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Identification of new head and neck squamous cell carcinoma subtypes
and development of a novel score system (PGSscore) based on variations
in pathway activity between tumor and adjacent non-tumor samples
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The influence of adjacent non-tumor tissue characteristics on patient outcomes in head and neck squa-
mous cell carcinoma (HNSC) remains unclear. In HNSC, subtype identification is generally tumor-
based, and most prognosis-related studies focus on a single gene set. Here, we performed Gene Set
Variation Analysis to comprehensively evaluate variations in diverse gene sets in tumor and non-
tumor samples and converted a gene-centric matrix into a pathway-centric model. Three different prog-
nostic subtypes correlated with previously identified subgroups, clinicopathologic features, risk factors,
and tumor microenvironment (TME) were identified using the non-negative matrix factorization method.
We also screened 2 and 11 gene sets from nontumor and tumor tissues, respectively based on represen-
tative gene sets. Interestingly, genes from nontumor gene sets were associated with serotonin secretion
and P2Y receptors, while genes from tumor gene sets were associated with immunity and inflammation.
The PGSscore was constructed to predict outcomes and immunotherapy responses. Low- and high-
PGSscore groups showed significant differences in clinicopathological characteristics and TME. Our anal-
ysis indicates that the non-tumor tissue is indispensable for prognosis. PGSscore provides new avenue to
evaluate overall survival and immunotherapy responses, and our method based on pathway-centric
models can be extended to other diseases.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Head and neck squamous cell carcinoma (HNSC) is the sixth
most common cancer worldwide, with 1.08 million new cases
every year [1,2]. Surgery, radiation, chemotherapy, and
immunotherapy are the key treatments for HNSC [2]; however,
they are associated with disadvantages, such as disease recurrence,
cervical node metastasis, chemotherapeutic drug resistance, and
ineffective immunotherapy, all of which result in increased deaths
from advanced HNSC. Therefore, it is important to identify novel
HNSC subtypes and associated pathways and signatures to better
predict patient overall survival and enhance outcomes. Such a
strategy would help guide the treatment and improve
immunotherapy responses.
Previous studies on tumor subtypes have generated some
important results, and researchers have categorized HNSC into
subtypes mainly based on gene expression profiling of the tumor
tissue. In addition, there are several other criteria for subtype strat-
ification, including copy number profiling and status of HPV16
DNA and RNA [3–7]. However, these studies did not take the adja-
cent non-tumor samples into account during the identification of
molecular subtypes, although some previous research confirmed
that the role of the non-tumor tissue is critical in tumor develop-
ment. Increased epidermal cell proliferation in response to altered
pathways in the parabasal layers adjacent to oral squamous cell
carcinoma tissue may trigger early oncogenic events that favor
invasion [8]. Further, the loss of E-cadherin in adjacent non-
tumor epithelium is related to tumor invasiveness in oral squa-
mous cell carcinoma [9]. Moreover, inflammatory signals and
immune components in non-tumor samples may play an impor-
tant role in facilitating tumor development [10]. Therefore, insights
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from adjacent non-tumor samples should be considered when
determining the HNSC subtype.

Most previous studies have largely focused on one pathway,
gene set, lncRNA set, or a single molecule that is considered to
be associated with tumor development. For example, pyroptosis-
related genes [11], pyroptosis-related lncRNA [12], ferroptosis-
related genes [13], m6A-modified lncRNA [14], immune-related
genes [15], aging-related genes [16], hypoxia-related genes [17],
autophagy-related genes [18], inflammatory pathways [19], fatty
acid metabolism pathway [20], Fascin Actin-bundling Protein 1
[21], and dual-specificity phosphatase 1 [22] have been used as a
basis to predict HNSC outcomes. Hence, these publications tend
to choose single emerging or popular gene sets to establish a
molecular signature or model to predict outcomes, while ignoring
other gene sets. Such studies may lead to superfluous information,
as it would be hard to judge which gene/pathway/molecule gives
the best results. Therefore, an approach of analyzing and integrat-
ing the data of abundant gene sets from tumor and adjacent non-
tumor samples would provide a comprehensive profile of HNSC
in an objective manner.

In this study, to comprehensively reveal subtle and pronounced
variations in pathway activity in HNSCs, we transformed the gene
expression matrix into a gene set enrichment score (ES) matrix,
incorporating HNSC and adjacent non-tumor samples for quantita-
tive analysis. We also determined the changes in pathway activity
between tumor and adjacent non-tumor samples to identify novel
HNSC subtypes and their prognostic correlations. We further
explored the correlations of the subtypes with the levels of tumor
microenvironment (TME) components, previously defined sub-
groups, clinicopathologic features, and risk factors. Based on these
analyses, prognostic gene sets in HNSC and adjacent normal tissue
were defined, enabling establishment of a new score (PGSscore) to
predict overall survival and the immunotherapy response. Further-
more, we described the immune cell landscape, and the correlation
between PGSscore and clinicopathological features, the TME, and
other features. A nomogramwas established to more precisely pre-
dict the overall survival rates of HNSC patients based on PGSscore.
Our system can be used to detect changes in pathway activity in
tumors and adjacent non-tumor tissues, offering a new method
to identify subtypes and predict overall survival and immunother-
apy responses in HNSC.
2. Materials and methods

2.1. Data collection

Public HNSC gene expression datasets with complete clinico-
pathological data for tumor and adjacent non-tumor tissues were
downloaded from TCGA (https://portal.gdc.cancer.gov/) and the
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/-
geo/), i.e., TCGA head and neck squamous cell carcinoma,
GSE41613, and GSE65858. For TCGA dataset, the fragments per
kilobase per million (FPKM) values were transformed into tran-
scripts per kilobase million (TPM). The GSE41613 and GSE65858
datasets were merged after background adjustment and quantita-
tive normalization using the raw ‘‘cel” files of these datasets, and
the ‘‘Affy” and ‘‘simpleaffy” R packages [23]). Subsequently, the
SVA R package was used to eliminate batch effects in the merged
datasets using the ‘‘ComBat” algorithm. Finally, 18,029 gene sets
were downloaded from the Molecular Signatures Database v7.4
(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp. These data-
sets contained hallmark gene sets (50genesets), canonical path-
ways (CP; 2922 gene sets), gene ontology (GO; 10,185 gene sets),
and the ImmuneSigDB subset of the C7 dataset [4]. Hallmark gene
sets represent specific well-defined biological states or processes
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and display coherent expression [24]; CP represent biological pro-
cesses, and were compiled by domain experts from BIOCARTA
(292genesets), Kyoto Encyclopedia of Genes and Genomes (KEGG;
186 gene sets), PID (196genesets), REACTOME [1], and WikiPath-
ways (615genesets). GO datasets, contained biological process
[7], cellular component (996genesets), and molecular function [1]
ontologies. The ImmuneSigDB subset of the C7 database represents
chemical and genetic perturbations of the immune system and was
generated using manual curation of published studies on human
and mouse immunology [25]. The data of four molecular subtypes
and six immune subtypes listed in the Pan-Cancer Atlas were
downloaded from the Supplementary Materials of two previous
studies [26–27].

2.2. Gene set variation analysis

The GSVA R package was used to condense the gene expression
profiles into a gene set matrix with ESs using the GSVA algorithm
in HNSC and adjacent non-tumor samples to investigate the varia-
tion in several gene sets or pathways [28]. Adjusted p < 0.01 was
considered significant.

2.3. Cancer subtype analysis

An integrative R package called ‘‘CancerSubtypes,” which
includes methods such as non-negative matrix factorization
(NMF) method, provides useful feature selection, subtype identifi-
cation, and validation methods [29]. The NMF method was used to
identify the optimal cluster number and to classify patients based
on the calculated gene set matrix. The assignment accuracy and fit-
ness were validated using the silhouette width index, ranging
between �1 and 1. A silhouette width index closer to 1 indicates
well-defined patterns or subtypes.

2.4. Differentially enriched gene sets associated with the three
subtypes

The ‘‘limma” R package was used to obtain differentially
enriched gene sets among the three subtypes and differentially
expressed genes (DEGs) among the three PGS clusters. P < 0.01
was used to screen the differentially enriched gene sets and DEGs.
Representative gene sets and overlapping genes were identified by
selecting the intersection area of a Venn plot.

2.5. Analysis of tumor microenvironment

To identify the levels of tumor microenvironment, the CIBER-
SORT R package was used to evaluate the ImmuneScore, StromalS-
core, and ESTIMATE score for each patient.

2.6. Identification of prognostic gene sets

Twenty gene sets were identified using univariate Cox analysis
(p < 0.05) from 48 representative gene sets. To avoid overfitting, 13
prognostic gene sets were identified using least absolute shrinkage
and selection operator (LASSO) penalties based on the gene set ES
matrix [30].

2.7. Unsupervised clustering of prognostic gene sets

Unsupervised clustering analysis was performed to identify
patients based on 13 prognostic gene sets and their ESs using the
‘‘ConsensuClusterPlus” R package. The optimal number of clusters
and their stability were also determined. 1000 repetitions were
performed to confirm cluster stability [31].
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2.8. Principal component analysis

The principal component analysis (PCA) R package was used to
reduce the dimensionality of the gene set matrix and to identify
the discriminative power of the PGS clusters.
2.9. Kaplan-Meier survival analysis

Kaplan-Meier survival analysis was used to evaluate overall
survival for the three different subtypes, PGS clusters, low- and
high-ES groups for each prognostic gene set, and low- and high-
PGSscore. This analysis was performed using the ‘‘survminer” and
‘‘survival” R packages.
2.10. Functional enrichment analysis

The R package ClusterProfiler was used to conduct GO enrich-
ment analysis and KEGG pathway analysis [32]. This analysis pro-
vided a functional interpretation of the overlapping DEGs in the
PGS clusters, and the genes extracted from the gene sets in tumor
(T gene sets) and gene sets in non-tumor (N gene sets).
2.11. Module and hub gene analysis

Protein-protein interaction (PPI) networks were analyzed and
constructed using STRING (https://string-db.org/). Then, the PPI
network was imported into Cytoscape version 3.7.2 and analyzed
using the Molecular Complex Detection (MCODE) and CytoHubba
plugins. MCODE identified the modules of the PPI network using
the following parameters: degree cutoff, 2; node score cutoff, 0.2;
K core, 2; maximum depth, 100. The hub genes of each module
were obtained using the ‘‘degree” topological algorithm of
CytoHubba.
2.12. Construction of the PGSscore

TCGA data set was randomized into a training set (50 % of the
dataset) and a testing dataset (50 % of the dataset). Then, we used
univariate Cox analysis to identify the prognosis-associated genes.
The identified prognostic genes were screened using LASSO penal-
ties. Finally, the correlation coefficients for 13 genes were obtained
to calculate the PGSscore [PGSscore = coefficient (gene
1) � expression (gene 1) + coefficient (gene 2) � expression (gene
2) + coefficient (gene n) � expression (gene n)]. The median
PGSscore was used as the cutoff value. The training set, testing
set, GEO cohort, and the entire TCGA set were divided into high-
and low-PGSscore groups based on the PGSscore cutoff. Then, the
survminer R package was used to analyze overall survival. Receiver
operating characteristic (ROC) curve analysis was performed using
the ‘‘survivalROC” R package to estimate the predictive ability of
the PGSscore.
2.13. Correlation between PGSscore and clinicopathologic parameters

Univariate Cox regression was used to identify prognostic
genes. Multivariate Cox regression was performed to investigate
whether the PGSscore was an independent prognostic factor in
the training and testing sets. The ‘‘pheatmap” R package was used
to visualize relative gene expression for the PGSscore in each
patient and the relationship between the PGSscore and clinico-
pathologic characteristics. The ‘‘ggalluvial” R package was used to
construct a ggalluvial plot to visualize the subtype, PGS cluster,
PGSscore, and survival status in the entire TCGA set.
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2.14. Estimation of the immune cell landscape

The ‘‘immunedeconv” R package, which contains the XCELL,
TIMER, QUANTISEQ, MCPcounter, EPIC, CIBERSORT-ABS, and
CIBERSORT R functions, was used to investigate the immune cell
landscape among TCGA samples. Spearman analysis was used to
evaluate the correlation between the PGSscore and immune cell
profiles. The correlation coefficients are displayed using a lollipop
diagram. Significance was set at p < 0.05.
2.15. Immunophenoscore and tumor immune dysfunction and
exclusion scores

Individual immunophenoscore (IPS) data for HNSC patients
were downloaded from the Cancer Immunome Atlas (https://tcia.
at/home). The four immunogenicity-determining genes were effec-
tor cells, major histocompatibility complex molecules, immuno-
suppressive cells, and immunomodulators. The IPS for each
individual was calculated using machine learning [33]; the IPS val-
ues ranged from 0 to 10 and were calculated according to z-scores
representing gene expression. The IPS value was positively corre-
lated with tumor immunogenicity [34]. IPS analysis was also per-
formed to estimate the response to immune checkpoint
inhibitors (ICIs) between the low- and high-PGSscore groups.
Tumor immune dysfunction and exclusion (TIDE) data were down-
loaded from https://tide.dfci.harvard.edu, and were used to com-
pare the ICI responses between low- and high-PGSscore groups
[35].
2.16. Data collection and processing of immune-checkpoint blockade
cohorts

Owing to the absence of data for an HNSC cohort treated with
immune-checkpoint blockade, we referred to previous research
methods [36]. Two cohorts with immune-checkpoint blockade
were selected for further analysis, i.e., human renal cell carcinoma
samples treated with anti-PD-1 (nivolumab) (cohort GSE67501
from GEO) [37] and advanced urothelial carcinoma treated with
anti-PD-1 (atezolizumab) (cohort IMvigor210, https://research-
pub.gene.com/IMvigor210CoreBiologies). For the GSE67501
cohort, the FPKM data were transformed into TPM values after
standardization using the limma R package. The ‘‘DEseq2” R pack-
age was used to normalize the raw data of the IMvigor210 cohort
and to convert the count values into TPM values.
2.17. Nomogram establishment and interpretation

The ‘‘rms” R package was used to combine clinicopathologic
characteristics and PGSscores to construct a nomogram that pre-
dicts the 1-, 3-, and 5-year overall survival. In the nomogram, each
factor was matched with a specific score. The sum of the scores
across all factors for each patient was the total score. Higher scores
indicate greater risk [38]. The ‘‘ggDCA” R package was used to eval-
uate the clinical value of the nomogram by analyzing the net ben-
efit at different threshold probabilities using the decision curve
analysis (DCA) algorithm [39]. The concordance index (C-index)
ranged from 0.5 to 1 and was used to assess the discriminative
capacity. Larger C-index values suggest better prediction accuracy
[38]. Meanwhile, ROC curve analysis was performed using the sur-
vivalROC R package to estimate the predictive ability of the nomo-
gram. Finally, the consistency between the predicted and actual
survival outcomes was explored using calibration analysis [40].
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2.18. Statistical analysis

R version 4.1.0 (https://www.R-project.org) was used for statis-
tical analysis. The differential analysis between two groups was
calculated using Wilcoxon tests, while comparisons of three or
more groups were analyzed using Kruskal-Wallis or one-way
ANOVA. Differences in subtypes, clinicopathologic features, and
risk factors were calculated using chi-square tests. Spearman’s cor-
relation was used to perform correlation tests. Survival analysis
was performed using log-rank and Kaplan-Meier tests. Significance
was set at p < 0.05.
3. Results

3.1. Subtype identification based on activity variations in HNSC and
adjacent non-tumor samples in TCGA dataset

The detailed workflow for the identification process of gene set
matrix, subtype, prognostic gene sets, PGS cluster and PGSscore is
displayed in Fig. 1. First, the gene expression matrix was converted
into a gene set matrix with ESs using the GSVA algorithm to com-
prehensively investigate variations in gene sets in HNSC and adja-
cent non-tumor samples, which are depicted as a heatmap, 13,479
of which were detected in TCGA dataset (Fig. 2A). We then used the
CancerSubtypes R package, which integrates the current computa-
tional biology methods for cancer subtype identification and pro-
vides a standardized framework for cancer subtype analysis [29].
The results revealed three definite cancer subtypes (k = 3) based
on the ESs of HNSC and adjacent nontumor tissues using the
NMF method (Fig. 2B). The three subtypes were designated ‘‘sub-
types 1–3” and were confirmed to be distinct (Fig. 2C). Survival
analysis revealed substantial prognostic differences among the
three subtypes (p = 0.000128). Subtype 3 was clearly associated
with survival advantages, while subtype 1 had the poorest progno-
sis (Fig. 2D). The heatmap also showed the distribution of patients
in the three subtypes (Fig. 2E). Finally, the average silhouette width
(0.96) revealed an excellent match between an HNSC patient and
its identified subtype. (Fig. 2F).
3.2. Correlation of our identified subtypes with clinicopathologic
features, risk factors, and other subtypes in TCGA dataset

To identify correlations between the three subtypes, clinico-
pathologic characteristics, and risk factors, we performed chi-
squared tests. Our results showed that disease stage, T stage,
HPV status, and the frequency of alcohol consumption per week
had significantly different distributions among the three subtypes
(chi-squared test, p < 0.05) (Fig. 3A–D). More patients with stage I-
II disease, T0-2 disease, positive HPV status, and lower alcohol con-
sumption per week were grouped into subtype 3 than in the other
subtypes, whereas patients with stage III-IV disease, T3-4 disease,
negative HPV status, and high alcohol consumption per week were
grouped into subtype 1, indicating that the subtypes can predict
the clinicopathologic index and risk factors of HNSC in patients.

Next, we explored the correlation of our identified subtypes
with HNSC molecular subgroups. HNSC molecular subgroups had
significantly different distributions among the three subtypes
(chi-squared test, p = 0.001). Specifically, 42 % of patients in sub-
type 3 were assigned to atypical subgroups, whereas only 13 %
and 12 % patients in subtype 1 and 2, respectively, belonged to
atypical subgroups (Fig. 3E). After integration with immune sub-
types, approximately 98 % of patients belonged to the C1 (wound
healing, 25 %) or C2 (IFN-c dominant, 73 %) immune subtypes, with
only 2 % of patients associated with other immune subtypes. Fur-
thermore, a previous study indicated that the C2 subtype was char-
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acterized by the highest lymphocyte and CD8+ T cell infiltrates,
along with a robust anti-tumor immune response [26]. As
expected, we detected a higher proportion of patients in subtype
3 (78 %) belonging to the C2 immune subtype.

3.3. Differences between the three subtypes with respect to
representative gene sets and TME components in TCGA dataset

To further explore the representative potential biological func-
tions of the three HNSC subtypes based on gene set variations, we
identified differentially enriched gene sets among the three sub-
types (p < 0.01, |log2foldchange|>1). Forty-eight gene sets were
acquired from the intersection of the differentially enriched gene
sets from the three groups (Fig. 4A). Differences between the three
subtypes in terms of the ESs of representative gene sets and vari-
ous clinicopathological features are displayed in Fig. 4B. The 48
gene sets had the highest ESs in subtype 3 and the lowest ESs in
subtype 1, suggesting that these gene sets could be related to dis-
ease prognosis. To investigate the enriched immune cells and stro-
mal cells associated with TME, we conducted CIBERSORT and
ESTIMATE analysis of the three different subtypes. As expected,
there were considerable differences in the immune, stromal, and
ESTIMATE scores among the three subtypes (Fig. 4C, D, and E). Sub-
type 3 had the highest scores, while subtype 1 had the lowest
scores, which also explains why subtype 3 had the best survival
advantages and subtype 1 had the poorest prognosis.

3.4. Thirteen prognostic gene sets identified from HNSC and non-tumor
tissues in TCGA dataset

Next, we identified prognostic gene sets from the 48 represen-
tative gene sets in tumor and adjacent non-tumor tissue samples
using univariate Cox (Fig. S1A) and LASSO methods and obtained
13 prognostic gene sets (Fig. S1B, C). The hazard ratio, confidence
interval (CI), p-values, and related links are shown in Table 1.
Among the 13 prognostic gene sets, 11 were in the tumor samples
(T gene sets). Two gene sets were identified in adjacent non-tumor
tissue samples (N gene sets). Among the three subtypes, the ESs of
the 13 gene sets were statistically different (p < 0.001). Subtype 3
had the highest ESs and subtype 1 had the lowest ESs for all 13
gene sets (Fig. S1D). Based on the median ESs for each gene set,
all the patients were classified into high- and low-ES groups.
Meanwhile, prognostic analysis suggested that groups with high
ESs have considerable survival advantages (p < 0.05) (Fig. 5A, B).

3.5. Comprehensive analysis of PGS clusters based on prognostic gene
sets in TCGA dataset

Initially, a network of the 13 prognostic gene sets that compre-
hensively displayed the correlations and prognostic significance of
each gene set obtained from the HNSC and non-tumor tissues was
generated. This network revealed that all 13 gene sets were posi-
tively correlated with each other (p < 0.0001) (Fig. 6A). We used
the ConsensusClusterPlus R package to further classify the patients
into three distinct clusters (PGS clusters A-C; Fig. 6B and Fig. S2A–
C). There were 210 patients in PGS cluster A, 141 in PGS cluster B,
and 148 in PGS cluster C. Next, the classification of the PGS clusters
was further verified using PCA (Fig. 6C). There were substantial dif-
ferences in prognostic value among the three PGS clusters, and PGS
cluster C displayed better overall survival than that by the other
PGS clusters (log-rank test, p = 0.008) (Fig. 6D). The relationships
between the three PGS clusters indicated the relative ESs of the
13 prognostic gene sets (Fig. 6E). To further investigate the poten-
tial biological factors influencing each PGS cluster, we identified
245 overlapping genes from the three DEG groups (Fig. S2D). To
demonstrate how the 245 overlapping genes contribute to disease
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Fig. 1. Schematic diagram of the study. The identification process of the gene set matrix, subtypes, prognostic gene sets, PGS cluster, and PGSscore.
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Fig. 2. Identification of subtypes based on variations in gene set activity in HNSC and adjacent non-tumor samples in TCGA dataset. (A) A heatmap showing the ESs of 18,029
in HNSC and adjacent non-tumor sample gene sets calculated using the GSVA method. (B) The optimal number of clusters (K) that identified using the NMF method. (C)
Visualization of the three subtypes. The dots represent each patient. (D) Kaplan-Meier survival analysis revealed substantial differences among the three subtypes (log-rank
test, p = 0.000128). (E) A heatmap defining the three subtypes (k = 3) and their correlation area in HNSC samples. (F) A silhouette width plot showing the subtype accuracy.
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prognosis, we used clusterProfiler to perform GO enrichment and
KEGG pathway analyses. The 245 overlapping genes were mostly
correlated with the immune response-activating cell surface recep-
tor signaling pathway and immune response-activating signal
transduction (BP terms), T cell receptor complex (CC terms), and
4791
immune receptor activity (MF terms), which confirms that the dis-
tinction between the PGS clusters was based on immunity
(Fig. S2E). KEGG analysis showed that cytokine-cytokine receptor
interaction, chemokine signaling pathway, and cell adhesion mole-
cules were mainly enriched in the gene sets (Fig. S2F).



Fig. 3. Correlation of our identified subtypes with clinicopathologic features, risk factors and other subtypes in TCGA dataset. (A) Distribution of patients with stage I-II and
stage III-IV tumors between our identified subtypes. (B) Distribution of patients with T0-2 and T3-4 tumors between our identified subtypes. (C) Distribution of patients with
negative and positive HPV status between our identified subtypes. (D) Distribution of patients based on frequency of alcohol consumption per week between our identified
subtypes. (E) Distribution of four previously identified HNSC molecular subtypes (basal, mesenchymal, atypical, classic) across our identified subtypes. (F) Distribution of six
immune subtypes (C1: wound healing, C2: IFN-c dominant, C3: inflammatory, C4: lymphocyte depleted, C5: immunologically quiet, and C6: TGF-b dominant) across our
identified subtypes.
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3.6. Functional enrichment analysis and module analysis of genes from
the prognostic gene sets in TCGA dataset

We investigated the potential functions of the genes in the 13
prognostic gene sets obtained from HNSC and adjacent non-
tumor tissue samples. The genes derived from the T gene sets
(Table S1) were mostly associated with positive regulation of
leukocyte activation, positive regulation of lymphocyte activation,
and B cell activation (BP), immunoglobulin complex (CC), and
immunoglobulin receptor binding (MF) (Fig. 7A). KEGG analysis
showed enrichment in cytokine-cytokine receptor interactions
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and Th17 cell differentiation (Fig. 7B). These results indicate that
the loss of immune cell activation and regulation may promote
tumor development. Genes from the N gene sets (Table S2) were
associated with monoamine transport and serotonin secretion
(BP), integral component of presynaptic membrane (CC), and
purinergic nucleotide receptor activity (MF) (Fig. 7C). KEGG analy-
sis showed enrichment in serotonergic synapses (Fig. 7D). Next, we
constructed a protein–protein interaction network (Figure S3),
which was used in further module analysis. There were three clus-
ters from the T gene sets (Fig. 7E, F, and G) and two clusters from
the N gene sets (Fig. 7H and I). Meanwhile, the hub genes of each



Fig. 4. Distinct properties of the three subtypes with respect to representative gene sets, TME, and immune cell infiltration in TCGA dataset. (A) Venn analysis identified
overlapping representative gene sets from differentially enriched gene sets of subtypes 1 and 2, 2 and 3, and 1 and 3. (B) Heatmap showing the relative ESs of 48
representative gene sets of the three subtypes. Red represents high ESs and blue represents low ESs. Subtype, age, gender, stage, T, N, and M scores were used as sample
annotations. (C–E) Correlation of the three subtypes with immune, ESTIMATE, and stromal scores. The line in the boxplot represents the median value. The statistical
differences among the three subtypes were analyzed using one-way ANOVA. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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cluster were obtained by selecting the highest degree value using
CYTOHUBBA. In terms of the T gene sets, the hub genes from clus-
ters 1, 2, and 3 were CD22, CD27, and CD247, respectively. With
respect to the N gene sets, MAOB and P2RY6 were identified as
hub genes for clusters 1 and 2, respectively.

3.7. Establishment and validation of the PGSscore for predicting
patient outcomes

We next constructed a scoring system to predict the outcome for
each HNSC patient. Initially, a total of 381 genes were extracted from
the 13 prognostic gene sets. Univariate Cox regression analysis was
performed to determine the prognostic genes from the 318 genes
of TCGA dataset; finally, we obtained 72 prognostic genes that were
significantly associated with overall survival (Fig. 8A). The heatmap
in Fig. 8B shows the expression of the 72 genes in the HNSC and nor-
mal samples. Next, the entire TCGA set was randomly divided into a
training set and a testing set. LASSO Cox regression analysis was per-
formed to identify the optimal genes among the 72 and their coeffi-
cients in the training set (Fig. S4A and B). These results revealed 13
genes that were appropriate for constructing a prognostic model,
which we termed the PGSscore. The correlation coefficients are listed
in Table S3. Based on the median PGSscore, the training set, testing
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set, entire TCGA dataset, and GEO cohort (the integration of
GSE41613 and GSE65858) were classified into high- and low-
PGSscore groups. Fig. 8C and Fig. S4C–E show the distribution of
patients in the training and testing sets according to their PGSscore,
survival status, and survival time. In the training set, 56 % of patients
died in the high-PGSscore groups and 27 % in the low-PGSscore group
(Fig. 8D). We confirmed that the PGSscores of dead patients was sig-
nificantly higher than that of living patients in the training set
(p < 0.001; Fig. 8E). Survival analysis illustrated that the overall sur-
vival of patients with a high PGSscore was lower than that of patients
with a low PGSscore (p < 0.01) in the training set (Fig. 8F), testing set
(Fig. 8G), and GEO cohort (Fig. 8H). ROC curve analysis indicated that
the PGSscore predicts the 1-, 3-, and 5-year survival rates in patients
in the training set (Fig. 8I) and testing set (Fig. 8J), and the 1-year
prognosis in the GEO cohort (Fig. 8K).

3.8. Identification of PGSscore as an independent prognostic factor
correlated with clinicopathologic characteristics, TME, subtype, and
PGS cluster in TCGA dataset

To determine whether the PGSscore could independently predict
patient outcome, univariate and multivariate Cox regression analyses
were conducted in a training set and a testing set. The hazard ratios



Table 1
Thirteen prognostic gene sets.

Prognostic gene sets Source HR HR.95L HR.95H p-Value links

GOBP_REGULATION_OF_B_CELL_ACTIVATION Tumor 0.012118828 0.001318015 0.111429691 0.000718752 https://amigo.geneontology.org/amigo/
term/GO:0050864

REACTOME_TNFS_BIND_THEIR_
PHYSIOLOGICAL_RECEPTORS

Tumor 0.014707259 0.000499211 0.433290304 0.04534151 https://www.reactome.org/content/
detail/R-HSA-5669034

GOBP_TOLERANCE_INDUCTION Tumor 0.006054859 0.000171635 0.21360029 0.007916449 https://amigo.geneontology.org/amigo/
term/GO:0002507

BIOCARTA_THELPER_PATHWAY Tumor 0.032767433 0.004171448 0.257393737 0.014544625 https://data.broadinstitute.org/gsea-
msigdb/msigdb/biocarta/human/h_
thelperPathway.gif

REACTOME_RUNX1_AND_FOXP3_
CONTROL_THE_DEVELOPMENT_
OF_REGULATORY_T_LYMPHOCYTES_TREGS

Tumor 0.023384956 0.002234648 0.244716923 0.013938655 https://reactome.org/PathwayBrowser/
#/R-HSA-8877330

BIOCARTA_NO2IL12_PATHWAY Tumor 0.034205375 0.004525225 0.258552379 0.000119703 https://data.broadinstitute.org/gsea-
msigdb/msigdb/biocarta/human/h_
no2il12Pathway.gif

WP_SELECTIVE_EXPRESSION_OF_CHEMOKINE_
RECEPTORS_DURING_TCELL_POLARIZATION

Tumor 0.04201833 0.003277525 0.538680953 0.020300962 https://www.wikipathways.org/
instance/WP4494_r103559

GOBP_REGULATORY_T_CELL_DIFFERENTIATION Tumor 0.006537493 0.000154828 0.276039811 0.025234999 https://amigo.geneontology.org/amigo/
term/GO:0045066

GOBP_REGULATION_OF_TOLERANCE_INDUCTION Tumor 0.019627105 0.000544318 0.707717068 0.042516185 https://amigo.geneontology.org/amigo/
term/GO:0002643

GOBP_CHRONIC_INFLAMMATORY_RESPONSE Tumor 0.002432552 4.32E-05 0.136832463 0.015498973 https://amigo.geneontology.org/amigo/
term/GO:0002643

GOBP_POSITIVE_REGULATION_OF_
TOLERANCE_INDUCTION

Tumor 0.018650268 0.001141307 0.304766735 0.012122161 https://amigo.geneontology.org/amigo/
term/GO:0002645

GOBP_SEROTONIN_SECRETION Non-
tumor

0.020151167 0.000893779 0.454328891 0.048379596 https://amigo.geneontology.org/amigo/
term/GO:0001820

REACTOME_P2Y_RECEPTORS Non-
tumor

0.033425315 0.002045168 0.546288412 0.017618262 https://reactome.org/PathwayBrowser/
#/R-HSA-417957
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of the PGSscore and its 95 % CI were 8.010 and 2.898–22.145
(p < 0.001; univariate Cox regression) (Fig. 9A) and 8.401 and
3.081–22.909 (p < 0.001; multivariate Cox regression), respectively,
in the training set (Fig. 9B). These values were 7.851 and 1.759–
35.039 (p = 0.007; univariate Cox regression) (Fig. S4F), and 6.879
and 1.494–31.677 (p = 0.013; multivariate Cox regression), respec-
tively, in the testing set (Fig. S4G). To further explore the correlation
between the PGSscore, clinicopathologic characteristics, and TME in
the entire TCGA cohort, we analyzed the data using Wilcoxon rank
sum tests. Our results indicate that more patients in the high-
PGSscore group had advanced T (p < 0.001) (Fig. 9C) and N
(p < 0.05) stage disease (Fig. 9D). Patients with stage III � IV disease
also showed higher PGSscores than did those with stage I� II disease
(p < 0.001) (Fig. 9E). Additionally, there was a negative correlation
between the PGSscore and the immune score (p < 0.001) (Fig. 9F)
and ESTIMATE score (p < 0.01) (Fig. 9J), whereas no correlation was
noted between the PGSscore and the stromal score (p > 0.05)
(Fig. 9H). Fig. S4H displays the correlation between the PGSscore, var-
ious clinicopathologic features, and gene expression in the entire
TCGA set. To further validate the predictive ability of the PGSscore
in groups divided by the clinicopathologic index, we performed a
stratification analysis, which revealed that the prognosis of patients
in the low- and high-PGSscore groups differed significantly according
to stratification in the entire TCGA cohort (Fig. S5A-S5K). Subse-
quently, an alluvial diagram was constructed to better visualize the
relationship among the subtypes, PGS cluster, PGSscore, and patient
outcomes (Fig. 9I). We then examined the relationship between the
PGSscore, subtypes 1–3, and PGS cluster A-C in more detail. As
expected, subtype 3 had a low PGSscore and better prognosis, while
subtype 1 had a high PGSscore (Fig. 9J). PGS cluster C showed a low
PGSscore, whereas cluster B had a high PGSscore (Fig. 9K).

3.9. The immune cell landscape and the ability of the PGSscore to
predict immunotherapy response

To characterize the relationship between the immune cell land-
scape and the PGSscore, we calculated the Spearman correlation
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between the PGSscore and tumor-infiltrating immune cells in
TCGA dataset using XCELL, TIMER, QUANTISEQ, MCPcounter, EPIC,
CIBERSORT-ABS, and CIBERSORT. Immune infiltrating cells such as
B cells, CD8+ T cells, Tregs, and activated NK cells were negatively
correlated with the PGSscore, while common lymphoid progenitor
M2 macrophages and resting NK cells were positively correlated
with the PGSscore. In addition, the correlation coefficient of most
immune infiltrating cell types was<0, suggesting that the counts
of most types of immune cells were increased with the reduction
of PGSscore (Fig. 10A and Table S4). The relative proportions of
tumor-infiltrating immune cells between the low- and high-
PGSscore groups are displayed in Fig. S6A and B. To estimate the
capacity of the PGSscore to predict responses to ICI therapy in
TCGA samples, we determined the relationship between the low-
and high-PGSscore groups and immune checkpoint-related genes.
Almost all ICI-related genes had significantly higher expression in
the low-PGSscore group (Fig. 10B). The predictive ability of the
PGSscore was also assessed by IPS analysis. IPS-PD1-CTLA4 scores
and IPS-PD1 scores were significantly higher in the low-PGSscore
group in TCGA dataset (Fig. 10C). Fig. 10D shows that the TIDE
score in the low-PGSscore group was significantly lower than that
in the other groups, suggesting that the PGSscore is related to the
outcome of ICI therapy, and the low-PGSscore group had better
responses to ICIs in TCGA dataset. To examine the utility of the
PGSscore in predicting immunotherapy outcomes, the PGSscore
for individuals in the GSE67501 and IMvigor210 cohorts were cal-
culated based on the candidate genes. The correlation coefficients
were calculated using TCGA dataset. The GSE67501 and IMvig-
or210 cohorts were divided into low- and high-PGSscore groups.
Our results illustrate that the non-responsive group had a higher
PGSscore (Wilcoxon test, p = 0.033) (Fig. 10E) and that a larger pro-
portion of high-PGSscore patients belonged to the non-response
group (Fig. 10F) in the GSE67501 cohort. Notably, the low-
PGSscore group in the IMvigor210 cohort had a better prognosis
than the high-PGSscore group (log rank test, p = 0.033)
(Fig. 10G). The complete response/partial response group had a
lower PGSscore (Wilcoxon test, p = 0.027) (Fig. 11H) and a larger
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Fig. 5. Survival analysis between high- and low-ES groups of HNSC patients in TCGA dataset. Patients were divided into high- and low-ES groups according to the median ES
of each prognostic gene set obtained from tumor sample data (A) and adjacent non-tumor tissue sample data (B). Kaplan-Meier survival analysis revealed significant
differences between two gene sets (log-rank test, p < 0.05).
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percentage of low-PGSscore patients (Fig. 10I) compared with the
stable disease/progressive disease group in the IMvigor210 cohort.

3.10. Establishment and evaluation of the HNSC nomogram

We combined various predictive factors, including clinicopatho-
logic characteristics and the PGSscore based on TCGA dataset, to
increase utility and achieve higher prognostic accuracy of a nomo-
gram that predicts the 1-, 3-, and 5-year overall survival. The pre-
dicting factors included grade, sex, age, HPV status, tumor
anatomical subsites, stage, and PGSscore (Fig. 11A). To consider
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the clinicopathologic utility of themodel, we conducted DCA to inte-
grate patient preferences or decision points into the analysis. When
the threshold probability was above 0.2, the nomogram was supe-
rior at predicting prognosis than individual factors (Fig. 11B). In
addition, both the C-index and ROC curves indicated that the nomo-
gram has high predictive accuracy. The C-index of the nomogram
fluctuated by 0.80 from 1 to 5 years (Fig. 11C), while the area under
the ROC curve (AUC) was 0.816, 0.803, and 0.771 for 1-, 3-, and 5-
year survival, respectively (Fig. 11D–F). The calibration plots
revealed that the results predicted by the nomogram were very
close to the actual results for 1, 3, and 5 years (Fig. 11G–I). Finally,



Fig. 6. Identification of PGS clusters and functional analysis using HNSC samples in TCGA dataset. (A) Correlations of 13 prognostic gene sets in HNSC. Red and grey semi-
circles represent gene sets derived from adjacent non-tumor and tumor tissue samples, respectively. The size of the circle represents the prognostic value of each gene set.
The p-value was calculated by log-rank test. Green semi-circles represent favorable factors, while purple semi-circles represent risk factors. Links between genes indicate
their correlations. Red lines represent positive correlations and blue lines represent negative correlations. (B) Consensus clustering matrix for k = 3 was calculated using the
ConsensusClusterPlus R package. (C) Three significantly distinct clusters named PGS clusters A–C were identified using PCA based on the ESs of the prognostic gene sets in
HNSC samples. (D) Kaplan-Meier survival analysis of the three PGS clusters revealed statistical differences between the three clusters (log-rank test, p = 0.008). (E) A heatmap
showing the ESs of the 13 prognostic gene sets in the three PGS clusters. Red represents high ESs and blue represents low ESs. PGS cluster, age, gender, stage, T, N, and M were
used as sample annotations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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we compared the 1-year AUC value of the nomogram developed
based on the PGSscore with that of other existing signatures
[14,41–46], indicating that our nomogram had higher predictive
accuracy than individual signatures (Fig. 11J).
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4. Discussion

In this study, we used GSVA to establish a pathway-centric
model of HNSC and obtain novel insights into variations in path-



Fig. 7. Functional enrichment analysis and module analysis for the genes in the prognostic gene sets in TCGA dataset. The GO enrichment and KEGG pathway analyses of
genes in the T gene sets (A and B) and N gene sets (C and D). The size of the bubbles represents the number of enriched gene sets, and the color represents the p-value. BP,
biological process; CC, cellular component; MF, molecular function. Networks based on the genes in the T gene sets (E-G) and N gene sets (H and I) were calculated using the
MCODE application. Genes in red were identified by hub genes using CYTOHUBBA. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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way activity between tumor and adjacent non-tumor samples to
better identify HNSC subtypes, detect critical gene sets or path-
ways, and establish a score system to predict overall survival and
immunotherapy responses.

Using the NMF method, we classified HNSC patients into three
different subtypes according to the ESs of the gene sets between
tumor and adjacent non-tumor samples. In comparison with previ-
ously reported HNSC molecular subtypes [5], our subtype 3 was
more common in the less aggressive, atypical subtype, which
was consistent with the favorable overall survival of subtype 3.
This relationship may partially reveal the distinct characteristics
between molecular subtypes. In 2018, Thorsson et al. [26] reported
six immune subtypes for a pan-cancer cohort. After integration of
these immune subtypes with our data, we determined that the
majority of patients with HNSC had wound healing (25 %) or IFN-
c dominant (73 %) immune subtypes, with only 2 % of patients
associated with the other four immune subtypes. Thus, the pan-
cancer immune subtypes may not be completely applicable to
HNSC. This new subtype stratification offers added value, as it is
more comprehensive given that we did not only concentrate on
the tumor itself but also considered pathway activity in non-
tumor tissues. In contrast, Walter et al. [5] determined four molec-
ular classes using genomic analysis in tumor samples only, while
ignoring non-tumor tissues. Therefore, our identified subtypes
add a functional perspective to adjacent non-tumor samples. Fur-
thermore, the hierarchical clustering analyses reported by Walter
et al. [5] and Chung et al. [3] were based on gene expression pro-
files. However, gene function is exerted collectively and continu-
ously altered in response to different environmental conditions,
disease states, and genetic modifications [28]. Moreover, well-
annotated gene sets representing an extensive collection of biolog-
ical processes are critical for insightful interpretation of large-scale
genomic data [47]. Therefore, gene expression (molecular) profiles
could have lower interpretability compared to well-annotated
pathway-centered profiles. Our method represents an improve-
ment over previous approaches as the genes were condensed into
gene sets before clustering analysis; thus, the gene sets profile pro-
vides a more intuitive and stable context for evaluating biological
activity [48]. In addition, we included a wider, more diverse range
of gene set types rather than a single popular and emerging gene
set [11]. Finally, we observed that clinicopathologic characteristics
and risk factors were significantly and distinctly distributed among
the three subtypes. Patients with factors beneficial to survival, such
as a lower disease stage, lower T stage, positive HPV status [49],
and lower alcohol consumption [50], tended to have subtype 3
HNSC, whereas patients with factors detrimental to survival
tended to have subtype 1 HNSC. By contrast, such clinical associa-
tions were not significant in a previous study [5].

From the representative gene sets determined from the inter-
section of differentially enriched genes among the three subtypes,
we identified 11 prognostic gene sets in HNSC and 2 in non-tumor
samples. The low ESs of these gene sets were highly correlated
with negative outcomes. However, we emphasize that low ESs do
not indicate downregulated pathways. PGS clusters of patients dif-
Fig. 8. PGSscore based on candidate genes from prognostic gene sets predict patient o
selected using univariate Cox regression analysis in TCGA dataset. (B) Heatmap showing
TCGA dataset. *p < 0.05; **p < 0.01; ***p < 0.001. (C) Distribution of the patient survival
high-PGSscore groups in the training set. (E) Correlation between the PGSscore and sur
significant differences among the three subtypes were analyzed using Wilcoxon tests. Su
(G), and GEO cohort (H). Kaplan-Meier survival analysis revealed substantial difference
predicted the 1-, 3-, and 5-year outcomes in the training set (I) and testing set (J), and
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fering in overall survival based on the relative ESs of the 13 gene
sets were similar to the clustering of subtypes established based
on the relative ESs of all gene sets, with three groups identified
in both cases. In addition, most of the patients in PGS cluster C,
with the best survival outcomes, were classified in subtype 3,
whereas the greatest proportion of patients in PGS cluster B, with
the lowest ESs and worst outcomes, were classified in subtype 1.
This suggests that the 13 gene sets we obtained are representative
of all gene sets and are closely associated with prognosis.

Our results indicate that serotonin secretion and P2Y receptor
activation in the non-tumor tissue may significantly affect tumor
progression. Serotonin stimulates cancer cell growth [51], differen-
tiation [52], migration and metastasis [53], and angiogenesis [54].
Woods et al. [55] showed that purinergic receptor P2Y2 (P2Y2R)
positively regulates the responses of HNSC cells to extracellular
nucleotides, thus promoting cancer cell proliferation, and further
summarized how different P2Y receptors influence tumorigenesis
[56]. However, no studies have investigated the role of serotonin
and P2Y receptors in non-tumor tissues adjacent to HNSC tissues.
We hypothesize that changes in serotonin secretion and P2Y recep-
tor activity could be regarded as a prognostic biomarker for HNSC.

Among the 11 gene sets in tumor tissues, we hypothesized that
those from the T gene sets are correlated with immune-related
pathway activity changes. Regulation of B cell activation was iden-
tified as a determinant of HNSC prognosis. Previous studies have
also indicated that increased B cell counts are associated with good
prognosis in various solid tumors [57–59]). B cell-mediated secre-
tion of inflammatory cytokines such as interferon-c has been sug-
gested as a potential mechanism underlying the inhibition of
tumor growth and progression [60]. Interestingly, specific features
of B cell genes are detected in HPV+, but not HPV– tumors, which is
consistent with the fact that patients with HPV+ HNSC have better
outcomes than those with HPV– HNSC [61]. Further, tolerance
induction seems to be an important determinant of HNSC progno-
sis. HNSC cells may use different strategies to escape immune
surveillance, such as downregulation of histocompatibility mole-
cules and production of cytokines and chemotactic factors, poten-
tially contributing to the high reoccurrence rate of HNSC [62]. The
T helper pathway, development of Tregs (regulated by FOXP3 and
RUNX1, T cell differentiation, and selective expression of chemo-
kine receptors during T cell polarization were also included in
tumor tissue gene sets; these may play an important role in the
anti-tumor process [62–67]. The NO2-dependent IL-12 pathway
was also associated with these gene sets, which is a functional
pathway in NK cells that exhibit potent cytotoxicity and play a
key role in anti-tumor immunity. These results indicate that the
critical immune characteristics of HNSC tissues could be accurately
determined using our method. In addition to immunity, our results
suggest that changes in the expression of these gene sets are asso-
ciated with inflammation. The remaining two gene sets included
TNF superfamily members and the chronic inflammation response.
TNF-a induces apoptosis, regulates immune responses and the
functioning of tumor tissue vascular systems, and induces necrosis
[68]. Moreover, various cytokines produced during the inflamma-
utcomes. (A) Forest plot showing 72 genes correlated with clinical prognosis were
differences in the expression of 72 genes between HNSC and non-tumor samples in
status ordered by PGSscores in the training set. (D) Overall survival in the low- and
vival status in the training set. The lines represent the median values. Statistically
rvival analysis of low- and high-PGSscore groups in the training set (F), testing set
s among the two groups (log-rank test, p < 0.01). The ROC curve of the PGSscores
the predicted 1-year outcomes in the GEO cohort (K).
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tory response play important roles in promoting HNSC cell prolif-
eration, invasion, and metastasis [10]. Additionally, we identified
three hub genes from the T gene sets and two hub genes from
the N gene sets. Among them, CD22, CD27, CD247, and MAOB have
been reported to be correlated with HNSC tumorigenesis and prog-
nosis [69–72].

More, we used the extracted genes to develop a scoring system,
i.e., the PGSscore. Apart from PGSscores’ robust prognostic predic-
tive ability, it also could assist to assess immune status. By inte-
grating the results of these analyses, we found that the PGSscore
was negatively associated with immune cell infiltration and
expression of immune checkpoint genes. Other methods, such as
IPS [33] and TIDE analysis [35], can also predict the responses of
patients to immunotherapy. These results indirectly indicate that
patients in the low-PGSscore group may have an immunogenic
tumor microenvironment. We further confirmed the predictive
value of the PGSscore using data from the IMvigor210 and
GSE67501 cohorts (subjected to anti-PD-1 immunotherapy). A sig-
nificant difference in the PGSscore was observed between non-
responders and responders. This provides direct evidence of the
fact that the low-PGSscore group had a higher distribution of
better-response patients. Previous studies also identified potential
immune classes of HNSC. Chen et al. [73] identified an immune
class divided into active and exhausted immune subgroups. The
active immune subgroup may be similar to our low-PGSscore
group, as they are both characterized by B cell-related immune sig-
natures and proinflammatory M1 macrophages. This revealed that
the humoral immune response may play a crucial role in intratu-
moral immune response activation and exhaustion in HNSC. Song
et al. [65] demonstrated that patients with HNSC can be classified
into immunity-H, immunity-M, or immunity-L groups. Immunity-
H patients had the highest levels of immune infiltration and PD-L1
expression, and had good prognoses. Therefore, the low-PGSscore
group may be highly relevant to the Immunity-H group, since
the PD-L1 expression and overall survival in the low-PGSscore
group were significantly higher than that of the high-PGSscore
group. Compared with previous immunophenotype- and
immunotherapy-related studies, the advantage of our study is that
the adjacent non-tumor tissues were also considered in the devel-
opment of PGSscore. These tissues may play an important role in
immunotherapy, and are worth further exploration in future
research.

In terms of clinical application, HNSC can be divided into sub-
types 1, 2, and 3, according to pathway activity changes between
tumor and adjacent non-tumor tissues, and HNSC patients can also
be classified into low- and high-PGSscore groups. These two strat-
ifications are interrelated, but may be distinct in clinical practice.
They are similar in that they can both predict the clinical outcomes
of patients. Notably, nomograms based on PGSscore not only
improved the predictive performance but also outperformed indi-
vidual factors in terms of a clinical net benefit [39]. Since adjacent
non-tumor tissues are directly involved in the analysis, the subtype
stratification may be helpful to find effective anti-tumor targets in
non-tumor tissues and implement precise treatment, either by
activating or inhibiting the corresponding signaling pathway
according to the patient’s profile. In addition, applying these sub-
Fig. 9. Identification of the PGSscore as an independent prognostic factor correlated with
Forest plots of prognostic predictors in the training group identified via univariate Cox r
between the PGSscore and the T (C), N (D), and pathologic stages (E), immune score (F),
represents the median value. Statistical differences were analyzed by Wilcoxon tests. (I)
cluster, PGSscore, and survival state in the entire TCGA set. (J) Difference of PGSscores
Differences in PGSscores among the 3 PGS clusters in the entire TCGA set (p < 0.01, Kru
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types can offer a simple method for clinicians to generate prelim-
inary conjectures about the clinicopathological characteristics and
living habits of patients before specialized clinical examinations.
Moreover, stratification by low- and high-PGSscore groups may
provide precise and tailored immunotherapeutic strategies, as it
can offer an improved method to evaluate a patient’s response to
immunotherapy. These findings and prospects warrant further
exploration in larger HNSC cohorts receiving immune checkpoint
therapies.

There are some limitations to this study. First, we did not
include other datasets with adjacent non-tumor HNSC samples,
except for TCGA dataset. A dataset with both tumor and non-
tumor tissue samples would better verify the optimal number of
subtype clusters. Second, the clinicopathologic information from
the two GEO datasets is inconsistent with that from TCGA cohort,
so it cannot be used to verify the nomogram. Finally, since no
immunotherapy-treated HNSC cohort could be used for confirma-
tion, we made use of existing immunotherapy cohorts of patients
with other tumor types.
5. Conclusion

We used GSVA to establish a pathway-centric matrix and com-
prehensively indicated subtle and pronounced pathway activity
variations that can be used to develop a more intuitive and stable
context for evaluating biological activity between HNSC and non-
tumor samples. Based on the obtained tumor and non-tumor data,
we identified three HNSC subtypes that exhibited distinct clinico-
pathologic features and were associated with risk factors and pre-
viously established subgroups. We also screened 2 and 11 gene
sets from non-tumor and tumor samples, respectively, based on
the representative gene sets. Genes extracted from non-tumor
gene sets were associated with serotonin secretion and P2Y recep-
tors, while genes from tumor gene sets were related to immunity
and inflammation. Our results emphasize the indispensable role
of non-tumor samples in influencing prognosis, and they indicate
that the current strategy used for selecting the appropriate HNSC
therapy should also consider pathway activity variation in non-
tumor tissues. Therapies targeting serotonin and P2Y receptors in
non-tumor tissues could serve as a novel treatment for HNSC in
the future. We also illustrate that the PGSscore is an independent
prognostic biomarker that can evaluate the clinicopathological
characteristics and TME of each patient. In addition, we found that
the PGSscore can be used to predict patient response to
immunotherapy and it was used to establish a quantitative nomo-
gram. This study provides novel insights for cancer treatment and
suggests that targeting changes in pathway activity in non-tumor
and tumor tissues may be used to develop immunotherapeutic
agents. Meanwhile, our method to estimate pathway-centric mod-
els should be extended to other tumors and diseases.
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Fig. 10. Immune cell landscape and the ability of the PGSscore to predict the response to immunotherapy. (A) Lollipop plot showing the Spearman correlation between
PGSscore and tumor-infiltrating immune cells in TCGA cohort. (B) The expression of immune checkpoint genes between the low- and high-PGSscore groups in TCGA cohort.
(C) The relationship between IPS and PGSscore in TCGA cohort. The line in each box represents the median value (Wilcoxon test). (D) TIDE scores between low- and high-
PGSscore groups in TCGA cohort. (E) PGSscores between non-responsive and responsive immunotherapy groups in the GSE67501 dataset. (F) The distribution of low- and
high-PGSscore groups in the non-responsive and responsive groups in the GSE67501 dataset. (G) Survival analysis of low- and high-PGSscore groups in the IMvigor210
cohort. Kaplan-Meier survival curve revealed significant differences between the groups (log-rank test, p = 0.033). (H) Differences in PGSscores of the complete
response/partial response group and stable disease/progressive disease group in the IMvigor210 cohort. (I) The proportion of low- and high-PGSscore groups in the
response/partial response and stable disease/progressive disease groups in the IMvigor210 cohort. The line in each box represents the median value. *p < 0.05, **p < 0.01,
***p < 0.001; Wilcoxon test.
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Fig. 11. Establishment and evaluation of a nomogram from the entire TCGA set. (A) A nomogramwas established to predict overall survival after 1, 3, and 5 years. (B) Decision
curve analysis of the nomogram compared with PGSscore and clinicopathologic features after 1 year. (C) C-index of the nomogram, PGSscore, and other clinicopathologic
features after 1–5 years. (D-F) The ROC curve of the nomogram, PGSscore, and other clinicopathologic features predict overall survival after 1, 3, and 5 years. (G-I) Calibration
plots of the nomogram predicting the 1-, 3-, 5-year overall survival compared with actual outcomes. (J) The 1-year AUC value of the nomogram based on the PGSscore
(compared with existing signatures).
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