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Abstract
Molecular genetics is highly related with prognosis of high-grade glioma. Accordingly, the latest WHO guideline recommends that 
molecular subgroups of the genes, including IDH, 1p/19q, MGMT, TERT, EGFR, Chromosome 7/10, CDKN2A/B, need to be detected to 
better classify glioma and guide surgery and treatment. Unfortunately, there is no preoperative or intraoperative technology available 
for accurate and comprehensive molecular subgrouping of glioma. Here, we develop a deep learning-assisted fiber-optic Raman 
diagnostic platform for accurate and rapid molecular subgrouping of high-grade glioma. Specifically, a total of 2,354 fingerprint 
Raman spectra was obtained from 743 tissue sites (astrocytoma: 151; oligodendroglioma: 150; glioblastoma (GBM): 442) of 44 high- 
grade glioma patients. The convolutional neural networks (ResNet) model was then established and optimized for molecular 
subgrouping. The mean area under receiver operating characteristic curves (AUC) for identifying the molecular subgroups of high- 
grade glioma reached 0.904, with mean sensitivity of 83.3%, mean specificity of 85.0%, mean accuracy of 83.3%, and mean time 
expense of 10.6 s. The diagnosis performance using ResNet model was shown to be superior to PCA-SVM and UMAP models, 
suggesting that high dimensional information from Raman spectra would be helpful. In addition, for the molecular subgroups of 
GBM, the mean AUC reached 0.932, with mean sensitivity of 87.8%, mean specificity of 83.6%, and mean accuracy of 84.1%. 
Furthermore, according to saliency maps, the specific Raman features corresponding to tumor-associated biomolecules (e.g. nucleic 
acid, tyrosine, tryptophan, cholesteryl ester, fatty acid, and collagen) were found to contribute to the accurate molecular subgrouping. 
Collectively, this study opens up new opportunities for accurate and rapid molecular subgrouping of high-grade glioma, which would 
assist optimal surgical resection and instant post-operative decision-making.
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Introduction
High-grade gliomas are the most common and aggressive primary 
tumors of the central nervous system (1). An increasing evidence 
has indicated that molecular genetics profoundly affect prognos
tic implications of high-grade glioma (2). Accordingly, the latest 
edition of the World Health Organization Classification of 
Tumors of the Central Nervous System (WHO CNS5) recommends 
to integrate molecular subgrouping of the genes, including IDH, 
1p/19q, MGMT, TERT, EGFR, Chromosome 7/10, CDKN2A/B, and 
traditional histological features together to gain a more clinically 
relevant classification, which thereby can guide surgery with op
timal extent of resection and instant post-operative therapy (3–5).

Nevertheless, the current techniques for molecular subgroup
ing by using surgically removed specimens, including next- 
generation sequencing, immunohistochemistry, and cytogenetic 
testing (6), are too time-consuming to provide timely diagnostic 

results during surgery. Recent advances in magnetic resonance 
imaging (MRI) have demonstrated preoperative molecular sub
grouping of IDH mutation (7), 1p/19q codeletion (8), and MGMT 
methylation (9) with area under receiver operating characteristic 
curves (AUC) > 0.8. Unfortunately, such method so far still lacks 
sufficient and rational biological explanation, which hinders reli

able diagnosis (7, 9, 10). Moreover, molecular subgroups regarding 
TERT, EGFR, Chromosome 7/10, and CDKN2A/B have not yet been 
investigated by MRI (11, 12). Thus, there is an urgent clinical need 
for accurate, rapid, comprehensive detection of multiple molecu
lar subgroups simultaneously.

Raman spectroscopy, a label-free optical vibrational spectros
copy technique, has been widely used to quantitatively analyze 
molecular compositions of biological specimens and diagnosis of 
various human cancers (13–21). AI algorithms have been shown 
to improve the robustness of Raman spectroscopy-based precise 
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cancer diagnosis (22). Particularly, previous studies have demon
strated the capability of Raman spectroscopy in intraoperative 
brain cancer detection (23–27). Regarding molecular subgrouping, 
most Raman spectroscopy studies focused on detection of IDH 
mutation, the accuracy of which ranged from 80 to 90% (28–30). 
Unfortunately, other molecular subgroups regarding MGMT, 
TERT, EGFR, Chromosome 7/10, and CDKN2/B have not been in
vestigated using Raman spectroscopy. More recently, Hollon 
et al. (31) developed an artificial intelligence-assisted molecular 
classification specific to the genes, i.e. IDH, 1p/19q, and ATRX, of 
diffuse gliomas with accuracy >90%. However, this approach 
was developed based on laser-scanning stimulated Raman scat
tering microscopy, which is so far limited to the small field of 
view and thus difficult to cover enough tissue area in a timely 
manner for diagnosis.

To fulfill the unmet clinical need, here we developed a deep 
learning-assisted label-free fiber-optic Raman spectroscopy for 
accurate and rapid molecular subgrouping of high-grade glioma. 
Specifically, a total of 2,354 fingerprint Raman spectra were ac
quired from 743 tissue sites of 44 high-grade glioma patients. 
The convolutional neural network (ResNet) model was used for 
classifications. The mean AUC for identifying the molecular sub
groups regarding IDH, 1p/19q, MGMT, TERT, EGFR, Chromosome 
7/10, and CDKN2A/B in high-grade glioma reached 0.904, with 
mean sensitivity of 83.3%, mean specificity of 85.0%, mean accur
acy of 83.3%, and mean time expense of 10.6 s. Compared with the 
performance of conventional machine learning and manifold 
learning, the ResNet model achieved better performance owing 
to its capability of extracting high-order molecular-related infor
mation in 1D spectral data. Furthermore, according to saliency 
maps, the specific Raman features corresponding to tumor- 
associated biomolecules (e.g. nucleic acid, tyrosine, tryptophan, 
cholesteryl ester, fatty acid, and collagen) were found to contrib
ute to the accurate molecular subgrouping. Together, our study 
heralds the potential of deep learning-assisted label-free fiber- 
optic Raman spectroscopy for rapid and comprehensive detection 
of multiple molecular subgroups of high-grade glioma with accur
acy beyond current capabilities.

Results
Workflow of high-grade glioma molecular 
subgrouping
According to WHO CNS5, our study focused on molecular sub
groups regarding the genes, i.e. IDH, 1p/19q, MGMT, TERT, EGFR, 
Chromosome 7/10, and CDKN2A/B, of high-grade glioma (Fig. 1). 
As shown in Fig. 2a, the workflow of deep learning-assisted fiber- 
optic Raman diagnostic platform for molecular subgrouping of 
high-grade glioma was described. Specifically, spontaneous 
Raman spectra were first acquired using fiber-optic Raman spec
troscopy (Fig. S1) with around 5 s for each tissue site (the details 
are described in the Methods section and patient information is 
shown in Table S1). Second, the spectra were preprocessed for 
auto-fluorescence removal, denoising, and min–max normaliza
tion. Third, for each molecular subgrouping task, the processed 
Raman spectral data were split into three datasets (90% for 
training and 9-fold validation and 10% for testing) for deep 
learning-based classification. In order to solve the problem of 
data imbalance, random oversampling was used in training and 
validation set, but not in test set. The prediction performance of 
the test dataset was considered as the final result of the deep learn
ing classification model. To compare the performance between 

deep learning (e.g. residual network [ResNet]), machine learning 
(e.g. principal component analysis [PCA], support vector machine 
learning [SVM]) and manifold learning (e.g. uniform manifold ap
proximation and projection [UMAP]) models, the confusion matrix 
and receiver operating characteristic (ROC) curve were evaluated in 
the test dataset. Finally, as shown in Fig. 2b, the Raman spectra 
were classified by using 1D ResNet with Tanh activation functions. 
To achieve accurate optimization of hyper parameters of network, 
backpropagation and gradient descent were used to fit spectral 
wavenumber information. Moreover, saliency maps were analyzed 
by binary stochastic filtering (BSF) to quantify the contribution level 
of each Raman shift for the classification. The details of model 
training and testing were described in the Methods section.

Raman spectral analysis of human high-grade 
glioma tissues
Using the fiber-optic Raman spectroscopy, we acquired a total of 
2,354 spontaneous Raman spectra (fingerprint region) on 743 tis
sue sites (astrocytoma: 151; oligodendroglioma: 150; glioblastoma 
(GBM): 442) obtained from 44 high-grade glioma patients (astrocy
toma: 7; oligodendroglioma: 8; GBM: 29) undergone resection. 
Figure 3 shows mean spectra with standard deviation after prepro
cessing for each molecular subgroup and the difference spectra 
between each paired subgroup (i.e. IDH wildtype vs. IDH mutation, 
1p/19q intact vs. 1p/19q codeletion, MGMT unmethylation vs. 
MGMT methylation, TERT wildtype vs. TERT mutation, EGFR 
nonamplification vs. EGFR amplification, Chromosome +7/−10 
vs. Chromosome +7/−10 Wildtype, and CDKN2A/B retention vs. 
CDKN2A/B homozygous deletion). In most of the difference spectra, 
the Raman band for CH2 bending around 1440 cm−1 was consistently 
observed. The spectral differences for subgroups regarding 1p/19q, 
MGMT, TERT, and EGFR were attributed to Amide I band around 
1,661 cm−1 (C=O stretching of protein backbone) and Amide III 
band between 1,200 and 1,380 cm−1 (C–H and N–C bending). 
Additional spectral difference for subgroups of IDH, 1p/19q, 
MGMT, TERT, Chromosome 7/10, and CDKN2A/B can be found 
near collagen bands at 854 and 938 cm−1 and lipid bands from 492 
to 605 cm−1.

Deep learning-assisted molecular subgrouping of 
high-grade glioma
We developed 1D ResNet model for molecular subgrouping based 
on the 2,354 spectra acquired on fiber-optic Raman system. 
According to the characteristics of Raman spectra, nonlinear func
tion activation Tanh instead of Relu or Linear were selected in the 
convolutional layers of 1D ResNet. These convolution layers were 
able to extract molecular signatures implied in high-order infor
mation of spectral curves. The softmax function was used as the ac
tivation function in the output layer, which output probabilities of 
two classes with the higher value considered to be the predicted 
class. The binary classification models for each pair of subgroups 
were first trained and optimized with their training dataset and 
validation dataset, respectively. The performance of the binary 
models was then evaluated using the corresponding test dataset.

As shown in Fig. 4, the average AUCs of deep learning 
(ResNet)-based molecular subgrouping for IDH, 1p/19q, MGMT, 
TERT, EGFR, Chromosome 7/10, and CDKN2A/B were 0.969, 
0.932, 0.893, 0.904, 0.838, 0.883, and 0.912, respectively. 
Figure 5a shows the heatmap of sensitivity, specificity, accuracy 
and AUC for molecular subgrouping of high-grade glioma. In 
terms of the previously most investigated molecular alterations 
(IDH and 1p19q), our deep learning model (ResNet) achieved 
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overall diagnostic accuracy of 90.54% (sensitivity of 93.60% and 
specificity of 92.68%) and 86.19% (sensitivity of 84.44% and speci
ficity of 89.06%), respectively. For the other subgrouping (for 
MGMT, TERT, EGFR, Chromosome 7/10, and CDKN2A/B), the diag
nostic sensitivity, specificity, accuracy, and AUC ranged from 
67.08 to 91.01%, from 73.58 to 91.49%, from 78.98 to 83.29%, and 
from 0.838 to 0.912, respectively. The detailed confusion matrix 
was shown in Table S2.

To investigate whether deep learning is superior to other types 
of models for this application, SVM as an example of machine 
learning models and UMAP as an example of manifold leaning 
models were built. As shown in Figs. S2–S6, the detailed perform
ance of machine learning (SVM), manifold learning (UMAP), and 
deep learning (ResNet), indicated that deep learning is more ap
propriate for classification of most molecular subgroups. 
Specifically, the deep learning (ResNet) achieved higher accuracy 
and AUC than both machine learning (SVM) and manifold learn
ing (UMAP) for identification of all molecular subgroups. 
Moreover, compared with PCA-SVM and UMAP, ResNet showed 
higher sensitivity and specificity for subgrouping IDH, MGMT, 
Chromosome 7/10 and CDKN2A/B; Meanwhile, for subgrouping 
of 1p19q, TERT, and EGFR, manifold learning gained higher sensi
tivity than ResNet.

The effectiveness of our classification models in molecular sub
grouping of GBMs (Fig. S7) was further demonstrated. From 422 

tissue sites of 29 GBM patients, 1,694 Raman spectra are prepro
cessed (Fig. S8), split and fed into the training set and test set of 
models. Table S2 shows the sensitivity, specificity, accuracy, and 
AUC for molecular subgrouping of GBM, ranging from 83.33 to 
91.19%, from 79.17 to 91.67%, from 80.77 to 87.61%, and from 
0.888 to 0.976, respectively. The heat map in Fig. 5b compares 
the performance between ResNet and the other two models, dem
onstrating our ResNet was superior over the others for molecular 
subgrouping of GBMs.

To further validate the robustness of the classification algo
rithm, we evaluated the subgrouping performance of each model 
with original 44 patients and extra 10 patients. The information of 
extra patients was summarized in Table S3. The subgrouping ac
curacy and AUC in the 50 patients of each model were summar
ized in Table S4. The performance of deep learning did not 
change much in the 50 patients, preliminarily proving the robust
ness of molecular subgrouping. The subgrouping performance 
was also evaluated upon an external validation. The work flow 
was shown in Fig. S9. Nineteen tissue samples from a total of 92 
tissues were selected as external validation dataset for evaluation 
of subgrouping models. The subgrouping performance evaluated 
in the external validation dataset was summarized in Table S5. 
The AUC for deep learning-based molecular subgrouping of IDH 
and 1p19q remained over 0.9 in the external dataset. 
Meanwhile, for subgrouping of IDH, UMAP gained higher accuracy 

Fig. 1. Key molecular alterations of high-grade glioma. According to 2021 WHO classification system (WHO CNS5), typical molecular alterations 
regarding IDH, 1p/19q, MGMT, TERT, EGFR, Chromosome 7/10, and CDKN2A/B were selected for high-grade glioma subgrouping.
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Fig. 2. Deep learning-assisted Raman subgrouping scheme for molecular alterations of high-grade glioma. a) Workflow of Raman molecular 
subgrouping, including dataset preparation, Resnet model training for classification and BSF model training for weighing wavenumber contribution. For 
each molecular subgrouping task, Raman spectral data was acquired, preprocessed and split into three datasets (90% for training and 9-fold cross 
validation and 10% for testing) for deep learning-based classification. The confusion matrix and receiver operating characteristic (ROC) curve were 
evaluated in the test dataset. A binary stochastic filtering model was optimized by the trained Resnet and the spectral data for saliency maps quantifying 
the contribution level of each Raman shift for the classification. AUC, area under receiver operating characteristic curves. b) Structure of the Resnet 
model. The numbers in bracket represent the size [(channels) length] of the hidden layers. The numbers represent the strides of the first convolution layer 
in each identity block (dash line). Conv, convolution layer with kernel size = 3 and strides = s, BN, batch normalization.
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and AUC than Resnet, which is probably because nonlinear di
mensional reduction function fits the spectral difference.

Collectively, our deep learning-assisted label-free fiber-optic 
Raman spectroscopy achieves better performance than previous 

studies in identification of IDH subgroups (28–30), and more im
portantly, established a new way for subgrouping of the other 
key molecular genetics (i.e. 1p19q, MGMT, TERT, EGFR, +7/−10, 
and CDKN2A/B) of high-grade glioma.

Fig. 3. Raman spectra for high-grade glioma molecular alterations with binary labels. Each panel shows average spectra of different molecular 
alterations with binary labels. Raman spectral differences between each pair of labels (subtract blue from red) are also plotted as difference spectra. 
a) IDH wild and mutation. b) 1p/19q intact and codeletion. c) MGMT unmethylation and methylation. d) TERT wildtype and mutation. e) EGFR 
nonamplification and amplification. f) Gain of chromosome 7 and loss of chromosome 10 (chromosome +7/−10) and wildtype. g) CDKN2A/B homozygous 
deletion and retention.
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Raman signatures for biomolecules contributing 
to the accurate molecular subgrouping
To further elucidate the key biomolecular information in Raman 
spectra contributing to the accurate molecular subgrouping based 
on ResNet model, we added BSF after the ResNet input and re
trained it to quantify the filter layer weight parameters (32). The 
simulated layer weight was corresponding to the Raman shift 
for the diagnostic models. In our binary label classification, this 
weight represents the correlation between the intensity of related 
Raman shift and the prediction contribution of positive label, 
namely the importance of Raman shifts for subgrouping. The 
weight in each molecular alteration is plotted as Resnet deter
mined importance in Fig. 6, followed by difference spectrum de
termined importance from mean spectra subtraction. The 
Raman shift importance determined by Resnet and difference 
spectra are consistent. The key Raman shifts determined by 
Resnet are summarized in Table S6. To determine the relationship 

between spectroscopic changes and biochemical changes, we re
ferred to previous studies (33, 34) which compiled the most widely 
observed peak frequencies and their assignments in biological 
tissue.

For detection of IDH mutation in the saliency map, the positive 
Raman bands were corresponding to phosphatidylinositol 
(around 577 cm−1), and phospholipid (around 1,078 cm−1); mean
while the negative Raman bands were corresponding to collagen 
(around 1,448 cm−1) and lipid (around 1,433 cm−1). It is worth 
noting that the decline of lipids and collagen in IDH-mutated gli
oma is in line with previous studies (35, 36). Mutated IDH causes 
α-KG (α-ketoglutarate) in the tricarboxylic acid cycle to be con
verted into 2-HG (2-hydroxyglutarate). High levels of 2-HG inhibit 
the synthesis of lipids such as triglycerides, and high levels of 
D2-HG (One of the stereoisomers of 2-HG) block the prolyl hy
droxylation of collagen, leading to defects in collagen proteins. 
For detection of 1p/19q codeletion in the saliency map, the 

Fig. 4. Raman diagnostic ROC using deep learning (ResNet) model for molecular subgrouping of high-grade glioma. AUC, area under the curve. a) IDH 
mutation, b) 1p/19q codeletion, c) MGMT methylation, d) TERT mutation, e) EGFR amplification, f) Chromosome +7/−10, g) CDKN2A/B homozygous 
deletion.
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positive Raman bands are corresponding to amino acid (serine 

and cysteine, around 524 cm−1), and nucleic acid (around 1,085 
and 1,094 cm−1). Previous research indicated that genes includ
ing phosphoglycerate dehydrogenase (PHGDH) and cystathio
nine gamma-lyase (CTH), situated on chromosome 1p, are 
linked to the pathway involved in the synthesis of serine and cys
tathionine (37).

In MGMT recognition in the saliency map, the positive Raman 
bands were corresponding to the protein (around 951 cm−1 and 
1,560 cm−1), the negative Raman bands were corresponding to 
fatty acids (around 1,442 cm−1). The accumulation of lipids of 
LDs of cells in MGMT methylated glioma may be due to the down
regulated genes related to lipid efflux (38). In TERT recognition 
in the saliency map, the negative Raman bands were correspond
ing to cysteine (540 cm−1). In EGFR recognition in the saliency 
map, the positive Raman bands were corresponding to the 
phenylalanine (around 1,000 cm−1) and β-sheet of protein 
(around 1,221 cm−1), while the negative Raman bands were cor
responding to tyrosine (around 850 cm−1 and 856 cm−1). A recent 
study indicated that in the treatment of lung adenocarcinoma 
patients with EGFR mutations using EGFR tyrosine kinase inhib
itors (EGFR-TKI), those with drug resistance exhibited higher lev
els of N-acetyl-d-phenylalanine, which may indirectly suggest 

that EGFR mutations correspond to an increase in phenylalanine 
levels (39).

In Chromosome copy number +7/−10 recognition in the saliency 
map, the positive Raman bands were corresponding to ν(C–C) skel
etal of acyl backbone in lipid (around 1,129 cm−1) and stretching 
mode (C–C and C–N) of glycogen (around 1,155 cm−1), while the 
negative Raman bands were corresponding to palmitic acid (around 
1,068 cm−1). A previous study linked specific regions on chromo
some 7 to the regulation of glycogen synthesis in mouse models, 
which provides support for the biochemical changes brought about 
by the molecular alterations in chromosomes 7 and 10 (40). In 
CDKN2A/B recognition in the saliency map, the positive Raman 
bands were corresponding to tyrosine in collagen type I (around 
1,169 cm−1), while the negative Raman bands were corresponding 
to skeletal C–C stretch of lipids (around 1,064 cm−1) and tryptophan 
(around 1,618 cm−1). Researchers identified that CDKN2A-deleted 
GBMs show heightened levels of lipid peroxidation, as the absence 
of CDKN2A alters the lipid composition of these tumors (41).

Taken together, the ResNet model was able to recognize the 
relative intensity changes of multiple Raman bands specific to bi
omolecules (e.g. nucleic acid, tyrosine, tryptophan, cholesteryl es
ter, fatty acid, and collagen), which were strongly associated with 
molecular genetics of high-grade glioma.

Fig. 5. Heatmap of Raman subgrouping performance based on different models. Sensitivity, specificity, accuracy and AUC of machine learning (SVM), 
manifold learning (UMAP), and deep learning (ResNet) models using Raman spectral datasets for subgrouping. SEN, sensitivity, SPC, specificity; ACC, 
accuracy; AUC, area under classification. Positive labels: IDH mutation, 1p/19q codeletion, MGMT methylation, TERT mutation, EGFR amplification, 
Chromosome +7/−10, and CDKN2A/B homozygous deletion. a) Diagnostic performance for High-grade glioma molecular subgrouping, b) diagnostic 
performance for GBM molecular subgrouping.

Liu et al. | 7



Discussion
In this work, we developed the deep learning-assisted Raman 
diagnostic platform for accurate and rapid molecular subgroup
ing of high-grade glioma and GBM. First, a total of 2,354 fingerprint 
Raman spectra were acquired from 743 tissue sites of 44 high- 
grade glioma patients. Second, our deep learning models were 
trained and tested. The mean AUC for identifying the molecular 
subgroups of high-grade glioma reached 0.904, with mean sensi
tivity of 83.3%, mean specificity of 85.0%, mean accuracy of 
83.3%, and mean time expense of 10.6 s. The deep learning model 
performed better than PCA-SVM model and UMAP model in our 
dataset. At last, tumor-associated biomolecules (e.g. nucleic 
acid, tyrosine, tryptophan, cholesteryl ester, fatty acid, and colla
gen) were found to significantly contribute to the accurate mo
lecular subgrouping. Our accurate and rapid Raman molecular 
subgrouping may facilitate optimal surgical resection and instant 
post-operative decision-making.

First, our AI-assisted Raman platform for rapid and accurate 
molecular subgrouping of high-grade glioma may improve prog
nosis. For the treatment of high-grade glioma, surgery as safely 
feasible followed by involved-field radiotherapy plus concomitant 
and maintenance temozolomide chemotherapy define the stand
ard of care since 2005 (42). Nonetheless, determining the optimal 
extent of surgical resection during operation remains a formid
able challenge, and that is crucial for enhancing the prognostic 
outlook of individuals afflicted with high-grade gliomas. 
Molecular alterations have been shown to correlate with the prog
nosis of patients diagnosed with high-grade glioma, such as the 
mutation status of IDH and the methylated status of MGMT (43, 
44). According to the findings of a recent study, the overall survival 
(OS) was observed to be significantly longer with increasing extent 
of resection (EOR) in MGMT methylated tumors. Similarly, 
progression-free survival (PFS) also showed significant differences 
between residual volume strata in MGMT methylated tumors, 
while no such trend was observed in MGMT unmethylated tumors 

(45). Furthermore, younger patients with IDH wildtype tumors 
who underwent aggressive resection of both contrast-enhanced 
(CE) and noncontrast-enhanced (NCE) tumors had a survival out
come similar to that of patients with IDH-mutant tumors. 
However, among younger patients with IDH wildtype tumors 
who had reduced CE tumors but residual NCE tumors, the survival 
outcome was worse. In contrast, older patients with IDH wildtype 
tumors benefited from reducing the CE tumor (46). Collectively, 
surgical goals should be tailored based on molecular subgroups 
(47, 48). Our AI-assisted Raman platform of molecular subgroup
ing could be done accurately during surgery, which may facilitate 
intraoperative decision-making of the optimal extent of surgical 
resection and so improve prognosis.

Second, our Raman spectroscopy-based method is superior 
over current intraoperative diagnostic methods of gliomas for mo
lecular subgrouping. Compared with other techniques for intrao
perative glioma diagnosis, including ultrasound (49) (US), optical 
coherence tomography (50) (OCT) and confocal fluorescence mi
croscopy (51) (CFM) which provide structural information in real 
time, Raman spectroscopy provides molecular information from 
glioma tissue (28), allowing it to subgroup molecular alterations 
accurately. Intraoperative US show the ability to margin deep 
seated brain tumors from normal brain (49). Intraoperative OCT 
has been able to distinguish high-density/low-density cancer in 
nine patients with high-grade gliomas (50). Intraoperative con
focal microscopy has shown evidence for invasion detection using 
fluorescence in grades 1 to 2 glioma on 10 patients (51). However, 
no evidence indicates these modalities could investigate molecu
lar subgroups. In this study, we not only demonstrate that our 
Raman spectroscopy-based method could achieve accurate and 
rapid molecular subgrouping but also show that this method is 
biologically explainable. The specific Raman features correspond
ing to the tumor-associated biomolecules were found to contrib
ute to the accurate molecular subgrouping. For instance, the 
reduction of lipid and collagen reflects IDH wild, which is consist
ent with previous mechanistic studies. Moreover, the discovered 

Fig. 6. Saliency maps in ResNet model for Raman shift signatures. ResNet determined importance (from BSF, represents the correlation between the 
intensity of related Raman shift and the prediction contribution of positive labels) and difference spectrum determined importance (from mean spectra 
subtraction between spectra of positive and negative labels), normalized with max values of difference spectrum. Positive labels: IDH mutation, 1p/19q 
codeletion, MGMT methylation, TERT mutation, EGFR amplification, Chromosome +7/−10, and CDKN2A/B homozygous deletion.
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molecular signatures by Raman spectroscopy may help to im
prove the understanding of the pathological mechanism of glioma 
in the future.

Regarding Raman-based technology, stimulated Raman 
spectroscopy (SRS) providing both structural and molecular infor
mation has recently shown the possibility of molecular subgroup
ing of gliomas (31). Deep learning method was used to integrate 
both structural and molecular information for good subgrouping 
performance. Nevertheless, current clinical molecular subgroup
ing of gliomas is on patient level, which actually only uses the core 
areas of the tumor tissues for detection. Therefore, the spatial dis
tribution of molecular subgrouping is of limited significance for 
current clinical treatment and may take extra time that is actual
ly very precious during surgery. Additionally, SRS microscopy re
quires sophisticated and expensive system. Together, Raman 
fiber-optic spectroscopy may be more suitable for intraoperative 
glioma molecular subgrouping scenarios.

Unfortunately, our model failed to reach such accuracy and 
AUC for subgrouping MGMT, TERT, EGFR, Chromosome 7/10 and 
CDKN2A/B upon our external validation. The decreased perform
ance in 1p/19q, MGMT, and Chromosome 7/10 subgrouping may 
be due to data imbalance (as shown in Table S1). The decreased 
performance in MGMT, TERT, and EGFR may be due to the small 
metabolic differences between molecular subgroups (as shown in 
Fig. 3). The decreased performance in 1p/19q, MGMT, TERT, 
CDKN2A/B may be due to the instability of subgrouping (as shown 
by the larger standard deviation of shadow area in Fig. 4, which 
may be due to the large intra group difference in each subgroup). 
To address these issues, several methods could be employed: (i) 
employ alternative methods to solve the data imbalance issues in
stead of random oversampling. For example, synthetic minority 
oversampling technique and algorithmic approaches like cost- 
sensitive learning helps in preserving the original distribution 
and reduces the risk of overfitting. (ii) Apply more advanced pre
processing algorithms to improve classification accuracy, such 
as spectral preprocessing methods based on deep learning (52). 
(iii) Adjust the architecture and hyperparameters of the model to 
improve its suitability for spectral classification. For example, in
crease the number of layers or nodes in the network, and support 
the optimization of the network by increasing sufficient data vol
ume. (iv) Utilize generative network models such as generative 
adversarial network for data augmentation (53).

Finally, our method has the potential for in vivo molecular sub
grouping of gliomas. Although we do not implement in vivo molecu
lar subgrouping detection, previous researches have demonstrated 
the solid foundation of in vivo Raman spectroscopy (13, 54, 55). For 
instance, Michael et al. (54) developed a handheld contact Raman 
spectroscopy probe technique for live, local detection of cancer cells 
in the human brain with a sensitivity of 93% and a specificity of 91%. 
Zhang et al. (23) investigated human glioma using a portable visible 
resonance Raman analyzer under quasiclinical conditions with over 
80% accuracy. Kevin et al. (55) for the first time developed a Raman 
spectroscopy guidance system in human in vivo integrated with a 
brain biopsy needle. Future studies that integrate in vivo diagnosis 
and molecular subgrouping will have great clinical significance 
and impact on glioma treatment and prognosis.

Methods
Tissue specimen
This study was approved by the Institutional Review Boards of 
Beihang University and Beijing Tiantan Hospital. The informed 

consent was obtained from all participants. This study included 7 as
trocytoma, 8 oligodendroglioma, and 29 GBM. The enrolled patients’ 
data, including basic demographic information, imaging data, 
pathological diagnosis, and molecular characteristics were collected 
from the hospital information system. Before the operation, every 
patient underwent enhanced MRI, including T1-weighted, 
T1-contrast, T2-weighted, and T2-Flair (T2-fluid-attenuated inver
sion recovery) modalities. Two experienced neuroradiologists inde
pendently reviewed the MRI data of patients, and those diagnosed 
with high-grade glioma were considered for further analysis. For tis
sue collection during the operation, tumor tissues from patients di
agnosed with high-grade glioma based on preoperative MRI were 
validated using rapid intraoperative tissue pathology. Only speci
mens showing tissue pathology consistent with the MRI images 
were collected. After the tumor tissue was resected, a sodium chlor
ide solution was used to remove blood adhered to the tumor tissue. 
The original tumor tissue was then cut into 2–5 small tissue particles 
(approximately 2 mm × 2 mm × 2 mm). Then, the tumor samples 
were snap-frozen in liquid nitrogen and stored at −80°C. All proce
dures were completed within 30 min. The tissues were sectioned 
and stained with hematoxylin–eosin (H&E) to confirm the patho
logical diagnosis of each sample. Finally, the tissues prepared on alu
minum foil were used for Raman spectroscopic studies.

Next-generation sequencing
The integrated diagnosis of tumors in this study relied on histo
logical pathology and molecular features. The following key mo
lecular features, which contribute to the integrated diagnosis of 
glioma, were determined using pyrosequencing and/or next- 
generation sequencing, including the mutation status of IDH1 
and IDH2, MGMT promoter methylation status, 1p/19q codeletion 
status, the mutation status of the TERT promoter, EGFR amplifica
tion status, gain of chromosome 7 and loss of chromosome 10, and 
the homozygous deletion status of CDKN2A/B. Genomic DNA was 
extracted from frozen tumor tissues using the QIAamp DNA Mini 
Kit (Qiagen) following the manufacturer’s prescribed procedure. 
The concentration and quality of the DNA were assessed using 
the Nano-Drop ND-1000 spectrophotometer (NanoDrop 
Technologies, Houston, TX, USA). Subsequently, 100 ng of the ex
tracted DNA was employed for bisulfite conversion, utilizing the 
Epitect Bisulfite Kit (Qiagen) in accordance with the manufac
turer’s instructions (56, 57). RNA was isolated from the frozen tis
sue sample, and the RNA-seq library was prepared and then 
subjected to sequencing on the Illumina HiSeq 2000 platform 
(Illumina, San Diego, CA, USA) employing a 101-bp paired-end se
quencing approach (58). IDH mutation status was directly deter
mined through pyrosequencing targeting the IDH1 R132 and 
IDH2 R172 hotspot regions. Additionally, pyrosequencing was em
ployed to assess methylation within the MGMT promoter region 
(59). According to WHO CNS5, common diffuse gliomas in adults 
are divided into three types: astrocytoma, IDH-mutant; oligo
dendroglioma, IDH-mutant and 1p/19q co-deleted; and glioblast
oma, IDH wildtype.

Fiber-optic Raman spectroscopy
The Raman spectroscopy system is composed of Raman probe 
with filters (RamanProbe, Inphotonics Inc.), 785 nm laser 
(o8NLDM, Cobolt Inc.), and high-sensitive spectrometer with 
ddpCCD (Acton 785, Princeton Instrumentation Inc.) (Fig. S1). 
The numerical aperture (NA) of the Raman probe (1 cm in diam
eter) is 0.22. The laser excitation power on the tissue was 65 mW 
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and the exposure time of single spectrum was around 5 s. 
According to Monte Carlo simulation, the light irradiance is 
0.998 W/cm2, less than the American National Standards 
Institute limit set out for a 785-nm laser beam.

Raman spectrum preprocessing
The original Raman spectra contain various types of noise and 
auto-fluorescence background; therefore, the spectra need to be 
processed before being input into the deep learning model. The 
preprocessing took four steps: (i) wavenumber selection; (ii) back
ground subtraction; (iii) smoothing; (iv) normalization. In brief, 
the wavenumber between 400 and 1800 cm−1 was selected as 
the region of interest. The asymmetric least-squares method 
was applied to subtract the background signal. The data were 
then smoothed by a Savitzky-Golay filter to reduce the noise and 
increase the signal-to-noise ratio. The spectra have been prepro
cessed with iterative multipolynomial fitting, s–g filter, and min– 
max normalization. For each paired subgroups, the difference 
spectrum was calculated by vector subtraction between the 
mean spectra of each subgroup. All the processing mentioned 
above was done by Python 3.7 library scipy 1.8.0.

Classification model for molecular subgrouping
Using PCA, we assumed that all meaningful information is con
tained within the variance. Through finding the maximum vari
ance space, we could get principal components (PC1, PC2, etc.) 
of Raman shifts with high variance. Using SVM, we created a hy
per plane (ω*x − b = 0) with minimum distance between points. 
SVM method only focuses on class weight from extreme points, 
in the meanwhile ignoring distances between other points to hy
per plane. Therefore, SVM may fit well with Raman spectral 
data of small sample size. Combing PCA and SVM, we built a ma
chine learning-based classification model for molecular sub
grouping of high-grade glioma. All the processing mentioned 
above was done by Python 3.7 library sklearn 0.24.2.

Different from PCA, UMAP used nonlinear dimensional reduc
tion and found a representation (UMAP1, UMAP2 etc.) of Raman 
data in low-dimensional space RN. Firstly, a good map from 
Riemannian manifold M to RN was found. Then Raman data D 
were uniformly drawn from M. By simulating approximate distan
ces in M between points in D that were close enough in RN, we fi
nally got UMAP values in RN. Here, we built supervised UMAP 
classification model for molecular subgrouping of high-grade gli
oma. All the processing mentioned above was done by Python 3.7 
library UMAP-learn 0.5.3.

Structure of ResNet was described in Fig. 2b. Here, we opti
mized the 1D ResNet networks for Raman data modeling using 
the following strategies. (i) In order to achieve the capture of infor
mation at different scales, multilayer convolution operations 
were used. (ii) To simulate many different data patterns, non
linear activation functions Tanh were used instead of Linear or 
Relu. (iii) To achieve accurate optimization of hyper parameters 
of network, backpropagation and gradient descent were used to 
fit spectral wavenumber information. (iv) The saliency map of 
deep learning models (ResNet) was simulated by the binary sto
chastic filtering (BSF) feature selection methods (32). Accuracy 
and cross-entropy loss are two indicators that are often used to as
sess the performance and reliability of CNN models. With learning 
iterations, the accuracy and cross-entropy loss curves of the val
idation set gradually tend to converge, indicating that the model 
is not over-fitting. All the processing mentioned above was done 
by Python 3.7 Library keras 2.2.4 and tensorflow 1.14.0.

Model evaluation
For subgrouping evaluation in each molecular alteration, IDH mu
tation, 1p/19q codeletion, MGMT methylation, TERT mutation, 
EGFR amplification, chromosome +7/−10, and CDKN2A/B homo
zygous deletion were defined as positives labels. The accuracy to
gether with the sensitivity and specificity of the binary 
classification models were calculated using a testing dataset 
from extra samples, which avoids spectra from the same samples 
for train and test set. Outcomes of high-grade glioma Raman clas
sification were evaluated with respect to sensitivity (SEN), specifi
city (SPC), and accuracy (ACC) as follows:

Sensitivity =
True positive

True positive + False negative
(1) 

Specificity =
True negative

True negative + False postive
(2) 

Accuracy =
True negative + True positive

True negative + True positive + False postive
+ False negative

. (3) 

True positives mean correct positive labels of prediction (IDH mu
tation, 1p/19q codeletion, MGMT methylation, TERT mutation, 
EGFR amplification, Chromosome +7/−10, and CDKN2A/B homo
zygous deletion). True negatives mean correct negative labels of 
prediction. False positives mean false positive labels of prediction. 
False negatives mean false negative labels of prediction.

The binary classification for glioma molecular subgrouping 
was evaluated with a binary receiver operating characteristic 
(ROC) analysis according to the method. We employed the roc_ 
curve function from Scikit-learn (version 0.21.3) in Python to pro
duce the ROC curve. This curve was generated by continuously 
adjusting the probability threshold for each category, based on 
the ground truth. These probabilities are predictions from the 
classification model, whereas the ground truth derives from clin
ical pathological diagnoses confirmed by pyrosequencing and 
next-generation sequencing. The AUC, which ranges from 0 to 1, 
assesses the model’s capability to distinguish between different 
glioma subgroups with utmost sensitivity and specificity.
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