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ARTICLE INFO ABSTRACT

Keywords: Understanding how the bacteriomes in tuberculous lesions can be influenced by the susceptibility
Pulmonary bacteriomes of Mycobacterium tuberculosis (MTB) can provide valuable information for preventing and treating
TB lesions

drug resistant tuberculosis (DR-TB). High-throughput 16S rRNA sequencing was employed to
analyze the bacteriome in pulmonary TB lesions from 14 patients with DR-TB and 47 patients
with drug sensitive tuberculosis (DS-TB), along with 18 normal lung tissues (NT) from 18 lung
cancer patients serving as the bacterial baseline. The phylogenetic investigation of communities
by reconstruction of unobserved states2 (PICRUSt2) algorithm was utilized to predict bacterial
metabolic functions. The major phyla of pulmonary bacteriomes included Proteobacteria, Acti-
nobacteria, Bacteroidetes, Firmicutes and Fusobacteria. Alpha diversity indices, including ACE,
Chaol, Shannon and OTU observed, all demonstrated different bacterial communities of DS-TB
samples from that of NT samples; while only Shannon indicated difference between DR-TB and
NT samples. The analysis of similarity (ANOSIM) showed significantly different bacterial com-
munities within TB lesions compared to NT samples (R = 0.418, p = 0.001). However, difference
was not observed between DR-TB and DS-TB samples (ANOSIM, R = 0.069, p = 0.173). The
bacterial profiles within each DR-TB individual appeared unique, with no obvious clusters cor-
responding to drug-resistant phenotypes. Nevertheless, indicator genera identified in DR-TB and
DS-TB lesions demonstrated distinctive micro-ecological environments. Most COG functions were
enriched in TB lesions, and the most significant one was [J] translation, ribosomal structure and
biogenesis. The distinct enrichment patterns of bacterial enzymes in DR-TB and DS-TB lesions
suggest that pulmonary bacterial activities can be modulated by the susceptibility of MTB bacilli.
This study provides fresh perspectives and strategies for the precise diagnosis and assessment of
drug resistance tuberculosis.

Drug susceptibility
Bacterial metabolic functions

1. Introduction

Drug-resistant pulmonary tuberculosis (DR-TB) results from Mycobacterium tuberculosis (MTB) strains that exhibit resistance to first-
and/or second-line anti-tuberculosis medications, often due to inappropriate antibiotic treatment or irregular drug intake [1]. The
mechanisms underlying resistance to anti-tuberculosis drugs are intricate, primarily involving special cell wall structures, drug efflux
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pump systems, cell metabolism and genetic mutations [2]. According to the World Health Organization (WHO), approximately 10.6
million people were infected with MTB in 2021. Among them, 410,000 cases were classified as rifampicin-resistant or
multidrug-resistant TB (RR/MDR-TB) [3]. Due to the rapid advancements in DR-TB diagnostic techniques [2,4], approximately half a
million new cases of RR/MDR-TB are reported annually, yet only one-third of these cases receive appropriate treatment [3]. The spread
of DR-TB significantly undermines the global goals set by the End TB Strategy and is a major global health concern, particularly in
low-income regions and countries [5]. Interactions between the host immune system and MTB is the crucial role in determining the
outcome of DR-TB after anti-tuberculosis drug treatment [6], while host microbiome is another factor that cannot be ignored in the
development of tuberculosis.

Growing researches highlight the associations between the host microbiome and MTB initial colonization, anti-tuberculosis im-
mune responses, prevention and therapy [7]. The gut microbiota, a complex and dynamic ecosystem housing approximately 100
trillion commensal microorganisms can modulate pulmonary immune status by secreting metabolites and other mediators, creating
what is known as the “gut-lung axis” [8,9]. Specific anaerobic bacteria are enriched in the gut microbiota of pulmonary TB patients and
can predict upregulation of pro-inflammatory immunological pathways [10]. Additionally, a commensal gut bacteria-regulated long
non-coding RNA (IncRNA) was found to be down-regulated due to gut microbiota dysbiosis caused by MTB infection, which interacts
with enhancer of zeste homolog 2 (EZH2), leading to enhanced IFN-yexpression [11]. In DR-TB patients, coliform flora in the gut is
significantly enriched and associated with fatty acid synthesis in the blood [12]. Overall, the gut microbiota plays a critical role in
regulating pulmonary TB.

The lungs are also colonized by organisms [13,14]. After MTB infection, the genera such as Rothia, Leuconostoc and Lactobacillus
were mostly prevailed in sputum compared to normal control groups [15]. Sputum microbiota has been proposed as a potential
diagnostic marker for mono- or multidrug-resistant TB [16,17]. Besides sputum samples, bronchoalveolar lavage (BAL) and throat
swabs also showed altered lung bacterial diversity after MTB infection, but the altered bacterial profiles are inconsistent [18,19].
Sputum, BAL and throat swabs are respectively collected from the lower respiratory tract, lung, and the upper respiratory tract. The
inconsistency of the reported results of lung bacteriomes may be due to the different collection sites. Importantly, the bacterial load in
lung tissue is two orders of magnitude higher than in the aforementioned samples, making lung tissue the preferred specimen type for
studying lung microbiota [20]. Organized granulomas are typical lesions in pulmonary TB, where MTB persists and anti-tuberculosis
immune responses occur [21]. Therefore, the microbiome within granulomas should deserve more attention when assessing the impact
of lung microbiota on pulmonary TB.

Drug-resistant genetic mutations have been found to confer different fitness costs for MTB [22]. A study also indicates that MTB
carrying a rifampicin drug resistance mutation can influence macrophage metabolic reprogramming through altering the expression of
its surface lipids [23]. We hypothesize that there may be associations between lung bacteriomes and TB drug resistance. Elaborating
the effect of lung bacteriome and their metabolic activities on pulmonary TB is essential for advancing future strategies in preventing
and treating drug-resistant TB.

The human inherent microbiota interacts with the human host and the environment through their metabolic activities. Bacterial
metabolic functions are even more critical for the ecosystem than just taxonomic composition, while bacterial metabolic functions are
often decoupled from taxonomic composition [24]. To address this issue, the algorithm Phylogenetic Investigation of Communities by
Reconstruction of Unobserved states2 (PICRUSt2) has been developed [25]. PICRUSt2 predicts bacterial metabolic functions using 16S
rRNA high-throughput sequencing data, and its performance is comparable to whole-genome sequencing, leading to its widespread
application.

In this study, we collected lung tissues from pulmonary TB and lung cancer patients who had undergone surgical treatment. Based
on phenotypic drug susceptibility test (pDST) results, TB lesions were categorized into drug-resistant tuberculosis (DR-TB) and drug-
sensitive tuberculosis (DS-TB). Bacteriome characteristics in TB lesions were investigated using normal lung tissues as bacterial
baseline by 16S rRNA sequencing method. Bacterial metabolic functions in lung tissues were also predicted using the PICRUSt2 al-
gorithm to explore potential interactions between pulmonary bacteria and drug susceptibility.

Table 1

Characteristics of drug resistant and drug sensitive pulmonary TB patients.
Variable TB Culture Result, No. (%)

Drug resistant (n=14) Drug sensitive (n=47)

Age, average (std) 45.0 £13.6 41.6 + 14.8
Male 8(57.1) 29 (61.7)
Any cancer 0 (0) 1(2.1)
Cough 5(35.7) 22 (46.8)
Sputum production 4 (28.6) 15 (31.2)
Hemoptysis 3(21.4) 8 (17.0)
Fever 3(21.4) 10 (21.3)
Night sweats 1(7.1) 8(17.0)
Weight loss 2(14.3) 8(17.0)
Tissue AFB positive 8 (57.1) 29 (61.7)
Cavitation on chest CT 4 (28.6) 15 (31.9)
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2. Materials and methods
2.1. Clinical characterization of the participants

Retrospectively, 63 formalin fixed and paraffin embedded (FFPE) TB lesions were obtained from 63 pulmonary TB patients who
had undergone surgical treatment at the Department of Pathology, Beijing Chest Hospital between January 2020 and December 2020
(Table 1). The diagnostic criteria for pulmonary TB met either of the following conditions: 1) positive mycobacterial culture for sputum
or BAL, or 2) positive TB-PCR targeting the IS6110 fragment specific to TB lesions. All patients included in the study were culture-
positive, and phenotypic drug susceptibility testing (pDST) was conducted using a commercial 96-well plate containing lyophilized
antibiotics according to manufacturer’s instructions (Encode Medical Engineering Co, Zhuhai, China). Patients were categorized as 14
DR-TB because their pDST results indicated resistance to at least one drug; and 47 DS-TB because their pDST results indicated drug
sensitive. Among the 14 DR-TB patients, they can be classified as follows: 2 for rifampicin resistant, 3 for isoniazid resistant, 2 for
fluoroquinolone resistant, 1 for rifampicin-isoniazid resistant, 1 for rifampicin-isoniazid-ethambutol resistant, 1 for rifampicin-
isoniazid-fluoroquinolone resistant, and 4 for rifampicin-isoniazid- fluoroquinolone-ethambutol resistant. The percentages of DR-TB
patients manifesting symptoms such as cough, hemoptysis, fever, night sweets, weight loss and cavitation on chest CT were not sta-
tistically different from those of DS-TB patients. The acid-fast bacilli (AFB) positive ratio in DR-TB and DS-TB lesion tissues were 57.1 %
(8/14) and 61.7 % (29/47), respectively. Additionally, 18 normal lung tissues (NT), located more than 2 cm distal to tumor lesions in
lung cancer patients who had undergone surgical treatment, were obtained to serve as the bacterial baseline. None of the participants
had taken any medications for human immunodeficiency disease prior to sample collection.

2.2. DNA extraction and processing

Normal lung tissues surrounding the TB lesions were excised from the FFPE samples following hematoxylin-eosin (HE) staining,
retaining 0.5-1.0 cm? lesion areas. These HE-stained lesion areas exhibited necrotic or non-necrotic granulomatous inflammation with
visible epithelial cells, chronic inflammatory cells, and/or Langhans giant cells, all enriched by fibrous connective tissue. The NT
samples with 0.5-1.0 cm? areas were selected, and the HE-stained NT samples displayed a normal lung lobule structure. Twenty
sections (4 pm) of TB lesions or NT samples were utilized for DNA extraction with the QIAamp DNA FFPE Tissue Kit 56,404 (QIAGEN,
Hilden, Germany), following the manufacturer’s instructions. DNA concentration was quantified using a NanoDrop 2000 spectrometer
(Thermo Fisher Scientific, Waltham, United States). DNA integrity was assessed via 1 % agarose gel electrophoresis.

Amplification of 16S rRNA V4 hypervariable regions was performed using primer sets, 515F/806R, which included barcodes at the
5’ end of the forward primers [26]. The PCR reaction system consisted of 50 pL, with 2 pL primer sets (10 pmol/L), 25 pL 2 x KAPA HiFi
HotStart ReadyMix (Kapa Biosystems, MA, United States) and 23 pL extracted FFPE DNA. The PCR protocol included: initial dena-
turation at 95 °C for 3 min, 30 cycles of denaturation (20 s at 98 °C), annealing (15 s at 55 °C) and extension (15 s at 72 °C), with a final
extension step at 72 °C for 10 min. The PCR reaction was performed in triplicate for each sample. Subsequently, the three PCR products
were pooled together and purified through 2 % agarose gel electrophoresis. An agilent 2100 bioanalyzer (Agilent Technologies, Palo
Alto, California) was utilized to confirm the fragment size and distribution of the constructed DNA library. Finally, the library was
barcode indexed with the NEB Next Ultra DNA Library Prep Kit for Illumina (New England Biolabs, United States) and sequenced on an
[llumina MiSeq PE 250 machine.

2.3. 16S rRNA gene analysis

The raw 16S rRNA sequencing data were analyzed using QIIME v1.9 [27]. The sequences were quality trimmed and filtered
(fastq_maxee = 0.5) using QIIME default parameters. At 97 % sequence similarity, all qualified sequences were clustered into oper-
ational taxonomic unit (OTUs) using the closed-reference OTU picking methods using USEARCH v7.0.1090 [28]. OTUs with a number
of sequences less than 0.005 % of the total number of sequences were discarded [29]. Bacterial taxonomic assignment was conducted
using Greengenes2. Sequences that mapped to the mitochondrial and chloroplastic genomes were discarded. All samples were rarefied
to the same sequence number based on the sample that yield the fewest sequences. The final rarefied OTU table, containing the
abundances of bacterial taxa in each sample, was used for downstream analyses. A-diversity indexes, including Chaol richness,
Shannon diversity, and Good’s coverage, as well as the B-diversity index (Bray-Curtis distance metrics) were calculated using the
QIIME platform. Additionally, bacterial functions were predicted using PICRUSt2 from 16S rRNA sequences [25].

2.4. Statistical analysis

Principal coordinates analysis (PCoA), based on Bray-Curtis distance, was employed to illustrated the characteristics of bacterial
diversity among different pulmonary tissue categories. This analysis utilized the “ggplot2” package for R [30]. To statistically validate
bacterial clustering in the PCoA analysis, we employed the analysis of similarity (ANOSIM) algorithm. We evaluated significant dif-
ferences in bacterial richness and diversity using Kruskal-Wallis tests, followed by Dunn’s multiple comparison test in the “FSA”
packages. Additionally, wilcoxon rank sum test was used to calculate statistical differences between bacterial functions of the two
categories. All these analyses were performed using the R software program (v.3.2.1); you can find more information about R at this
link: http://www.r-project.org).
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3. Results
3.1. Bacterial composition among DR-TB, DS-TB and NT samples

After performing sequence quality control and filtering out DNA fragments related to mitochondria and chloroplast, we obtained a
dataset of 16S rRNA gene fragments containing 4,464,966 valid sequences. The sequence numbers for each sample ranged from 33,249
to 64,509. To mitigate bacterial discrepancies caused by varying sequencing depths, all sample sequences were rarefied to 33,249.

At the phylum level, Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Fusobacteria were major taxa, together accounting
for 96.01 % of the total reads (Fig. 1A). The archaeal phylum Euryarchaeota was also observed predominantly in both DS-TB and DR-TB
lesions. In TB lesions, the relative abundances of Proteobacteria (p = 0.039), Actinobacteria (p = 0.002) and Firmicutes (p = 0.028) were
significantly higher compared to NT samples. In the phylogenetic tree analysis of order level, the individual bacterial bacteriome of
DR-TB clustered together with those of DS-TB, while the bacterial populations in the NT samples formed two separate branches
(Supplemental Fig. 1). At the genus level, dominant taxa in lung tissues included Bukholderlaceae spp., Pseudomonas, Mycobacterium,
Sphingomonas and Bacteroides (Fig. 1B). There was also no significant difference in bacterial taxa between DS-TB and DR-TB groups at
the genus level. The relative abundance of the genus Mycobacterium in DS-TB samples was slightly higher than that in DR-TB and NT
samples, but this difference was not statistically significant (Fig. 1C). In totally, 1173 OTUs were clustered based on the 97 % similarity
threshold (Fig. 1D). Among all sample types, 65.8 % of the OTUs were shared (772 out of 1173). Notably, the proportion of specific
OTUs in DS-TB samples (8.1 %, 95 out of 1173) was significantly higher than that in DR-TB (0.4 %, 5 out of 1173) and NT (0.3 %, 3 out
of 1173) samples.

Indicator genera can serve as signals of distinctive microenvironments within various ecological niches. We conducted an indicator
value (IndVal) analysis, considering an indicator value > 0.60 and p < 0.05, to identify indicator genera in DS-TB, DR-TB and NT
samples (Fig. 2). In DS-TB lesions, there were 7 indicator genera, spanning the phyla Actinobacteria, Bacteroidetes, Firmicutes, Fuso-
bacteria and Proteobacteria. Notably, an uncultured taxon affiliated with Actinobacteria was observed as an indicator genus in the DS-TB
group. In both DR-TB and NT samples, the indicator genera belonged to the phylum Proteobacteria.

The alpha diversities of the bacteriome in DS-TB, DR-TB and NT were evaluated using ACE, Chao 1, Shannon and OTUs observed
(Table 2). Notably, these four bacterial diversity indexes showed that DS-TB lesions were significantly higher than those observed in
NT samples. Only Shannon index showed different bacterial diversity between DR-TB and NT samples. There was no statistical dif-
ference in alpha diversity between the DS-TB and DR-TB groups. We further conducted a principle coordinates analysis (PCoA) based
on bacterial taxa at the OTU level. The results revealed that the bacterial community structure in TB lesions distinctly separated from
that of normal samples (Fig. 3A). This separation was further confirmed by the analysis of similarity (ANOSIM) (R = 0.418, p = 0.001).
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Fig. 1. (A) Average relative abundances of phylum-level taxa showing the distribution of bacterial compositions. (B) Average relative abundances of
genus-level taxa showing the distribution of bacterial compositions. (C) Box plot of relative abundance of genus Mycobacterium. (D) Venn diagram of
the exclusive and shared OTUs. DR-TB: drug resistant tuberculosis; DS-TB: drug sensitive tuberculosis; NT: Normal tissues.
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Fig. 2. IndVal analysis showing indicator genera in DR-TB, DS-TB and NT samples. Genera taxa with an indicator value > 0.60 and p < 0.05 are
identified as indicators. DR-TB: drug resistant tuberculosis; DS-TB: drug sensitive tuberculosis; NT: Normal tissues.

Table 2

Characteristics of bacteria richness and diversity indices.
Categories ACE Chao 1 Shannon OTU observed
DR-TB 349.1 £ 119.7° 353.0 + 123.1%° 4.98 +1.52° 312 +115%
DS-TB 407.3 £73.7% 410.4 + 77.3% 5.41 +1.12% 349 + 677
NT 226.7 + 89.9° 227.7 + 92.5° 4.60 + 0.90° 203 + 85"

Date shown are the mean + standard deviations. Superscript lettering a and b indicate the significant differences between participants. DR-TB: drug
resistant tuberculosis; DS-TB: drug sensitive tuberculosis; NT: Normal tissues.
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Fig. 3. Principal coordinate analysis (PCoA) based on Bray-Curtis dissimilarity in OTU level displaying the bacterial variations for (A) all samples
and (B) DR-TB lesions. DR-TB: drug resistant tuberculosis; DS-TB: drug sensitive tuberculosis; NT: Normal tissues. INH: isoniazide, RFP: rifampicin,
FQs: fluoroquinolone, EMB: ethambutol.

Interestingly, there was no striking separation observed in the bacterial community between DS-TB and DR-TB groups (ANOSIM, R =
0.069, p = 0.173). These findings suggest that the bacterial composition structures in TB lesions were not associated with the drug
susceptibility.

To further investigate whether the bacteriome were associated with different drug-resistant phenotypes, we employed PCoA to
visualize the characteristics of bacterial structures among DR-TB lesions (Fig. 3B). The Bacterial community in lesions of different drug-
resistant phenotypes seemed to separate from each other. However, the significance of this differences in bacterial structures still
needed a larger sample size to confirm.
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3.2. Bacterial functions predicted in DR-TB, DS-TB and NT samples

Bacterial functions were predicted using the PICRUSt2 platform based on the 16S rRNA sequencing data generated from lung
tissues. The cluster of orthologous groups (COG) functional categories mainly included [A] RNA processing and modification, [B]
chromatin structure and dynamics, [C] energy production and conversion, etc (Table 3). These functions play crucial roles in sus-
taining the stability of bacterial communities. COG functions between DR-TB and DS-TB showed no significant differences. Compared
to NT samples, all COG functions were enriched in TB lesions, with several related to substance metabolism significantly enriched in
both DR-TB and DS-TB lesions. [J] Translation, ribosomal structure and biogenesis was the most enriched COG function in TB lesions,
indicating increased metabolic activity of the lung bacteriome.

To further elucidate the potential biological functions of the bacteriomes, we also predicted Kyto Encyclopedia of Genes and
Genomes (KEGG) enzymes. Compared to NT samples, 657 KEGG enzymes were significantly enriched in TB lesions and the top two
enriched enzymes were prephenate dehydrogenase (EC:1.3.1.12, p < 0.001) and holo-[acyl-carrier-protein] synthase (EC:2.7.8.7, p <
0.001) (Fig. 4A). Additionally, several other KEGG enzymes were also enriched in TB lesions, including 16S rRNA methyltransferase
(EC:2.1.1.198, EC:2.1.1.227), aminoacyl-tRNA hydrolase (EC:3.1.1.29), nitrite reductase (EC:1.7.2.1) and nitrate reductase
(EC:1.7.1.2). Enriched KEGG enzymes were also observed in NT samples, such as cutinase (EC:3.1.1.74), 2"-hydroxybiphenyl-2-sul-
finate desulfinase (EC:3.13.1.3), D-arabinitol dehydrogenase (EC:1.1.1.287), Aureolysin (EC:3.4.24.29), Cyanophycinase
(EC:3.4.15.6) and fatty acid amide hydrolase (EC:3.5.1.99). Notably, the pattern of volcano plots for TB vs. NT was quite similar to that
for DS-TB vs. NT, likely due to the larger proportion of DS-TB samples (Fig. 4B). Compared to DR-TB lesions, several bacterial KEGG
enzymes were enriched in NT samples, including D-arabinitol dehydrogenase (EC:1.1.1.287), 2-hydrpxybiphenyl-2-sulfinate desul-
finase (EC:3.13.1.3), aureolysin (EC:3.4.24.29) and fatty acid amide hydrolase (EC:3.5.1.99) (Fig. 4C). One hundred and twenty-six
KEGG enzymes were significantly enriched in DR-TB lesions compared to DS-TB lesions (Fig. 4D) and the top two enriched en-
zymes were quaternary-amine-transporting ATPase (EC:3.6.3.32, p = 0.002) and methylglyoxal synthase (EC:4.2.3.3, p = 0.003).
Some enzymes were also enriched in DS-TB lesions, including Homoserine O-succinyltransferase (EC:2.3.1.46), 2-dehydropantoate 2-
reductase (EC:1.1.1.169) and NAD(+) synthase (EC:6.3.1.5) (Fig. 4D). These results collectively indicate that MTB infection can
modulate pulmonary bacterial functions, and some bacterial KEGG enzymes in TB lesions are associated with drug susceptibility.

4. Discussion

To our knowledge, most studies have investigated lung bacteriomes of drug-resistant pulmonary TB patients using sputum, BAL and
throat swabs [15-19]. Certain bacterial taxa found in sputum can even serve as biomarker for chronicity in RIF- and
multidrug-resistant TB patients [17]. However, sputum, BLA and throat swabs are all susceptible to contamination by environmental
organisms, and the bacteriome in these samples cannot precisely represent the entire population in the lower respiratory tract,

Table 3
The differences of COG functional categories among DR-TB, DS-TB and NT samples by Wilcoxon rank sum test.
Category Description DR-TB vs DS-TB DR-TB vs NT DS-TB vs NT
A RNA processing and modification 0.670" 0.069 0.027
B Chromatin structure and dynamics 0.509 0.186 0.122
C Energy production and conversion 0.262 0.054 0.033 *
D Cell cycle control, cell division, chromosome partitioning 0.237 0.026 * 0.008 **
E Amino acid transport and metabolism 0.062 0.066 0.104
F Nucleotide transport and metabolism 0.186 0.010 * 0.002 **
G Carbohydrate transport and metabolism 0.060 0.023 * 0.011 *
H Coenzyme transport and metabolism 0.250 0.017 * 0.005 **
1 Lipid transport and metabolism 0.564 0.014 * 0.003 **
J Translation, ribosomal structure and biogenesis 0.286 0.008 ** <0.001 ***
K Transcription 0.103 0.036 * 0.030 *
L Replication, recombination and repair 0.327 0.043 * 0.012 *
M Cell wall/membrane/envelope biogenesis 0.204 0.041 * 0.019 *
N Cell motility 0.114 0.144 0.352
(o] Posttranslational modification, protein turn over, 0.406 0.026 * 0.006 **
P chaperones 0.094 0.074 0.094
Q Inorganic ion transport and metabolism 0.570 0.059 0.037 *
R Second metabolites biosynthesis, transport and catabolism 0.278 0.054 0.035 *
S General function prediction only 0.310 0.067 0.043 *
T Function unknown 0.184 0.062 0.074
U Signal transduction mechanisms 0.338 0.293 0.355
\ Intracellular trafficking, secretion, and vesicular transport 0.590 0.032 * 0.012 *
W Defense mechanisms 0.432 0.295 0.363
X Extracellular structures 0.749 0.559 0.569
Z Mobilome: prophages, transposons 0.618 0.005 ** 0.004 **
Cytoskeleton

*: p<0.05; **: p<0.01; ***: p<0.001. DR-TB: drug resistant tuberculosis; DS-TB: drug sensitive tuberculosis; NT: Normal tissues
@ : p value of Wilcoxon rank sum test.
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Fig. 4. (A) Volcano plot showing the bacterial KEGG that are up/down regulated in TB lesions compared to NT samples. (B) Volcano plot showing
the bacterial KEGG that are up/down regulated in DS-TB compared to NT samples. (C) Volcano plot showing the bacterial KEGG that are up/down
regulated in DR-TB compared to NT samples. (D) Volcano plot showing the bacterial KEGG that are up/down regulated DR-TB compared to DS-TB.
DR-TB: drug resistant tuberculosis; DS-TB: drug sensitive tuberculosis; NT: Normal tissues.

particularly within TB lesions. The physiological and biochemical conditions within TB lesions undergo significant changes due to MTB
infection, resulting in an entirely new microenvironment for bacteriomes. This study initially focused on characterizing bacteriomes
within TB lesions, and investigated the association between lung bacteriomes and drug susceptibility using normal lung tissues as the
bacterial baseline.

The bacterial communities within TB lesions deviated from the baseline, reflecting the impact of both MTB infection and anti-
tuberculosis treatment on the pulmonary bacteriome. Among TB lesions, the dominant phyla, ranked by relative abundance from
high to low, are Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Fusobacteria. Although the phylum categories remain
consistent between TB lesions and sputum, their proportions varied slightly. TB sputum samples exhibit a different order: Firmicutes,
Proteobacteria, Bacteroidetes and Actinobacteria [19]. Interestingly, the bacterial compositions, including a diversity and p diversity, in
DS-TB sputum significantly overlap with those in DR-TB sputum [19], which aligns with our findings based on TB lesions. Bacterial
profile of individual DR-TB sample was diverged from each other, and clustered together with DS-TB samples. The heterogeneity of
individual bacterial was reported in the macaque model using lung lobe washes, which was consistent with our study [31]. Never-
theless, the indicator genera identified in DS-TB and DR-TB samples still suggested distinct micro-ecological environments within TB
lesions. Given the small sample size, associations between bacterial compositions within DR-TB lesions and TB drug resistant phe-
notypes cannot be confirmed. Anti-tuberculosis drugs target not only MTB bacilli but also affect inherent organisms within lesions.
Different antibiotics can rapidly and thoroughly alter the bacterial composition, resulting in varying profiles [24]. Lung bacteriomes
exhibit minimal variation among individuals [31,32], which makes it difficult to observe bacterial differences among various
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drug-resistant types.

Using 16S rRNA data generated from TB lesions and NT samples, we predicted bacterial metabolic activities on the PICRUSt2
platform. Notably, several COG functional categories responsible for metabolic activities presented higher abundance in TB lesions
compared to that of NT samples, suggesting increased biological activities of lung bacteriome after MTB infection. The [J] translation,
ribosomal structure and biogenesis was the most significantly enriched COG function in TB lesions, and it played a vital role in sus-
taining bacterial metabolic function and growth.

KEGG analysis highlights distinct bacterial functions related to pulmonary TB. Nitric oxide generated from nitrite or nitrate
reduction serves as an electron donor for anaerobic bacteria. In TB lesions, both nitrite and nitrate reductase are significantly enriched,
indicating a hypoxia condition. The hypoxia is likely linked to damaged vascularization within necrotic granulomas due to antitu-
berculosis immune responses, and various animal infection models also exhibit hypoxia in TB lesions [33]. Another intriguing finding
is the exogenously acquired 16S rRNA methyltransferase within TB lesions, which confers high-level aminoglycoside resistance. This
enzyme is widely distributed among taxonomically distinct organisms [34]. Pathogens use this epigenetic mechanism to develop
resistance against certain drug molecules and it can be used as novel drug target against tuberculosis [35]. In NT samples, the enriched
D-arabinitol dehydrogenase plays a crucial role in the chemical synthesis of rare chiral sugars and sugar derivatives [36]. These rare
sugars participate in host physiological functions and have a protective effect on the innate immune system, contributing to the
maintenance of lung health [37].

Within DR-TB lesions, the enrichment of bacterial ATPase plays a crucial role in mediating protein phosphorylation. This modi-
fication facilitates cross-talks among proteins associated with sensing external pressure and bacterial complex signal transduction [38].
Methylglyoxal, a toxic secretory electrophile produced by the action of methylglyoxal synthase in many bacteria [39], is also enriched
in DR-TB lesions. The enriched methylglyoxal synthase may suggest robust resistance of inherent lung bacteriomes against invasive
MTB bacilli. In DS-TB lesions, the homoserine O-succinyltransferase was enriched, which was a critical enzyme involving in methi-
onine biosynthesis [40]. Methionine provides methyl groups for lipids, proteins, nucleic acids and alkaloids. It participates in the
regulation of cell division, differentiation, apoptosis and homeostasis [41]. Overall, the distinct enrichment of bacterial enzymes in
DR-TB and DS-TB lesions suggest that pulmonary bacterial activities are partly associated with the drug susceptibility of MTB bacilli.

This study provides vital bacterial information associated with drug susceptibility of pulmonary tuberculosis using TB lesions. One
disadvantage of this retrospective study is the disequilibrium sample numbers of DR-TB and DS-TB samples, which can generate some
bacterial deviations.

5. Conclusion

The bacterial communities in pulmonary DR-TB and DS-TB lesions showed no significant differences, while indicator genera
suggested distinctive ecological environments between them. No significant correlation between bacterial communities and drug
resistance types was observed due to the small sample size. Most COG functions were enriched in TB lesions compared to NT samples,
and the most significant one was [J] translation, ribosomal structure and biogenesis. Enriched bacterial functions observed in DR-TB
and DS-TB played vital role in sustaining the physiological functions of pulmonary micro-niches. This study innovatively bridges the
gap between tuberculosis drug susceptibility and pulmonary bacteriomes using lung tissues, providing essential insights for developing
novel strategies in tuberculous prevention and treatment.
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