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Cerchione C, de la Fuente Burguera A,
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Risk stratification in acute myeloid leukemia (AML) has been extensively

improved thanks to the incorporation of recurrent cytogenomic alterations

into risk stratification guidelines. However, mortality rates among fit patients

assigned to low or intermediate risk groups are still high. Therefore, significant

room exists for the improvement of AML prognostication. In a previous work,

we presented the Stellae-123 gene expression signature, which achieved a high

accuracy in the prognostication of adult patients with AML. Stellae-123 was

particularly accurate to restratify patients bearing high-risk mutations, such as

ASXL1, RUNX1 and TP53. The intention of the present work was to evaluate the

prognostic performance of Stellae-123 in external cohorts using RNAseq

technology. For this, we evaluated the signature in 3 different AML cohorts (2

adult and 1 pediatric). Our results indicate that the prognostic performance of

the Stellae-123 signature is reproducible in the 3 cohorts of patients.

Additionally, we evidenced that the signature was superior to the European

LeukemiaNet 2017 and the pediatric clinical risk scores in the prediction of

survival at most of the evaluated time points. Furthermore, integration with age

substantially enhanced the accuracy of the model. In conclusion, Stellae-123 is

a reproducible machine learning algorithm based on a gene expression

signature with promising utility in the field of AML.
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Introduction

Risk stratification in acute myeloid leukemia (AML) has been

extensively improved during the last decade. The identification of

recurrently mutated genes and cytogenetic anomalies has been of

high prognostic and therapeutic significance in patients diagnosed

with this disease. Most of the currently used AML risk stratification

guidelines, like the European Leukemia Net (ELN) risk classification

(1), were elaborated using this information. However, those

classifications are based primarily on different retrospective data

about cytogenetic analyses and a limited number of mutations, and

don’t take into account the genomic complexity of AML and the

interaction between different drivers. In recent years, several

biomarker panels using next-generation sequencing (NGS) of

multiple recurrently mutated or aberrantly expressed genes have

been proposed to facilitate improved prognostic stratification.

The development of new risk stratification algorithms using

mutational data has been the focus of some recent efforts

(Table 1). In one of these, Gerstung et al. (2017) created an

AML knowledge bank which involved data from thousands of

patients. The utility of this data bank to predict individual

outcomes (such as remission, relapse and mortality

probabilities) was proved. Furthermore, their results suggest

that personally tailored management decisions could reduce

the number of allogeneic hematopoietic stem cell transplants

(alloHCT) by 20–25%, while maintaining overall survival rates

(2). Another recent effort was presented by Sherve et al. (2019),

who constructed a novel prognostic model by implementing

machine learning (ML) algorithms on clinical, cytogenetics and

mutational data from AML patients (3). This algorithm achieved

great concordance with reality in 5 different AML cohorts.

Gene expression data is another valuable source of information

in order to risk stratify AML patients (8). Transcriptomic changes

are associated with different mutations, cytogenetic aberrations and

changes in signaling pathways (Table 1). Additionally, gene

expression can be linked to other prognostic factors, such as

biological age. In this line, Roushangar et al. performed a

comprehensive gene expression analysis from 37 studies and
Frontiers in Oncology 02
identified gene expression changes associated with surrogate

prognostic markers in AML, such as age and molecular subtypes

(4). Furthermore, Walker et al. identified a 10-gene signature that

was strongly predictive of patient relapse in cytogenetically normal

AML (5). This was an important finding because these patients are

currently classified as intermediate risk (1), demonstrating that this

is a very heterogeneous group where an improved risk stratification

for clinical decision-making is of the utmost need (9). In another

effort, Ng et al. created a 17-gene expression score that was highly

prognostic in five independent cohorts, and this contributed to a

more accurate prediction of early therapy resistance (6). Therefore,

it becomes apparent that transcriptomic information can be used to

refine risk stratification in AML.

Recently, we presented Stellae-123, which is a machine

learning (ML) model based on a gene expression signature

capable of providing personalized survival predictions in adult

patients with AML (7). Stellae-123 predictions were precise and

added significant prognostic information to those patients with

high-risk mutations. Stellae-123 contains 123 variables,

including the expression of 121 genes, and achieved c-indexes

of 0.723 in the training set and 0.700 in the test set, indicating a

high reproducibility of the personalized risk prediction. These

results are in line with other risk models based on ML with

mutational data described so far in the field (6), which

emphasizes the possibility of improving risk stratification in

AML by implementing artificial intelligence.

In the present study, we aimed to evaluate the prognostic utility

of Stellae-123 in patients from 3 different AML cohorts, including

adult and pediatric patients. Our results indicate that this signature

is reproducible using RNAseq data and can outperform the

precision of current risk stratification guidelines in the field.

Methods

Data source and cohort characteristics

For this study, we used data from 3 AML cohorts (BeatAML,

AMLCG-2008 and the pediatric TARGET AML). The BeatAML
TABLE 1 Summary of the molecular predictors of AML survival described in the main text.

Study Analysis Details and Results

Gergstun et al. (2017) (2) • Analyzed a database of 1,540 AML patients with mutation and cytogenetics annotation
• Developed a multistate model for clinical outcome prediction that can be used to support treatment decision (e.g., alloHCT)

Sherve et al. (2019) (3) • Analyzed a database with 3,421 AML patients with cytogenetics and mutation annotation for 44 genes
• Developed a ML predictor using the XGBOOST algorithm which achieved high precision in the prediction of survival

Roushangar et al. (2019) (4) • Analyzed gene expression profiles of 2,213 AML patients, finding transcriptomic correlations with surrogate markers of mortality
in AML (e.g., age)

Walker et al. (2021) (5) • Analyzed 268 patients with cytogenetically normal AML who were treated with intensive regimes
• Identified a 10-gene signature predicting patient relapse

Ng et al. (2016) (6) • Developed a leukemia stem cell 17-gene signature, which was highly prognostic in different AML subtypes (N= 907)

Mosquera et al. (2021) (7) • Analyzed gene expression profiles from two different cohorts (N=562, N=137)
• Developed a machine learning survival predictor based on a 123-gene signature
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programme was aimed to better understand genetic or

transcriptional markers and mechanisms of drug sensitivity and

resistance in AML (10). BeatAML was composed mostly of adult

patients (>17 years of age). This project was developed in a cohort

of 672 primary specimens from 562 patients with AML, and

extensive functional and genomic analyses on these samples was

performed. The TARGET AML cohort was aimed to fully

characterize the genomics of pediatric AML (11). It includes

fully characterized cases, including gene expression data. Finally,

the AMLCG-2008 cohort was composed of 396 adult AML

patient samples from a clinical trial that compared the dose-

dense regimen S-HAM (Sequential High Dose Cytosine

Arabinoside and Mitoxantrone) versus standard double

induction in AML patients (12). Risk stratification data was

available for all patients. Adult cohorts classified patients

according to the ELN-2017 risk stratification recommendations

(1), whereas pediatric patients were classified according to the

clinical risk score (11).
Gene expression profile, mutation data
and statistical methods

Gene expression values were normalized to FPKM values

and cohort-related batch effects were adjusted using ComBat

(13). Then, we mapped microarray probes from Affymetrix

arrays and RNAseq transcripts to Ensembl gene identifiers.

Afterwards, we selected those Stellae-123 transcripts whose

expression was measured in the RNAseq protocols of the 3

cohorts. 69 genes were obtained, which were the basis for

downstream signature analysis (Supplementary Table 1).

Similarly, limited mutation annotation was available from the

same cohorts, which was used to evaluate their relationship with

gene expression risk groups.

Random forests were built to predict survival in the largest

cohort (BeatAML, n = 334), and this model was used to obtain

survival predictions from the remaining two cohorts. The

discriminative capacity of this model was evaluated using

bootstrapped Harrel’s c-indexes with 500 cycles. The precision of

the predictors was evaluated using time-dependent areas under the

curve (AUCs) derived from cross-validated cox survival models. For

these calculations, cross-validation was performed with the bootcv

algorithm and 500 cycles. In each cycle, 75% of samples were used

for training and 25% for testing. In the particular case of BeatAML,

we used random forest out-of-bag predictions as input for the cox

survival models, in order to reduce the risk of overfitting during the

training phase of the model.
Results

Baseline characteristics of the three cohorts are represented

in Table 2.
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Validation of the Stellae-123 gene
expression signature

A survival predictor based on random forests was built in the

BeatAMLcohortusingStellae-123gene expressiondata.Ac-indexof

0.635wasobtainedafter internal cross-validation.We then tested this

model in the other two cohorts, AMLCG-2008 and TARGETAML,

achieving c-indexes of 0.645 and 0.598 respectively. In Figure 1, a

representation of patients by tertiles of predicted survival for the

different datasets canbe consulted.These balanced groups of patients

exhibit differences in survival curves corresponding to their expected

survival outcomes according to Stellae-123.Afterwards,we evaluated

the precisionof ourmodel over time, specifically at 6months, 1 and 2

years after diagnosis (Table 3). The AUCs at 1 year were 68.51%,

69.40% and 74.92% for the BeatAML, AMLCG-2008 and TARGET

AML cohorts, respectively. Overall, our findings indicate good

performance metrics in the three cohorts, and particularly in

pediatric patients.
Evaluation of Stellae-123 vs standard risk
stratification scores

We compared the precision of this signature with ELN-2017

and the pediatric clinical risk score in the prediction of survival

using c-indexes and time-dependent AUCs (6 months, 1 year and 2

after diagnosis). Surprisingly, we observed that the performance of

the ELN-2017 classification was low in the BeatAML cohort (Cox

bootstrapped c-index, 0.379). Apparently, this was driven by the

bad outcomes that intermediate-risk patients had in this cohort

(Supplementary Figure 1A). A better performance was observed in

the AMLCG-2008 dataset, but still inferior to the Stellae-123

classifier (Cox bootstrapped c-index, 0.601). In this case,
TABLE 2 Baseline Characteristics of patients included in the
three cohorts.

BeatAML AMLCG
2008

TARGET
AML

N 334 199 144

Age 61 [2-87] 55 [18-74] 9.42 [0.38-22.55]

Male/Female 54.80%/45.20% – 51.03%/48.97%

ELN-2017 Favorable 30.60% 38.18% –

ELN-2017 Intermediate 32.14% 25.63% –

ELN-2017 Adverse 37.80% 36.89% –

Clinical Risk
ScoreFavorable

– – 50.74%

Clinical Risk
ScoreIntermediate

– – 43.38%

Clinical Risk
ScoreAdverse

– – 5.88%

Relapsed AML 3.39% 0% 0%

Secondary AML 15.54% 11.70% –
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intermediate-risk patients exhibited better outcomes than expected

(Supplementary Figure 1B). Time-dependent AUCs also indicate

that Stellae-123 is superior to the ELN-2017 classification in the 2

adult cohorts, and that this improvement in survival prediction is

sustained over time (Table 2).

In the TARGET AML pediatric cohort, we observed a better

performance of the Clinical Risk Score in terms of c-index

(bootstrapped Cox c-index, 0.634), but time-dependent AUCs

indicate that our model improved the predictive capacity until the

second year after diagnosis. We must mention that the only

evaluated time point in which our model was inferior with

respect to the current standard models was in the prediction of

mortality in the pediatric TARGET AML cohort at 2 years from

diagnosis. At this moment, our model obtained an AUC of 60.5%,

compared with a 62.7% of the pediatric clinical risk score.

(Figure 2). We observed that the predictive capacity of Stellae-

123 worsens with time, in line with previous findings indicating

that the prognostic weight of gene expression variables is greater

during the first year after diagnosis (14) (Figure 2). The best

performance of Stellae-123 at earlier time moments might be
Frontiers in Oncology 04
driven by the apparently low proportion of patients assigned by

the Clinical Risk Score to the high risk group (5.8%), and thus the

transcriptomic model might be more suitable to identify early

mortality (Supplementary Figure 1C), particularly among patients

assigned to the standard risk group (Supplementary Figure 2).
Distribution of mutations according to
Stellae-123 risk groups

We evaluated the distribution of the most common driver

mutations in AML across the different tertiles of risk according

to the Stellae-123 risk model. In adult patients, we observed an

increase of low risk or neutral risk mutations (CEBPA, NPM1

and DNMT3A) in the low and intermediate risk tertiles defined

by Stellae-123, whereas high risk mutations (ASXL1, RUNX1,

TP53 and U2AF1) were more common in the high risk tertile

(Supplementary Tables 2 and 3). Nevertheless, we found that

some patients with high risk mutations were assigned to the

intermediate or even low risk tertile in both the BeatAML and

AMLCG-8 cohorts. This occurred in 26.92% (BeatAML) and

16.67% (AMLCG-8) of patients with ASXL1 mutation; 36.36%

(BeatAML) and 33.33% (AMCLG-8) of patients with RUNX1

mutation; 10.71% (BeatAML) and 9.09% (AMLCG-8) of

patients with TP53 mutation; and 26.67% (BeatAML) and

14.28% of cases with U2AF1 mutation. In pediatric patients,

we also observed an increased distribution of low and neutral

risk mutations (e.g. CEBPA and NPM1) in the lower and

intermediate risk tertiles, but this cohort was devoid of high

risk mutations for evaluation (Supplementary Table 4).
Evaluation of prognostic scores
considering patient age

Age is a variable deeply associated with survival in AML (15,

16). Therefore, we evaluated the performance of the models
FIGURE 1

Patient survival according to the tertiles of risk predicted by Stellae-123 in the BeatAML, AMLCG-2008 and TARGET AML cohorts.
TABLE 3 Comparison in survival prediction between ELN-2017
classification and the pediatric Clinical Risk Score (CRS) with the
Stellae-123 model over time.

Beat
AML

AMLCG
2008

TARGET
AML

GEP Random Forestc-index 63.55 64.48 59.84

GEP: AUC 6 months 66.45 70.07 75.51

GEP: AUC 12 months 68.51 69.40 74.92

GEP: AUC 24 months 67.57 69.22 60.55

ELN2017: AUC 6 months 59.19 59.09 –

ELN2017: AUC 12 months 57.09 63.64 –

ELN2017: AUC 24 months 65.17 60.96 –

CRS: AUC 6 months – – 67.07

CRS: AUC 12 months – – 69.25

CRS: AUC24 months – – 62.74
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including this covariate. We observed clear improvements in

AUCs for the BeatAML and TARGET AML cohorts, but not for

the AMLCG-2008 cohort (Table 4), a finding which is probably

related to the fact that these were homogeneously fit adult

patients recruited in a clinical trial. Notably, we also observed

an improved performance of the gene expression signature plus

age model compared with the ELN-2017 and pediatric clinical

risk score models, particularly in the prediction of survival

during the first year after diagnosis (Table 4). Interestingly, by

adding age to our model in the TARGET AML pediatric cohort,

we achieved an AUC of 87.1% in the prediction of mortality at 6

months from diagnosis, a great improvement over the same

model without age (AUC 75.5%) and notably superior to the

current clinical risk score plus age at that same time point

(AUC 78.1%).
Discussion

Despite significant advances in our understanding of the

impact of mutations on overall survival, established AML risk

stratification guidelines, like ELN-2017 classification, are based

primarily on a limited number of genomic drivers. Furthermore,

the outcomes of many patients in the ELN-2017 intermediate

risk groups are indeed poor and heterogeneous (median survival:

0.7 - 1.6 years) (17), evidencing that there is at least a subgroup

of patients for whom a reclassification is critical. Prognostic

stratification needs to be improved by taking into account the

complexity and the interaction between genomic drivers. Gene

expression signatures have been proposed to be effective

biomarkers and have promising potential for clinical

applications (18). In this context, we have developed a new

prognostic score based on gene expression analysis (Stellae-123)

which achieved high discriminative power in the prediction of

survival among adult AML patients (7). In the present work, we
Frontiers in Oncology 05
have validated the prognostic precision and discriminative

power of the Stellae-123 gene expression signature in 3

external cohorts, and we prove that this signature can predict

overall survival with greater precision than the ELN-2017

classification. Furthermore, our preliminary data also supports

an improved performance over the pediatric clinical risk score.

During the last years, compelling evidence has been gathered

about the possibility of optimizing risk stratification in AML using

novel sources of biological information. Indeed, several studies

indicated how different gene expression and mutational patterns
FIGURE 2

Time-dependent AUCs at 6, 12, 18 and 24 months for the Stellae-123 signature across all the cohorts. For comparison, the performance of the
ELN-2017 in the BetaAML and AMLCG-2008 cohorts is shown. In the pediatric TARGET AML cohort, the performance of the pediatric clinical
risk score was plotted.
TABLE 4 Comparison in survival prediction between ELN-2017
classification and the pediatric Clinical Risk Score (CRS) with the
Stellae-123 model over time including age.

Beat
AML

AMLCG
2008

TARGET
AML

GEP + Age: AUC 6 months 75.08 70.68 87.09

GEP + Age: AUC 12 months 74.74 69.75 77.17

GEP + Age: AUC 24 months 73.21 70.55 66.75

ELN2017 + Age: AUC 6 months 72.88 64.47 –

ELN2017 + Age: AUC 12 months 71.77 68.66 –

ELN2017 + Age: AUC 24 months 74.83 67.52 –

CRS + Age: AUC 6 months – – 78.14

CRS + Age: AUC 12 months – – 72.01

CRS + Age: AUC 24 months – – 67.36

ELN2017 + Age: BS 6 months 0, 153 0, 135 –

ELN2017 + Age: BS 12 months 0, 214 0, 179 –

ELN2017 + Age: BS 24 months 0, 186 0, 234 –

GEP + Age: BS 6 months 0, 148 0, 130 0, 014

GEP + Age: BS 12 months 0, 203 0, 178 0, 094

GEP + Age: BS 24 months 0, 192 0, 220 0, 202

CRS + Age: BS 6 months – – 0, 014

CRS + Age: BS 12 months – – 0, 096

CRS + Age: BS 24 months – – 0, 201
fro
AUCs and Brier Scores (BS) are provided.
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can improve our comprehension about disease evolution. Some of

these studies tried to incorporate expression parameters to the ELN-

2017 classification, but failed to achieve a substantial improvement

in performance (19). Other works refined the ELN-2017 risk

classification by including new mutated genes. One of this

achievements was the delineation of a “very favorable” AML

subgroup composed of patients with inv(16)/t(16;16) or biallelic

CEBPA mutations, and a “very adverse” AML subgroup composed

of patients with TP53 mutations and a complex karyotype (20). A

refinement of such classification has been presented which applies

machine learning algorithms to cytogenetics and mutational data

from thousands of AML patients (21). These results enabled the

identification of new patients subgroups who do not benefit from

alloHCT in first complete remission, and others who should be

considered for inclusion in clinical trials due to their infamous

prognosis. In the same line, Sherve et al. (2019) communicated a

novel prognostic model using artificial intelligence that

incorporated clinical, cytogenetic and mutational data. This

model achieved very precise survival predictions, largely

outperforming the ELN-2017 classifications (3). In another very

interesting study, Docking et al. (2021) elegantly demonstrated how

RNAseq can be used as a tool to characterize prognostic gene

expression signatures and to identify mutations and structural

variants in one single test. Indeed, their data supports the idea

that nearly a quarter of patients with AML can be reassigned to a

different risk group when considering transcriptomic data (22).

These findings, along with ours, strongly support the need for the

implementation of standardized, transcriptome-based prognostic

signatures for patients diagnosed with AML, a fact which will

require the incorporation of new workflows in our molecular

biology laboratories.

We observed a relatively high number of patients with high risk

mutations that were assigned to an intermediate or even low risk

group by Stellae-123. This is in line with previous findings about the

prognostic heterogeneity of these mutations in myeloid

malignancies, and particularly those affecting TP53. Bernard et al.

(2020) observed that monoallelic TP53 hits did not influence

prognosis in myelodysplastic syndrome patients, whereas multi-

hit somatic events in TP53 were independently associated with

adverse outcome (23). This is in line with data from Montalban-

Bravo et al. (2020) reflecting that the prognostic role of TP53 can be

influenced by variant frequency and genomic context (24). Thus,

variations in gene expression might reflect changes caused by

complex somatic events, and these transcriptomic shadows in

some cases might be a better reflection of functionality than the

determination of the mutation itself. As a consequence, gene

expression models might be complementary to those based on

cytogenetics and mutational parameters.

Future perspectives for Stellae-123 should be to test its

prognostic value in the context of prospective clinical trials and to

evaluate its usefulness as a guideline for transplant decision. With

respect to alloHCT, a prospective clinical trial would need

substantial logistical and economic resources. An interesting
Frontiers in Oncology 06
alternative approach would require the retrospective evaluation of

pediatric and adult patients in the real-world who were transplanted

according to the current clinical practice recommendations. This

could shed light about new groups of patients who might have a

substantial benefit from alloHCT or alternative approaches, a fact

which has been previously suggested by others (2). Additionally,

such a tool could be useful to identify high-risk patients for early

inclusion in clinical trials. Finally, an increasing number of risk

stratification models based on genomic data are being presented.

Future approaches should try to evaluate the different models, and

they might be able to derive a meta-model that outperforms the

capacity of each individual tool.

The present study has some limitations. Firstly, only 69 out of

the 121 transcripts included in the original Stellae-123 signature were

available for analysis. Nevertheless, the performance of the 69-gene

classifier was above that of the ELN-2017 and the pediatric clinical

risk score classifications. An analysis including the entire set of genes

would be expected to provide even more accurate predictions.

Secondly, additional information about patient baseline

characteristics (e.g., performance status metrics, transplant vs non-

transplant candidates…) would be useful to refine mortality

predictions. Additionally, future studies should also try to inspect

the cause of death (i.e., whether the deaths were leukemia-related,

transplant-related or not related to the hematological malignancy).

Finally, the development of homogeneous databases representing all

types of AML patients and treatment protocols, accompanied by an

extensive set of molecular data, would be a remarkable milestone in

the field. This would enable us to compare the predictive value of the

gene expression, mutational and cytogenetic compartments, and also

help in the development ofmore precise risk stratification algorithms

combining relevant information from the different biological layers.

In conclusion, we have validated the prognostic value of the

Stellae-123 gene expression signature in adult and pediatric patients

with AML. Our results indicate that this predictor is superior to the

ELN-2017 risk stratification in adult patients, and that it also

exhibits a good performance in pediatric patients. It becomes

progressively evident that gene expression profiling and machine

learning techniques can outperform conventional risk scores in the

field of AML. The usefulness of Stellae-123 in order to inform about

treatment strategies (e.g., alloHCT) and to test drug results in the

context of clinical trials should be evaluated in the future.
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