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Abstract
Iron is an important trace element involved in several biological processes. The role of iron

in porcine early embryonic development remains unknown. In the present study, we

depleted iron (III, Fe3+) with deferoxamine (DFM), a specific Fe3+ chelator, in cultured por-

cine parthenotes and monitored embryonic development, apoptosis, mitochondrial mem-

brane potential, and ATP production. Results showed biphasic function of Fe3+ in porcine

embryo development. 0.5 μMDFM obviously increased blastocyst formation (57.49 ±

2.18% vs. control, 43.99 ± 1.72%, P < 0.05) via reduced (P < 0.05) production of reactive

oxygen species (ROS), further increased mitochondrial membrane potential and ATP pro-

duction in blastocysts (P < 0.05). 0.5 μMDFM decreased mRNA expression of Caspase 3
(Casp3) and increased Bcl-xL. However, results showed a significant reduction in blasto-

cyst formation in the presence of 5.0 μMDFM compared with the control group (DFM,

21.62 ± 3.92% vs. control, 43.99 ± 1.73%, P < 0.05). Fe3+ depletion reduced the total

(DFM, 21.10 ± 8.78 vs. control, 44.09 ± 13.65, P < 0.05) and increased apoptotic cell num-

ber (DFM, 11.10 ± 5.24 vs. control, 2.64 ± 1.43, P < 0.05) in the blastocyst. An obvious

reduction in mitochondrial membrane potential and ATP level after 5.0 μMDFM treatment

was observed. Co-localization between mitochondria and cytochrome c was reduced after

high concentration of DFM treatment. In conclusion, Fe3+ is essential for porcine embry-

onic development via mitochondrial function maintenance, but redundant Fe3+ impairs the

function of mitochondria.

Introduction
Iron plays an important role in cellular function in all organs and systems, particularly in rap-
idly growing and differentiating cells. In mammalian cells, iron is required for a variety of bio-
chemical processes. It is a essential cofactor for non-heme enzymes for DNA synthesis and a
vital component of the heme in hemoglobin, myoglobin and cytochromes [1]. Iron deficiency
is known to cause multiple problems, including ventricular dilation [2], mitochondrial DNA
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damage [3], and hypertension in rat offspring [4]. In addition, nutritional iron deficiency is
thought to trigger multiple cardiovascular diseases, including cardiac hypertrophy and chronic
heart failure [5, 6].

Animals absorb iron from their diets, which contain two different forms of iron: inorganic
non-heme iron in vegetables and grains and heme iron in red meat. Dietary non-heme iron
exists mainly as iron (III, Fe3+), which binds to transferrin (Tf). The majority of cells absorb
iron by Tf-mediated uptake via the transferrin receptor (TfR)-1. Iron uptake is roughly propor-
tional to the number of TfRs on the cell surface. In erythroid cells, the low pH generated
through the activity of a proton pump in endosome decreased the affinity of Tf for iron, and
resulted in the release of Fe3+ from Tf in the endosome [7, 8]. Furthermore, Fe3+ is reduced to
Fe2+ by a ferrireductase in the endosomal membrane, the six transmembrane epithelial antigen
of the prostate 3 [9, 10].

Mitochondria are major powerhouses in all eukaryotic cells, producing ATP through oxida-
tive phosphorylation and the citric acid cycle. Mitochondrial function is tightly controlled by
cytoplasmic iron levels. Iron deficiency results in mitochondrial swelling, cytochrome c release
[2], and mitochondrial DNA damage in rats [3]. In addition to their well-established role in
providing the cell with ATP, mitochondria are the source of iron-sulfur clusters [11, 12] and
heme-prosthetic groups [13] that are utilized by proteins throughout the cell in various critical
processes. The mitochondria also have decreased respiratory control and gluconeogenesis after
iron deficiency [14]. Mitochondria from iron-deficient rats exhibit partial uncoupling of the
oxidative phosphorylation process. Iron deficiency also inhibits aconitase activity by damaging
the Fe-S cluster and decreasing ATP production [15].

In oocytes and embryos, free Fe3+ can be reduced by increasing the levels of apo-Tf during
embryonic development [16]. However, the levels of iron in oocytes and embryos [17, 18], fol-
licular and uterine fluid [19] indicate that an essential role of iron for development. Although
the function of iron in somatic cells is well established, its function in embryos development
remains unknown.

DFM is an efficient chelating agent available for the treatment of iron overload [20, 21].
Solution in a sterile aqueous containing antiseptics was reportedly stable up to one week [22].
The toxicity of DFM on embryos did not be reported. However, intraperitoneal injection of
DFM at 176 mg/kg (~250mmol/kg) to pregnant mice per day did not give development toxic-
ity [23].

It is difficult to obtain pig embryos of homogeneous quality due to the relatively high inci-
dence of polyspermy during in vitro fertilization [24]. Therefore, diploidparthenotes have fre-
quently been used to study early development in the pig. In the present study, we evaluated the
function of Fe3+ in porcine parthenotes development. To this end, we reduced the Fe3+ content
in the embryos by DFM. The effect of DFM treatment was assayed by determining the embry-
onic development, ROS content, mitochondrial membrane potential, apoptosis and cyto-
chrome c localization. To the best of our knowledge, this is the first report to address the
function of Fe3+ in porcine embryos.

Materials and Methods
Unless otherwise indicated, all chemicals were purchased from Sigma Chemical Company
(Sigma—Aldrich, St. Louis, MO, USA).

In vitromaturation (IVM) of porcine oocytes
Ovaries from prepubertal gilts were obtained from a local slaughterhouse (Farm story dodarm
B&F, Umsung, Chungbuk, Korea) and transported to the laboratory at 37°C within 3 h of
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slaughter. Cumulus oocyte complexes (COCs) were aspirated from follicles ranging in diame-
ters between 3 and 8 mm by a syringe with 18-gauge needle. Only COCs surrounded by a mini-
mum of three layers of cumulus cells were selected for further studies. After aspiration, COCs
were washed three times in TL-HEPES supplemented with 0.1% polyvinyl alcohol (PVA) and
0.05 g/L gentamycin. COCs were then cultured in TCM-199 medium supplemented with 0.1 g/
L sodium pyruvate, 0.6 mM L-cysteine, 10 ng/mL epidermal growth factor, 10% porcine follic-
ular fluid, 0.5 IU/mL luteinizing hormone, and 0.5 IU/mL follicle stimulating hormone for
44h. After IVM, oocytes were denuded by pipetting with 0.1% hyaluronidase. Denuded oocytes
were collected for additional experiments.

Parthenogenetic activation and embryo culture
After maturation, denuded oocytes were parthenogenetically activated by two 1.1kV/cm DC
pulses for 50 μs followed by 3h incubation in PZM-5 medium [25, 26] containing 7.5 μg/mL
cytochalasin B. Embryos were cultured in IVC medium (PZM-5 supplemented with 0.4%
bovine serum albumin BSA, w/v and 0.6mM L-cysteine) under light mineral oil for 7 days at
38.5°C in 5% CO2 (v/v). To evaluate the effect of DFM on embryonic development, various
concentration levels of DFM were added to the medium.

Transferase-mediated dUTP nick-end labeling (TUNEL) assay
For evaluation of apoptosis in blastocyst, approximately 15 blastocysts from each group were
washed three times in Dulbecco’s phosphate-buffered saline (dPBS) containing 0.1% PVA
(dPBS/PVA) and then fixed in 3.7% paraformaldehyde (w/v) for 1 h at room temperature.
After fixation, the blastocysts were permeabilized with 0.5% Triton X-100 (v/v) for 1 h at
38.5°C. Permeablized blastocysts were then incubated in fluorescein-conjugated deoxyuridine
triphosphate (dUTP) and terminal deoxynucleotidyl transferase (Roche, Mannheim, Ger-
many) in the dark for 1 h at 37°C. After nick labeling, the blastocysts were counterstained with
10 μg/mL Hoechst 33342 for 10 min at room temperature to label nuclei, followed by simple
washing in dPBS/PVA, mounted under a coverslip, and examined under a fluorescence micro-
scope (Nikon, Tokyo, Japan).

Mitochondrial membrane potential assay
To measure mitochondrial membrane potential (Δφm), blastocysts were washed three times
with PBS and incubated in culture medium containing 0.5 μM 5,50,6,60-tetrachloro-1,10,3,30-
tetraethyl-imidacarbocyanine iodide (JC-1) (Invitrogen, Grand Island, NY, USA) at 37°C in
5% CO2 for 30 min. Membrane potential was calculated as the ratio of red florescence, which
corresponded to activated mitochondria (J-aggregates), to green fluorescence, which corre-
sponded to less-activated mitochondria (J-monomers) [27]. Fluorescence was visualized with a
Zeiss inverted confocal microscope equipped with a 40× oil immersion objective (Zeiss, Jena,
Germany). Images were processed with ZEN software (Zen Software, Manchester, UK). The
fluorescence intensity in the control group was arbitrarily set to 1, and the relative fluorescence
intensity in the treatment groups was then measured. Three separate experiments were per-
formed with 10–15 blastocysts in each.

ATP content assay
The ATP content of 20 blastocysts was measured using a commercial assay (Invitrogen).
Briefly, samples were washed three times with dPBS then transferred individually into 1 mL
tubes on ice. The medium was removed, and blastocysts were lysed by freezing and thawing.
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Approximately 100 μl of ice-cold somatic cell reagent (FL-SAR) was added to each tube, and
samples were incubated in an ice-water bath for 5 min. Thereafter, 100 μl of ice-cold assay
buffer (diluted 1:25 with ATP assay buffer, FL-AAB) was added, and the tubes were maintained
at room temperature for 5 min under limited light conditions. The ATP concentration was
measured using a luminometer (Berthold, Wildbad, Germany) with a sensitivity of 0.01 pM.
The ATP concentration in the control group was arbitrarily set to 1. Three separate experi-
ments were performed with three replicates in each.

Real-time reverse transcript-polymerase chain reaction (real time
RT-PCR)
mRNA extraction and cDNA synthesis were performed as previously described [28]. Briefly,
mRNA was extracted from 10 blastocysts using Dynabeads mRNA Direct Kit (Dynal Biotech
ASA, Oslo, Norway) followed by routine cDNA synthesis by reverse transcription (RT) of
RNA using an oligo(dT)12–18 primer and SuperScript Reverse Transcriptase (Invitrogen) fol-
lowing the manufacturer’s instructions.

Real-time RT-PCR was performed using the five primer pairs listed in Table 1. Real-time
RT-PCR was performed in a Bio-Rad PCR machine (Bio-Rad, Hercules, CA, USA). Relative
gene expression was analyzed using the 2-ΔΔCt method [29]. GapdhmRNA was used as an
internal control. Three independent experiments were performed with triplicate samples in
each case.

Real-time RT-PCR with Taqman for miRNA (miR) analysis
TaqMan microRNA assays were used to quantitate the miRNAs in the present study according
to the conditions described previously [30]. Briefly, each 15 μl RT reaction contained purified
5 μl of RNA, 3 μl stem-loop RT primer, 1× RT buffer, 0.25 mM of each dNTP, 3.33 U/mL Mul-
tiScribe reverse transcriptase, and 0.25 U/mL RNase inhibitor. The reactions were incubated
for 30 min at 16°C, 30 min at 42°C, 5 min at 85°C and then held at 4°C in an Applied Biosys-
tems 6 thermocycler. Real-time RT-PCR for each microRNA assay was carried out in a 20 μL
reaction that included 4 μl RT product, 1× TaqMan Universal PCR Master Mix, and 1 μL of
20× real-time solution containing TaqMan probe and primers. The amplification parameters
for real-time RT-PCR were followed as set out in the manufacturer’s protocol. The threshold

Table 1. Primers used for real-time reverse transcription-PCR.

Gene Primer sequences (5'-3') Annealing temperature (°C) Product size (bp)

Bax F: CGGGACACGGAGGAGGTTT 60 189

R: CGAGTCGTATCGTCGGTTG

Bcl2 F: GAAACCCCTAGTGCCATCAA 60 196

R: GGGACGTCAGGTCACTGAAT

Bcl-xL F: CTTACCTGAATGACCACCTAGAGC 60 182

R: CCGACTGAAGAGCGAACCC

Casp3 F: ACTGTGGGATTGAGACGG 55 110

R: GGAATAGTAACGAGGTGCTG

Gapdh F: GCTTGCCTCCAGTGTCCTC 55/60 179

R: GGCGTTGGCGATTTCAT

F, forward; R, reverse.

doi:10.1371/journal.pone.0130791.t001
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cycle (Ct) is defined as the fractional cycle number at which the fluorescence exceeds the fixed
threshold of 0.2. U6 snoRNA was used as an internal control. Each experiment was repeated at
least three times with three blastocysts per repeat. All primers, including those used for specific
miRNA and cDNA synthesis and PCR amplification, and the kit used for miRNA analyses
were purchased from Applied Biosystems (Bedford, MA, USA).

ROS content assay
In the experiments, ROS content of the treated and untreated embryos was measured at the
blastocyst stage. The ROS content was quantified using the dichlorodihydrofluorescein diace-
tate (DCHFDA, Molecular Probes, Invitrogen) method, as previously described [31]. Live
imaging and quantitation were conducted on a fluorescence microscope (Nikon, Tokyo, Japan)
by using photoshop (CS2, Adobe, USA).

Evaluation of co-localization of mitochondrial and cytochrome c
Blastocysts were stained for mitochondria according to the method descried in the previous
study [32]. Briefly, blastocysts were incubated in IVC medium supplemented with 0.5 μmol/L
MitoTracker Red CMXRos (Molecular Probes, Eugene, OR) for 30 min in incubator with 5%
CO2 for 30 minutes at 38.5°C, followed by three washes with dPBS/PVA for 20 minutes. Then
the blastocysts were fixed in 3.7% (w/v) paraformaldehyde in dPBS/PVA at room temperature.
After 1h of permeabilization in PBS containing 0.1% Triton X-100 at 38.5°C, blastocysts were
then blocked with 3% BSA in dPBS for 1h. They were then labeled with 100 μg/ml anti-cyto-
chrome c antibody (Abcam) in blocking solution overnight in 4°C then labeled by rhodamine
labeled second antibody. Nuclear was staining with 10 μg/ml Hoechst 33342 in PBS for 10 min-
utes, followed by washing three times in PBS, and then mounted on glass slides. Blastocyst
were observed with a laser-scanning confocal microscope (Zeiss LSM 710 META, Germany).
Co-localization of mitochondrial and cytochrome c were evaluated by Person’s Correlation
coefficient.

Statistical analysis
All data were analyzed using SPSS software version 11.0 (SPSS Inc., Chicago, IL USA). JC-1,
DCDHF signal intensity, and gene expression were analyzed by one-way ANOVA. The per-
centages of embryos that developed to a particular stage were determined by Chi-square tests.
P< 0.05 was considered statistically significant.

Results

Effect of different DFM concentrations on porcine parthenotes
development
To determine the effect of DFM on embryo development, after maturation, oocytes were artifi-
cially activated and cultured in the presence of 0, 0.1, 0.5, 1.0, 3.0, and 5.0 μMDFM for 7 days.
The results were shown in Fig 1. No obvious difference in cleavage rate was observed. Interest-
ingly, 0.5 μM of DFM (57.49 ± 2.18%, n = 130) significantly enhanced blastocyst formation
after in vitro culture compared with the 0.1 μM (43.64 ± 5.19%, n = 131) group and control
group (43.99 ± 1.72%, n = 167, P< 0.05). However, 3.0 μM (29.58 ± 1.97%, n = 132) and
5.0 μM (21.62 ± 3.91%, n = 106) of DFM sharply reduced blastocyst formation (P< 0.05).After
5.0 μM of DFM treatment, the diameter of blastocyst was decreased in the treatment group
(304.78 ± 12.17 μm, n = 29, P< 0.05) compared to control (526.15 ± 23.67 μm, n = 26).
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However, there was no significant difference between 0.5 μM of DFM and control groups (Fig
1B and 1C).

Effect of Fe3+ depletion on total cell number and apoptosis in blastocysts
To evaluate blastocyst quality, the total cell number and incidence of apoptosis were counted.
0.5 μM of DFM did not affect the total cell number of blastocysts. However, 5.0 μMDFM treat-
ment significantly decreased the total cell number in blastocysts (21.10 ± 8.78, n = 90 vs. con-
trol, 44.09 ± 13.65, n = 91, P< 0.05). TUNEL staining showed that the number of apoptotic
cells was significantly lower in 0.5 μM but higher in the 5.0 μM of DFM group than in the con-
trol (P< 0.05, Fig 2).

Effect of Fe3+ depletion on expression of apoptosis-related genes
To clarify the molecular mechanism of apoptosis induction, mRNAs of apoptosis-related genes
were evaluated by real-time RT-PCR. Results showed that low concentration (0.5 μM) of DFM

Fig 1. Cleavage and blastocyst formation after DFM treatment. (A), Cleavage and blastocyst formation of
porcine parthenotes cultured in the presence of different concentration of DFM. (B), Morphology and
diameter of blastocysts cultured in the absence or present of 0.5 and 5.0 μMDFM. (C), The diameters were
measured by image pro-plus software. Values represent means ± SEM from at least three separate
experiments. Scale bar = 500 μm, *P < 0.05.

doi:10.1371/journal.pone.0130791.g001
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significantly (P< 0.05) decreased the expression of apoptosis-related gene Casp3. Compared
with the control group, the expression of the anti-apoptosis gene Bcl-xL was significantly
increased in blastocysts. However, there were no significant differences in the expression of
Bax and Bcl 2 (Fig 3).

Fig 2. Total cell number and apoptosis after DFM treatment. (A), Total cell number was determined by
Hoechst 33342 (blue) staining. Apoptosis was determined by TUNEL (green) staining. (B) and (C), The
number of total and apoptotic cells in porcine blastocysts developed in vitro. Black bar, control group; white
bar, DFM 0.5 μM; gray bar, DFM 5.0 μM. Values represent means ± SEM from at least five separate
experiments. *P < 0.05.

doi:10.1371/journal.pone.0130791.g002

Fig 3. Expression of apoptosis related genes in porcine blastocysts cultured for seven days.mRNA
was extracted from blastocysts cultured in the absence or presence of DFM. Expressions of anti-apoptotic
and apoptosis-related genes were analyzed by real-time RT-PCR. Black bar, control group; white bar, DFM
0.5 μM; gray bar, DFM 5.0 μM. *P < 0.05. Values are the mean ± SEM of 3–4 independent experiments.

doi:10.1371/journal.pone.0130791.g003
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We compared the expression of apoptotic related genes in the blastocysts after high concen-
tration of DFM (5.0 μM) treatment. Fe3+ depletion significantly increased the mRNA expression
of apoptotic genes Bax and Casp3 (P< 0.05), while the expression of the anti-apoptotic genes
Bcl2 and Bcl-xL were decreased (P< 0.05, Fig 3).

Fe3+ depletion decreased the expression of miR-21 after 5.0 μM of DFM treatment
(P< 0.05), but there were no significant differences in miR-15a and miR-16 expression levels
in the all groups (Fig 4).

Effect of Fe3+ depletion on mitochondrial membrane potential and ATP
production
To explore the mechanism by which Fe3+ depletion affected development of porcine parthe-
notes, the mitochondrial membrane potential and ATP content in blastocysts were checked.
The results were shown in Figs 5 and 6. After low concentration (0.5 μM) of DFM treatment,
the mitochondrial membrane potential was significantly increased (P< 0.05) compared to the
control group. Similarly, the ATP content in DFM treated blastocysts was higher (P< 0.05)
than in the control group. However, high concentration (5.0 μM) of DFM treatment not only
reduced mitochondrial membrane potential, but also decreased the ATP content in blastocysts
(P< 0.05).

Effect of DFM on ROS content in the porcine blastocysts
To assess why DFM enhanced mitochondrial membrane potential, ROS content in blastocyst
was determined. The results showed that relatively lower ROS content was found in the blasto-
cysts which developed in the presence of 0.5 and 5 μMDFM. Higher DCDHF signal was
observed in the blastocysts cultured in the absence of DFM. Fluorescence intensity in the DFM
group was significantly lower (P< 0.05) than that in the control. However, there was no obvi-
ous difference of ROS content between 0.5 and 5 μMDFM groups (Fig 7).

Effect of DFM on cytochrome c release
To explore the apoptotic pathway, the co-localization of mitochondria and cytochrome c was
determined in control and high DFM treated blasotysts. Pearson’s R was employed to evaluate

Fig 4. Expression of apoptosis related miRNAs in porcine blastocysts cultured for seven days.
Apoptosis-related miRNAs were analyzed by TaqMan real-time RT-PCR. Black bar, control group; white bar,
DFM 0.5 μM; gray bar, DFM 5.0 μM. *P < 0.05. Values are the mean±SEM of 3–4 independent experiments.

doi:10.1371/journal.pone.0130791.g004
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co-localization. Pearson’s R in Fe3+-depleted blastocysts was significantly reduced, indicating a
poor co-localization of mitochondrial and cytochrome c than that in the control group, which
displayed stronger co-localization of cytochrome c and MitoTracker (Fig 8).

Discussion
In the present study, we found that Fe3+ plays biphasic roles in porcine parthenotes develop-
ment (Fig 9). Our results shown that redundant iron resulted in high concentration of ROS,
depletion of that redundant iron significantly reduced ROS content, and further protected

Fig 5. Membrane potential in blastocyst cultured in the absence or presence of DFM. (A), Membrane
potential was calculated as the ratio of red florescence, which corresponds to activated mitochondria (J-
aggregates), to green fluorescence, which corresponds to less-activated mitochondria (J-monomers). (B),
Fluoresces of each blastocyst were analyses by image pro plus software. The control was arbitrarily set at 1.
Black bar, control group; white bar, DFM 0.5 μM; gray bar, DFM 5.0 μM. Values represent means ± SEM from
at least three separate experiments. Scale bar = 500 μm. *P < 0.05.

doi:10.1371/journal.pone.0130791.g005
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function of mitochondria (Fig 9A). However, over-depletion of Fe3+ impaired the function of
mitochondria, thus resulted in apoptosis in the blastocysts (Fig 9B).

Although reduced free cytoplasmic iron increased embryo formation [16] by preventing
production of ROS through Fenton’s reaction [33], iron participates in several biological pro-
cesses. To determine the function of iron, we depleted free Fe3+ with high concentration of
DFM. After depletion, blastocyst development was reduced in a dose-dependent manner and
diameters were decreased in iron-deficient blastocysts. Mammalian blastocyst formation is
dependent on establishment of trophectoderm (TE) ion and fluid transport mechanisms [34].
The Na+/K+ ATPase is also a critical mediator of blastocyst formation as it establishes a trans-
trophectoderm ionic gradient that directs fluid movement across the TE epithelium [35, 36],
which directly results in blastocyst cavity formation. Na+/K+ ATPase function is closely related
to ATP, which is produced by mitochondria. Based on this information, we hypothesized that
iron deficiency in embryos affects the function of mitochondria.

To confirm the mechanism of low blastocyst formation and increased apoptosis, t ATP con-
tents of blastocysts were determined. ATP production is the most important function of mito-
chondria. In the present experiment, the results showed that iron deficiency reduced ATP level
in blastocysts. This finding might explain the reduction in blastocyst formation and diameter.
Reduced ATP content after iron depletion also reflects the dysfunction of mitochondria.

To clarify the reason for lower ATP production after iron deficiency, we investigated mito-
chondrial function by measuring the mitochondrial membrane potential, which is critical for
the production of ATP. During oocyte maturation, there is a significant increase in mitochon-
drial membrane potential [37]. Our previous study showed that decreased blastocyst formation
is always accompanied by decreased mitochondrial membrane potential [38, 39], which agrees
with the results presented herein.

The mechanism by which iron depletion reduces membrane potential is still unknown.
However, ATP production is dependent on electron transfer in the mitochondria, which
involves the Fe2+ and Fe3+ transition. In the electron transport chain, many Fe-S proteins par-
ticipate in electron transfer. Formation of mitochondrial membrane potential is mediated by
the proton gradient established by four complexes located on the mitochondrial membrane,
indicated that iron depletion probably impairs the function of the four complexes, further
blocking electron transfer and resulting in decreased membrane potential and ATP content.

Fig 6. ATP content in blastocyst cultured in the absence or presence of DFM. The control was arbitrarily
set at 1. Black bar, control group; white bar, DFM 0.5 μM; gray bar, DFM 5.0 μM. Values represent
means ± SEM from at least three separate experiments. *P < 0.05.

doi:10.1371/journal.pone.0130791.g006
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Iron deficiency leads to serious apoptosis in blastocysts, which can be explained by the dys-
function of mitochondria. Mitochondria play a key role in the apoptotic process [40, 41]. Mito-
chondrial control of apoptosis has been described at several levels, including ATP production
[42], mitochondrial membrane potential, and mitochondrial membrane permeability for the
release of apoptogenic factors from the intermembrane space into the cytosol [43]. In the pres-
ent experiment, co-localization analysis of cytochrome c and mitochondria showed that Fe3+

depletion induced release of cytochrome c from mitochondria. In mammalian cells, cyto-
chrome c initiates a major Caspase activation pathway. In this pathway, a variety of apoptotic

Fig 7. ROS content in blastocysts cultured in the absence or presence of DFM. (A), ROS in blastocysts
were stained by DCDHF (green). (B), Fluorescence intensity was analyzed by Photoshop. Data
corresponding to the control was arbitrarily set at 1. Black bar, control group; white bar, DFM 0.5 μM
treatment group; gray bar, DFM 5.0μM treatment group. Values represent mean ± SEM from at least three
separate experiments. Scale bar = 500 μm *, P < 0.05.

doi:10.1371/journal.pone.0130791.g007
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stimuli cause cytochrome c release from the mitochondria, which in turn induces a series of
biochemical reactions that result in Caspase activation and subsequent cell death [44]. The
released cytochrome cmay explain the increased expression of Bax It belongs to the prodeath
Bcl2 family proteins, which form the last gateway for cytochrome c release [45]. Released cyto-
chrome c activates Casp3 expression, which was increased in the present study.

Reduced mitochondrial metabolic capacity results in decreased the percentage of blastocyst
formation following parthenogenetic activation in the present study. Although there are epige-
netic differences between parthenote and IVF embryos, they share same basic metabolism
mechanism.

In conclusion, the present study showed that iron is essential for embryonic development,
which confirmed the function of mitochondria, however, redundant iron impaired function of
mitochondria via induction of high concentration of ROS.

Fig 8. Co-localization of cytochrome c andmitochondria in blastocysts cultured for seven days in the
absence or presence of DFM. (A), Blastocysts were labeled with a cytochrome c-specific antibody (green)
and MitoTracker (red). (B), Co-localization was analyzed using Image pro plus. (C), Pearson’s R was used to
compare the co-localization of cytochrome c and mitochondria. Black bar, control group; white bar, DFM
5.0 μM. Scale bar = 200μm, *P < 0.05. Values are the mean ± SEM of 3–4 independent experiments.

doi:10.1371/journal.pone.0130791.g008
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