA-identical sib-
ling donor transplants with either MA or RIC therapy (41). They 
observed that the 3-year relapse rate was significantly increased 
after RIC whereas 3-year NRM was decreased in RIC compared 
to MA conditioning with a similar rate of overall survival in both 
groups (41). This suggests that RIC is promising regarding early 
NRM but at the cost of disease relapse.

New tools for risk assessment before allogeneic HSCT such as 
the hematopoietic cell transplantation-specific comorbidity index 
have been used for valid and reliable scoring of pretransplant 
comorbidities that have predicted non-relapse mortality (NRM) 
and survival in large patient cohorts (42). These pretransplant 
assessments aim to improve HSCT outcomes by allowing the 
selection of conditioning intensity based on the patients’ comor-
bidity index.

Relapse has remained the major cause of mortality after 
HSCT. Peritransplant and posttransplant strategies to reduce 
the relapse risk have been discussed by various investigators and 
research groups (43, 44). So far, available clinical interventions 
are limited including timely reduction of systemic immunosup-
pression and prophylactic administration of donor lymphocyte 
infusions (DLI) (33, 44–46). In patients with high-risk AML 
and MDS, adjuvant DLI after RIC according to the FLAMSA 
protocol resulted in significantly improved 7-year survival and 
lower relapse rates compared to control HSCT patients not given 
additional DLIs (45). The German Lymphoma group investigated 
rituximab or no additional therapy in patients with relapsed or 
refractory lymphoma starting 21  days after allogeneic HSCT 
(47). Peggs and colleagues administered DLI for mixed chimer-
ism after HSCT with RIC achieving full donor status in 19 of 22 
patients (86%) with Hodgkin’s lymphoma (46). Of note, 4-year 
relapse incidence was 5% in these patients. Targeted tyrosine 
kinase inhibitors including sorafenib, sunitinib, and midostaurin 
have been used pre- and posttransplant in patients with AML 
as relapse treatment or maintenance therapy for prevention of 
relapse (48). Another strategy consists of posttransplant moni-
toring of CD34+ donor cell chimerism in patients with AML and 
azacytidine treatment for patients with a decline of CD34+ donor 
cells below 80% (49).

Conditioning-Mediated inflammation 
and GvHD
After administration of any conditioning therapy, but especially 
prominent after MA and RIC in contrast to NMA regimens, the 
major finding is epithelial damage caused by chemotherapeutic 
drugs and TBI leading to release of pro-inflammatory cytokines 
such as tumor necrosis factor (TNF)-α and interleukin-1 (IL-1) 
and resulting in the so-called “cytokine storm” (50). Endotoxins 
such as lipopolysaccharides (LPS) are also translocated across 
the damaged intestinal mucosa, resulting in a further activation 

of the host’s innate immune system and further cytokine release 
(51). A whole set of damage-associated molecular patterns 
(DAMPs) released from damaged cells such as uric acid and ATP 
and various pathogen-associated molecular patterns (PAMPs) 
released by the microbiota contribute to this activation (52). The 
signals generated cause activation of host antigen-presenting 
cells (APCs) such as dendritic cells (DC) (53) and increased 
presentation of HLA major and minor antigens. As a result, 
naive donor T-cells are recruited, activated, and expanded 
leading to the interaction with host APCs. At this stage, DCs 
initiate GvHD and prime naive T-cells (53). Recipient’s hemat-
opoietic APCs activate donor CD8+ T-cells while, in the gut, 
non-hematopoietic APCs can activate donor CD4+ T-cells for 
the induction of GvHD (54). In this way, conditioning therapy 
can mediate tissue damage leading to donor T-cell expansion 
and attack on target organs (preferentially gut) leading to acute 
and/or chronic GvHD.

Couriel and colleagues evaluated the influence of MA and 
NMA regimens in 137 patients undergoing HLA-identical 
sibling donor transplantation (55). They observed significantly 
higher incidences of grades II–IV acute GvHD in patients 
given MA conditioning therapy. Furthermore, the cumulative 
incidence of chronic GvHD was 40% higher in patients receiv-
ing MA conditioning when compared to NMA. These results 
suggested that MA conditioning was not only myelotoxic but 
also accounted for profound higher incidences of both acute and 
chronic GvHD (55). Similar results were observed by Mielcarek 
and coworkers (56).

It can be noted that, currently, there is no best conditioning 
regimen available that can ensure disease-free survival (DFS) of 
patients after HSCT. Choice of conditioning therapy used prior 
to transplantation highly depends on recipient age, underlying 
disease, and disease status prior to HSCT, relevant comorbidities, 
and type of donor (matched or mismatched; related, or unrelated). 
MA conditioning is perhaps preferred for younger patients, and 
RIC may be given to patients whose underlying disease has been 
well controlled. A choice among various conditioning regimes 
is largely based upon center experience. However, randomized 
clinical trials comparing different conditioning therapy intensi-
ties are highly warranted to increase the level of evidence for 
choosing the appropriate pretransplant treatment wisely in order 
to allow long-term DFS with good quality of life. In addition, 
a standardized developed therapy worldwide, or even between 
European centers, would greatly facilitate the evaluation of bio-
markers predicting outcome and response to therapy. This would 
further improve transplant results in the future.

iMPORTANCe OF THe HLA ReGiON

HLA-Typing Techniques
Improvements in HSCT would not have been possible without 
the significant progress made in the understanding of the 
HLA system and the development of HLA typing techniques. 
The major HLA antigens essential for immune responses are 
HLA-A, -B, -C, -DR, -DQ, and -DP, which are encoded by poly-
morphic genes in the human genome, with 1–1543 alleles per 
locus (for the most up to date number of HLA alleles reported 
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TABLe 2 | Comparison of HLA Typing Techniques.

Method Benefits Drawbacks

Serological Preliminary or 
supportive method 
for molecular assays; 
fast and cheap

Low resolution; requires viable cells; 
poor reagent supply in the past, labor 
intense, not the current standard

Cellular Used for HLA class 
II typing until approx. 
2000

Low resolution; requires viable cells; 
labor intense, but informative; rarely 
used currently

RLFP Used for HLA class 
II typing until approx. 
2000

Low resolution; labor intense; did not 
replace serological methods; rarely used 
currently

SSOP Involved in preliminary 
typing used today

Low or intermediate resolution; limited 
to previously known polymorphisms; 
restricted to selected exons

SSP Nowadays used to 
distinguish cis/trans 
ambiguities

Low or intermediate resolution; limited 
to previously known polymorphisms; 
restricted to selected exons

SBT High resolution Does not distinguish cis/trans 
ambiguities; restricted to selected exons

NGS High resolution; high-
throughput typing; 
increases rate of 
resolved ambiguities

Complicated workflow and data 
analysis, novel technique, could 
become reasonably priced when used 
in centralized facilities

HLA, human leukocyte antigen; RLFP, restriction fragment length polymorphism; SSOP, 
sequence-specific oligonucleotide probes; SSP, sequence-specific priming; SBT, 
sequencing-based typing; NGS, next-generation sequencing; approx., approximately.
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in IMGT-HLA1). The remarkable allelic polymorphism makes 
HLA typing very challenging (57). The pioneering work of 
HLA typing was carried out with serological and cellular 
assays. Serological techniques started with agglutination, but 
were soon based on complement-dependent cytotoxicity, cell 
cultures in mixed lymphocyte reactions, and cell-mediated 
cytolysis. One of the most important drawbacks of those meth-
ods is the need for viable cells expressing surface antigens. Over 
the years, several improvements were made to the serological 
techniques culminating in the development of the Terasaki 
microlymphocytotoxicity test (58). After modifications, it is 
still in use today, especially to clarify the absence of some “null 
alleles” (variants affecting expression of protein) or to decrease 
the number of primers or probes in DNA-based tests (59).

In the 1980s, molecular techniques were introduced into 
HLA typing, namely, restriction fragment length polymorphism 
(RFLP). Amplified DNA was digested with restriction enzymes to 
generate specific restriction patterns, thus leading to the identifi-
cation of alleles according to the pattern. Although RFLP allowed 
for typing with higher sensitivity and specificity than serological 
methods, the procedure was still very labor-intensive and did 
not replace serological typing (57). Further development of 
PCR technologies and Sanger sequencing provided new options 
in the field of HLA typing, such as sequence-specific oligonu-
cleotide probes (SSOP), sequence-specific priming (SSP), and 
sequencing-based typing (SBT). The SSOP system in the most 
practical format (reverse SSOP) involved PCR amplification of 
the target sequence labeled with biotinylated primers followed 
by hybridization with the immobilized sequence-specific probes, 
incubation with streptavidin conjugated to an enzyme and chro-
mogenic substrate (60). The idea of SSOP typing was also adopted 
for the flow cytometry technology Luminex by changing immo-
bilization on nylon membrane to microbeads and colorimetric to 
fluorescence detection technology. This allowed faster, reliable, 
and automated typing (61). SSP typing was the alternative and the 
complementary system to SSOP typing, developed based on the 
extension of the 3′ ends of primers, which were either matched 
or mismatched with the target sequence. The results of SSOP 
and SSP typing are considered as “low” and “intermediate” HLA 
resolution typing (57). Low resolution (on antigen level) and also 
called “2-digit typing” corresponds to the identification of broad 
families of alleles that cluster into serotypes (e.g., A*02). It is thus, 
the equivalent of serological typing (A2) (62). High-resolution 
(HR) typing is on an allele level and allows identification of the 
set of alleles encoding the same protein sequence for the region of 
the antigen-binding site of the HLA molecule. Alleles that are not 
expressed as cell surface molecules are excluded. Intermediate 
level is the level of resolution in between high- and low-resolution 
(63). SBT, which is the combination of DNA amplification and 
direct sequencing, provided HR HLA typing. However, ambi-
guity at the allelic level (linked polymorphic sequence can be 
outside the typed region) or genotype ambiguity (inability to 
establish whether linked polymorphisms are on the same -cis or 

1 Immunopolymorphism database (IPD) – International ImMunoGeneTics project 
(IMGT) database. Available from: http://www.ebi.ac.uk/ipd/imgt/hla/stats.html.

different -trans allele coming from the father or the mother) still 
remains an important problem. In order to deal with that issue, 
scientists included additional exons for typing or investigated 
preliminary/additional typing methods to HR typing, e.g., SSP 
(method, which can distinguish cis/trans ambiguities) (57). 
Over the last few years, the breakthrough in HLA typing was the 
development of the next-generation sequencing (NGS) technol-
ogy, which offers HR and high-throughput typing. However, it 
requires complex sample preparation including elaborate library 
preparation and sample enrichment steps and considerable 
bioinformatics resources for data analysis. Recently, several labs 
have applied NGS to genotype highly polymorphic HLA genes 
using different strategies of amplification, library preparation, 
platforms for sequencing, and sequence analysis approaches to 
enhance sequencing coverage and resolve ambiguities (64–66). 
There are still some limitations to overcome, but it is highly prob-
able that NGS will soon become the routine method for HLA 
typing. Thus, in the near future, centralized typing facilities could 
offer reasonably priced NGS-based typing when large numbers of 
samples can be processed in a more automated fashion.

All described methods of HLA typing are shown in Table 2.

Choice of Donors for HSCT
Over the last few years, based on the outcome of many studies, 
identification of 10 alleles in 5 HLA loci, namely, HLA-A, -B, 
-C, -DRB1, and -DQB1 using HR typing has become the gold 
standard of URD matching in accordance with the guidelines 
of the European Society for Blood and Marrow Transplantation 
(62). In the United States, the National Marrow Donor Program 
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Committee has recommended allele-level typing for HLA-A, 
-B, -C, and -DRB1 to obtain 8/8 or 7/8 allelic identity (67) 
questioning the importance of HLA-DQB1 matching for 
outcome (68, 69). Due to the low numbers of mature T-cells 
in CB, higher levels of HLA-incompatibility between donor 
and recipient are accepted. Therefore, selection of CB units 
is primarily based on HLA-A, -B intermediate resolution 
level, and DRB1 HR level. A recent study by the Center for 
International Blood and Marrow Transplantation Research 
(CIBMTR) and Eurocord reported better outcomes in single 
CB transplants with improved allele-level matching for four 
HLA loci (-A, -B, -C, and -DRB1) suggesting that CBT with 
three or more allele level mismatches should be avoided, due 
to unacceptable levels of NRM and poorer survival (70). HR 
typing at 4 loci and selecting CB units matched for at least 5/8 
alleles also improved TRM after double CBT (71).

In the search algorithm, genotypically identical related donors 
are considered to be first choice based on rapid availability and 
the likelihood of not only major but also minor histocompatibil-
ity antigen identity. The probability of HLA identity of a sibling 
is 25%. In a study utilizing birth data and statistical modeling, 
Besse and colleagues reported considerable variation in the 
likelihood in families of an HLA-identical sibling donor, ranging 
from 13 to 51% depending upon patient age and race/ethnicity 
(72). Furthermore, the present 40-year decline in birth rates 
is expected to lead to a 1.5-fold decrease in access to an HLA-
identical sibling for today’s young adults (18–44 years) when they 
reach the peak age for potential HSCT (61 years) compared to 
their contemporary counterparts (72). HLA typing of parents and 
siblings not only allows the identification of a potential-related 
donor but also reveals the distribution of haplotypes that can 
provide valid information whether an extended family search 
may be useful. HLA typing of a family is usually performed at 
low resolution level unless homozygosity is expected in the family 
requiring HR typing (59). Typing for HLA-A, -B, and -DR (6/6 
matching) at low resolution enables, in most cases, determination 
of the paternal and maternal haplotypes present in the patient and 
a potential related donor (62).

For patients lacking an HLA-identical sibling donor, searches 
for HLA-matched donors among extended family members 
(grandparents, uncles/aunts, cousins, nieces, and nephews) 
have proven fruitful in populations where consanguineous or 
related marriage is common (73, 74). Otherwise, the alterna-
tive is an HLA-identical URD or a CB donor. The probability 
to find a matched unrelated donor (MUD) is around 30–70%, 
depending on the frequency of the HLA genotype in the donor 
registries and the patient’s ethnicity (67). HR HLA typing is 
performed when searching for URDs to provide in depth infor-
mation on the HLA type of the recipient and the potential URD. 
As a consequence of HR typing and thus, more adequate donor 
selection, the outcomes of patients transplanted from matched 
URD have become comparable to patients transplanted from 
matched sibling donors (75).

In case of a lack of a MRD or MUD, a mismatched donor can be 
considered (9/10 or 7/8 alleles matched) when patients urgently 
need a HSCT. This includes haploidentical family donors (5–9/10 
or 4–7/8 alleles matched) and mismatched CB donors (<6 alleles 

matched). Almost all patients have a haplotype-mismatched 
related donor (MMRD) available. This provides the enormous 
advantage of immediate access to this donor, a fact that is most 
important for patients suffering from acute leukemia, who cannot 
afford a lengthy donor search and are at risk of dying of their 
malignancy prior to HSCT. It also allows collection of additional 
donor cells for peritransplant or posttransplant cellular immuno-
therapy, if needed. In addition, the immediate donor availability 
has financial implications since costs for additional donor typing 
and URD search can be reduced.

Until a few years ago, the use of a haplotype MMRD was 
associated with a significantly higher risk of GvHD and graft 
rejection unless the graft was T-cell depleted (76). Recently, 
the post-transplant administration of CY on days +3 and +4 
after infusion of unmanipulated BM cells from a haploidentical 
donor has resulted in improved outcome with low incidence 
rates of both acute and chronic GvHD (77, 78). Posttransplant 
CY promotes immune tolerance by selectively depleting rapidly 
proliferating alloreactive host and donor T-cells while spar-
ing non-alloreactive memory T-cells, regulatory T-cells, and 
hematopoietic progenitor cells and thus, preventing antitumor 
and antimicrobial immunity (79). Whereas initial protocols 
contained BM as graft source, comparable outcomes with BM or 
PBSC as stem cell sources for HSCT from haploidentical donors 
have meantime been reported (80). Haploidentical HSCT with 
posttransplant CY provided survival outcomes comparable to 
HSCT with an HLA-identical sibling or URD in patients with 
lymphoma, AML, and ALL (81, 82). In retrospective analyses, 
results of haploidentical HSCT for patients with AML in 
remission appear to be comparable to the best results of CB 
transplantation (83). Prospective clinical trials comparing hap-
loidentical HSCT to CB transplantation and HSCT from other 
donor sources are currently ongoing.

Interestingly, the superior outcome of the maternal graft 
over the paternal graft has been described in haploidentical 
transplants (84, 85). Van Rood and colleagues demonstrated 
that recipients of non T-cell depleted maternal transplants had 
a lower incidence of acute and chronic GvHD than recipients 
of paternal transplants (84). Moreover, Stern and colleagues 
showed that haploidentical T-cell depleted stem cell transplants 
from mother to child had a lower relapse rate and improved 
survival compared to paternal grafts (85). The explanation of the 
observed effects can be the fact that, during pregnancy, the fetal 
immune system is exposed to the non-inherited maternal anti-
gens (NIMA), and the mother is sensitized to the fetus inherited 
paternal antigens (IPA), establishing bidirectional immunity, 
which is achieved by regulatory T-cells between mother and 
fetus (86). This concept is supported by the persistence of fetal 
microchimerism in the mothers after pregnancy (87).

effect of HLA incompatibility and Other 
Clinical Parameters on HSCT Outcome
The effect of HLA mismatches on the outcome of HSCT depends 
mostly on the number of mismatches, locus of the mismatch, 
and direction of the mismatch (75, 88, 89). The immune reaction 
caused by an HLA-mismatch differs when the mismatch is: in 
the GvH direction – donor homozygous at mismatched loci; in 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Juric et al. Milestones of Hematopoietic Stem Cell Transplantation

Frontiers in Immunology | www.frontiersin.org November 2016 | Volume 7 | Article 470

the host-versus-graft (HvG) direction – recipient homozygous 
at mismatched loci or is bidirectional – donor and recipient 
heterozygous at mismatched loci. The mismatched antigen in the 
GvH direction may be targeted by donor T-cells and cause GvHD, 
a mismatch in the HvG direction may be recognized by recipi-
ent T-cells and promote graft rejection, whereas a bidirectional 
mismatch may affect both outcomes (88, 90). Whereas patients 
with hematologic malignancies may benefit from the GvL effect 
associated with HLA-mismatched donors, this is different for 
patients with non-malignant diseases requiring allogeneic 
HSCT where the adverse effect of GvHD is not counterbalanced 
by a beneficial GvL effect. Mismatched transplants for patients 
with non-malignant disorders are strongly associated with an 
increased risk of graft failure, probably also due to the increased 
use of T-cell depletion prior to HSCT in order to decrease harmful 
GvHD in those patients. The recommendation for transplanta-
tion of patients with non-malignant disorders is to use matched 
donors whenever possible (91, 92).

Human leukocyte antigen disparity between donor and 
recipient impacts on the risk of severe GvHD, graft failure, and 
delayed immune reconstitution (93–96). On the other hand, HLA 
mismatches can be tolerated in transplant settings using in vitro 
T-cell depleted grafts and permissive HLA mismatches, which do 
not result in worse outcome (97–99).

During the last few years, the impact of allelic mismatches in 
specific HLA loci on the risk of GvHD development has been 
investigated. Several groups have shown an association between 
allelic mismatches in HLA-A, -B, -C, and -DRB1 and higher rates 
of acute GvHD (94, 100, 101). However, limited data have been 
published on the impact of HLA class I and class II disparities 
on the incidence and severity of chronic GVHD. Interestingly, 
chronic GvHD was triggered mainly by mismatches in HLA 
class I (94, 102). Morishima and colleagues found HLA-A and/
or HLA-B allele mismatches to be a significant risk factor for the 
occurrence of chronic GvHD (94).

Since HLA-disparity between recipient and URD is a known 
risk factor for GvHD, and this complication also increases the 
incidence of opportunistic infections after HSCT, it is difficult 
to investigate the impact of HLA-disparity per  se on immune 
reconstitution and infectious complications. However, Maury 
and colleagues identified an independent association of HLA 
incompatibility between recipient and URD on delayed recovery 
of CD4+ T-cells and decreased T-cell proliferative responses 
(103). Few studies explored the impact of HLA mismatches 
on the rate of infections after HSCT. It has been shown that 
mismatched donors or URDs are independent risk factors 
for death due to late infection (later than 6  months after 
HSCT) (104). Moreover, Ljungman and colleagues reported 
results from a multivariate analysis indicating that recipients 
of mismatched family or URD grafts were more prone to 
develop cytomegalovirus (CMV) disease and die due to 
CMV-associated complications than recipients of grafts from 
HLA-matched sibling donors (105). In addition, Poutsiaka and 
colleagues observed that HLA mismatches between donor and 
recipient independently increased the risk of blood stream 
infections (106). Reasons for delayed immune reconstitution 
after HLA-incompatible donor HSCT may be impaired antigen 

presentation by APCs or impaired thymic function, since it has 
been previously shown that HLA mismatches negatively influ-
ence thymic-dependent T-cell reconstitution (107). However, 
further research on long-term immune reconstitution in the 
context of HLA-mismatched HSCT, especially in the adult 
population, is warranted.

In addition to HLA disparity, other factors are known to 
influence the outcome of HSCT including patient and donor age, 
ethnicity, and gender. The impact of patient age has been investi-
gated by Cornelissen and colleagues in AML patients observing 
an adverse effect of increasing patient age on outcome due to an 
age-related rise of treatment-related complications (108). On the 
other hand, administration of RIC regimens for HSCT in older 
patients with AML was well tolerated and NRM at 2 years was 
15% (109).

Donor age appears to be also an important factor for select-
ing the best donor. The data from several studies suggest that 
younger donor age is associated with better outcome after HSCT 
(110–113). Bastida and colleagues reported that patients with 
AML and MDS who received a graft from a donor above the age 
of 50 years had a worse overall survival, higher TRM, and higher 
relapse rates (113).

The effect of recipients’ ethnicity has been reported as addi-
tional factor affecting outcome after HSCT. A comparison of 
results obtained after HSCT of Caucasians, African Americans, 
Hispanics, and Asians showed a decreased overall survival and 
higher risk of treatment failure among Hispanics (114–116). 
These differences in the outcome after HSCT are not well under-
stood. They might be explained by polymorphisms in cytokine 
genes (117) and differences in minor histocompatibility antigens 
(mHAs) (118). However, the evaluation of the impact of donor 
ethnicity and donor-recipient ethnic identity did not support 
drawing donor ethnicity into consideration in the donor selection 
algorithm (119).

Various investigators observed a higher risk for transplant-
related complications including GvHD after HSCT of male 
recipients with female donor grafts (120, 121). Of note, risk of 
relapse was significantly decreased in male recipients experienc-
ing chronic GvHD and having an antibody response to recipient 
HY antigen (122).

Graft-versus-Leukemia effect
While both GvL and GvHD are caused by major or minor histo-
compatibility antigen mismatches, prevention of leukemic relapse 
by enhancing the GvL effect is frequently limited by GvHD. It has 
become a major clinical issue to improve outcomes by separating 
GvL from GvHD effects in the field of HSCT. The role of mHAs 
in matched donor transplantation has been predominantly inves-
tigated in order to overcome this challenge (123).

However, few researchers have addressed the problem in 
terms of major HLA antigens. Kawase and colleagues identified 
eight mismatch combinations (two HLA-Cw and six HLA-
DPB1), which were associated with decreased risk of relapse and 
differed from mismatches responsible for severe acute GvHD 
(124) Moreover, patients given grafts with these combinations 
of HLA-DPB1 had significantly better overall survival compared 
to recipients of completely matched donor/recipient pairs (124). 
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TABLe 3 | Comparison of hematopoietic stem cell sources.

Stem cell 
source

Benefits Drawbacks

Donor Recipient Donor Recipient

BM Lower risk  
of GvHD

More invasive 
HSC collection

PBSC No general 
anesthesia 
for  
collection; 
less 
discomfort 
and pain

Faster 
hematopoietic 
engraftment 
and immune 
reconstitution; 
enhanced GvL 
effect

Higher risk  
of GvHD

CB Non-invasive Lower risks of 
GvHD and relapse; 
rapid availability; 
increased level 
of HLA-disparity 
tolerated

Lower 
number of 
HSCs; slower 
immune 
reconstitution

BM, bone marrow; PBSC, peripheral blood stem cells; CB, cord blood; GvHD, graft-
versus-host disease; HSC, hematopoietic stem cell; GvL, graft-versus-leukemia, HLA, 
human leukocyte antigen.
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Shaw and colleagues reported comparable data concerning the 
role of HLA-DPB1 mismatch and a lower risk of relapse, but 
this effect was accompanied by an increased risk of acute GvHD 
(125). A model for identification of non-permissive HLA-DPB1 
mismatches by the presence of T-cell-epitope mismatching has 
been proposed in order to provide a clinical strategy for lowering 
the risk of mortality after URD transplants (98, 126). Recently, 
Petersdorf and colleagues revealed the mechanism leading to 
the higher incidence of acute GvHD in recipients of grafts mis-
matched for HLA-DPB1 (69). They found that the risk of GvHD 
was influenced by the single nucleotide polymorphism in the 
HLA-DPB1 region responsible for the genetic control of HLA-DP 
expression levels. Thus, these data need further investigation but 
may be helpful in the future for selection of the best donor.

In a retrospective study of single unit CB recipients, van Rood 
and colleagues demonstrated that patients with AML and ALL 
who shared one or more HLA-A, -B, or -DRB1 antigens with their 
CB donor’s IPAs had a significant decrease in leukemic relapse 
after HSCT compared with those who did not, providing indirect 
evidence that maternal microchimerism in CB mediates a GvL 
effect in CB transplantation (127).

Role of KiR Ligand Mismatches
Killer immunoglobulin-like receptors (KIRs) are NK receptors 
binding to the HLA class I molecules and thus, control the activity 
of NK cells. There are two types of KIRs; one inhibits the ability 
of NK cells to kill foreign cells and the other activates NK cells 
(128). Apart from the broad diversity of activating and inhibitory 
receptors on NK cells, differences in the expression of NK cell 
ligands on the cell surface of target cells determine the induction 
or inhibition of NK cell activity. NK cell alloreactivity in patients 
after HSCT is directed against leukemic cells and mediated by 
mismatches in the graft-versus-host (GvH) direction in HLA 
class I molecules, which cause the incompatibility in binding to 
KIRs (129). There are three known KIR ligand mismatches in 
the GvH direction, all of which are present in donor/missing in 
recipient: (1) HLA-C1, (2) HLA-C2, and (3) HLA-BW4 (130). 
HLA and KIR genes segregate independently on different chro-
mosomes, thus only 25% of HLA identical siblings and less than 
1% of MUD are KIR identical (130). It has been demonstrated 
by in  vitro studies, murine models, and several clinical studies 
that KIR ligand mismatches in GvH direction are important for 
the success of HSCT with a haploidentical donor in patients with 
AML. GvH NK alloreactivity was associated with significantly 
improved survival, favored engraftment, eradication of AML, and 
reduced GvHD (131, 132). These clinical observations are based 
on the fact that NK cells mediate clearance of (1) residual leuke-
mia cells resulting in lower relapse rate, (2) host T-cells improving 
hematopoietic engraftment, and (3) host dendritic cells reducing 
GvHD incidence (133).

On the other hand, conflicting results were presented on the 
beneficial effect of KIR ligand incompatibilities and outcome 
after unrelated HSCT. Giebel and colleagues reported that overall 
survival of patients with ALL, AML, or CML, transplanted with 
unmanipulated grafts of MUD with KIR ligand incompatibilities, 
was significantly improved (134), but other studies failed to 
reproduce these results (135–137). The advantage of KIR ligand 

mismatches on survival became more pronounced, when analysis 
was limited to AML patients (138, 139). The discrepancies in the 
results of the aforementioned studies can be explained by the het-
erogeneity of treatment protocols and patient cohorts. However, 
difficulties arise in connection with KIR ligand mismatches and 
outcome after HSCT. In analyses, it is difficult to show advantages 
of KIR-ligand mismatches when mismatches in the GvH and 
HvG direction exist on the same HLA molecules. Strong response 
from alloreactive T-cells toward the incompatible HLA molecule 
can override the favorable effect of KIR ligand mismatch (140).

STeM CeLL SOURCeS

For many years, BM harvested from the posterior iliac crests 
under general anesthesia had been used as the source of HSC 
for transplantation. In the 1990s, two new HSC options, namely, 
G-CSF-mobilized PBSCs and CB became available for clinical 
use. Although there are many differences between these three 
HSC sources, clinical results after HSCT seem to be comparable 
(141–143). The choice of different stem cell sources depends on 
age of the donor and the recipient, clinical comorbidities, as well 
as disease stage, and varies depending on the preferences of dif-
ferent centers and donors (Table 3).

PBSC – Benefits for Patients and Donors
One of the major changes in HSCT was the replacement of BM by 
G-CSF-mobilized PBSCs (144, 145). Over the past decade, PBSCs 
have become the preferable stem cell source in many transplant 
centers, accounting for around 75% of all HSCTs performed (142, 
146, 147).

Use of PBSCs holds several advantages over BM. HSC col-
lection from peripheral blood (PB) is preferred by donors as it 
spares them general anesthesia and cells can be harvested in the 
outpatient setting (145, 148). Karlsson and colleagues analyzed 
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171 donors and reported significantly more prolonged pain 
and severe fatigue in BM donors compared to PBSC donors 
(149). So far, complications of growth factor administration 
and leukapheresis such as malignancy and stroke are no higher 
than those of BM collection (141). A large study in more than 
9000 PBSC and BM donors demonstrated a lower risk of serious 
adverse events (SAE) in donors of PBSC (150). Furthermore, 
PBSC donors treated with G-CSF have shown no increased risk of 
cancer, autoimmune disease, or stroke compared with BM donors 
and even a lower incidence of cancer compared with the general 
population (150).

Besides benefits for the donors, there are advantages for the 
recipients as well. Faster hematopoietic engraftment and immune 
reconstitution have been observed in patients receiving PBSC 
compared to those given BM grafts (145, 151). In a clinical study 
using MA conditioning therapy with HLA-identical related 
donors, 5 and 6 days of earlier neutrophil and platelet engraft-
ment, respectively, were observed after PBSC compared to BM 
grafts (152). Furthermore, after HSCT with MUD, a shorter time 
to absolute neutrophil count equal to 0.5 × 109/L and a shorter 
time of platelet engraftment were reported in the PBSC compared 
to the BM group (153). Several other studies and a meta-analysis 
including eight different trials in MUD confirm these findings 
and showed a higher rate of engraftment in recipients of PBSC 
(146, 154, 155).

Moreover, high numbers of lymphocytes in the PBSC, 
namely, immunocompetent T-cells may enhance the GvL effect 
(145, 155). Unmodified PBSC grafts may contain one log more 
T-lymphocytes than unmodified BM grafts (156). However, 
these high T-cell numbers could in parallel lead to a higher risk 
of GvHD (155, 156), which as a consequence may have a higher 
mortality. An increased incidence of chronic GvHD, but no 
difference in acute GvHD, was observed between PBSC and BM 
graft recipients in HLA-matched related settings by Campregher 
and colleagues (157). Eapen and colleagues reported a signifi-
cantly higher incidence of chronic GvHD after MA conditioning 
and URD PBSC infusion (158). Although mortality risks were 
higher in patients with chronic GvHD, both in PBSC and BM 
settings, and PBSC recipients had more severe chronic GvHD, 
there was no difference in mortality between these two graft types 
(158). A multicentre, randomized trial published by Anasetti 
and colleagues similarly reported no difference in acute GvHD 
and a higher incidence of chronic GvHD in PBSC recipients, 
but no difference in the 2-year-survival rate compared to BM 
recipients (142).

Progression-free survival seems to be comparable between 
PBSC and BM recipients, and the risk of relapse appears to be 
lower in patients given PBSC (142, 151, 155).

Cord Blood – A Life-Saving Alternative
Despite the advances made in HSCT over the last decades, 
donor availability has remained a major obstacle and introduc-
tion of CB provided an alternative for these patients (159, 160). 
The first CB transplantation was performed successfully in Paris 
in 1988 in a pediatric patient suffering from Fanconi anemia 
(FA) (161). Results of CBT in adults were less favorable (160, 
162). In a study by Laughlin and colleagues on 68 patients 

who underwent CBT, 17 died most likely as a result of the 
preparative regimen and 22 patients died due to an infection 
after HSCT (162). High death rates were attributed in part to the 
selection of high-risk patients, but slow myeloid engraftment 
could have also contributed (162). In the following years, better 
CB and patient selection substantially improved CBT outcome 
(154, 163–165). Since then, according to the BMDW database, 
more than 30,000 CBT have been performed and CB banks 
have been established around the world storing more than 
600,000 CB units (160).

One of the main advantages of CB is the fact that an increased 
level of HLA disparity can be tolerated (166). The current 
standard for CB selection is donor–recipient matching at six 
HLA loci, namely, HLA-A, HLA-B antigen, and HLA-DRB1 
allele in comparison to 8–10 loci for BM or PBSC donation (167, 
168). Despite increased tolerance, HLA matching still remains, 
together with the cell dose infused, one of the main factors associ-
ated with improved engraftment and better survival (169, 170). 
The negative impact of HLA-disparity on patient outcome could 
be partially overcome by higher CD34+ cell doses for each level of 
HLA disparity. Better survival was demonstrated in recipients of 
CB grafts with two HLA-mismatches given more than 1.7 × 105 
CD34+ cells per kilogram BW than those receiving a lower dose 
(171). Data suggest that the CD34+ cell content should be the 
most important criterion when choosing CB grafts, followed by 
the degree of HLA-disparity (154). The number of total nucleated 
cells collected or infused should not be less than 2.5 × 107/kg BW 
(168, 170). Indeed, the main limitation of CB is the low number of 
HSCs in contrast to the numbers typically present in BM or PBSC 
allografts (172). Since several studies reported better engraftment 
in recipients of higher doses of CD34+ cells (162, 169, 170), use 
of double CB units was introduced some years ago and has been 
proven safe, showing comparable overall outcomes as matched-
related and unrelated HSCT (159, 172). Wagner and colleagues 
compared HSCT with one CB unit with double CB units used 
in children and adolescents with hematologic malignancies and 
observed no differences in survival, neutrophil recovery, and 
immune reconstitution between the two groups (173). However, 
recipients of single CB units achieved better platelet recovery and 
had a lower incidence of more severe acute GvHD and chronic 
GvHD (173).

Several studies have been performed in order to compare 
outcome of CB versus BM or PBSC transplantation. In 2004, 
Laughlin and colleagues compared mismatched CBT and 
mismatched BMT in adult patients and observed no significant 
differences in TRM, treatment failure, and overall mortality 
between these patient cohorts (174). Rocha and colleagues 
reported no significant differences between mismatched CBT and 
matched BMT regarding TRM, relapse rate, and leukemia-free 
survival (175). Takahashi and colleagues observed lower TRM 
and better DFS after CBT compared to BMT despite a higher 
HLA-mismatching rate in CBT recipients (176). The same group 
later reported no differences in TRM, DFS, and relapse rate after 
CBT when compared with BM and PBSC grafting (136). More 
recent studies support these results (143, 177), respectively. 
Terakura and colleagues analyzing HSCT outcomes in patients 
with ALL and AML reported similar OS and NRM comparing 8/8 
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allele-matched unrelated BMT with CBT leading to the conclu-
sion that CB could be a preferable alternative (178).

Regarding the incidence of GvHD, Laughlin and colleagues 
reported higher rates of acute GvHD after MMUD marrow grafts 
and higher chronic GvHD rates after CBT (174), while Rocha and 
colleagues observed a lower risk of grades II–IV acute GvHD after 
CBT and a comparable incidence of chronic GvHD between CB 
and unrelated BM recipients, respectively (175). Others observed 
similar rates of severe acute GvHD after CBT and 8/8 matched 
BMT but higher rates after 7/8 matched BM grafting while the 
incidence of extensive chronic GvHD was significantly lower 
after CBT compared with 8/8 and 7/8 BM grafting (178).

In conclusion, CB as an alternative HSC source is compa-
rable to BM and PBSC, and offers several advantages, namely, 
easier availability, higher tolerable HLA-disparity, lower risks of 
GvHD, and relapse. Nevertheless, limited cell numbers and slow 
immune reconstitution contributing to infections and impacting 
survival remain an obstacle. Novel strategies for improvement of 
hematopoietic and immune reconstitution after CBT include ex 
vivo expansion of CB cells using different cytokine combinations, 
intra-bone injection of cells, modification of homing, and the 
coadministration of mesenchymal stromal cells (159, 172).

CONCLUSiON AND OUTLOOK

Allogeneic HSCT has become an established curative treatment 
of a steadily increasing number of life-threatening hematologi-
cal, oncological, hereditary, and immunological diseases. During 
the last decades, combined research efforts including preclinical 
models and clinical studies on a worldwide scale has resulted in an 
impressive progress in various areas of HSCT. Improved patient 
selection, development of improved tissue typing methods, avail-
ability of URD and CB units as HSC source, and introduction of 
RIC and NMA conditioning regimens has resulted in improved 
patients’ survival over the years. However, overall survival rates 
have remained at 40–50% for over two decades. Further, inter-
disciplinary research and team efforts are necessary to improve 
malignant disease eradication and further inspire survival in the 
future. In addition, a worldwide collective effort is necessary to 
standardize conditioning protocols, which would aid in improv-
ing outcomes.

Currently, cellular-based immunotherapies, which were 
pioneered by the development of allogeneic HSCT are gaining 

increasing clinical relevance for treatment of patients with hema-
tologic malignancies. For decades, the contribution of donor’s 
immune cells to elimination of host tumor cells in leukemia, 
lymphoma, and myeloma after HSCT has been appreciated 
(179–181). To reduce or avoid the occurrence of GvHD that is 
associated with significant morbidity and mortality, more precise 
and effective cell-based therapies have been developed. Immune 
cell engineering including adoptive transfer of T-cells geneti-
cally modified to express chimeric antigen receptors (CARs) 
specific for a selected tumor antigen such as CD19 in B-cell 
malignancies have demonstrated impressive antileukemic activ-
ity in patients with ALL, lymphoma, and chronic lymphocytic 
leukemia (182–185). Optimizing T-cell receptor gene therapy 
for hematologic malignancies aims at improving the efficacy of 
T-cell therapies by maintaining their effector function and pro-
moting memory. Recent gene-editing tools such as transcription 
activator-like effector nucleases (TALEN) and clustered regularly 
interspaced short palindromic repeats (CRISPR) allow deletion 
of endogenous T cell receptor and HLA genes leading to removal 
of alloreactivity and decreased immunogenicity of third-party 
T-cells. Talen-engineered CAR19 T-cells from a third-party 
donor have recently been administered to a 11-month-old girl 
with relapsed B-ALL after allogeneic HSCT resulting in complete 
cytogenetic and molecular remission (186). This represents an 
important scientific development toward generic off-the-shelf 
T-cell receptor engineered products for treatment of a larger 
number of patients with hematologic malignancies.
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