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Abstract

The spread of wearable watch devices with photoplethysmography (PPG) sensors has

made it possible to use continuous pulse wave data during daily life. We examined if PPG

pulse wave data can be used to detect sleep apnea, a common but underdiagnosed health

problem associated with impaired quality of life and increased cardiovascular risk. In 41

patients undergoing diagnostic polysomnography (PSG) for sleep apnea, PPG was

recorded simultaneously with a wearable watch device. The pulse interval data were ana-

lyzed by an automated algorithm called auto-correlated wave detection with adaptive

threshold (ACAT) which was developed for electrocardiogram (ECG) to detect the cyclic

variation of heart rate (CVHR), a characteristic heart rate pattern accompanying sleep

apnea episodes. The median (IQR) apnea-hypopnea index (AHI) was 17.2 (4.4–28.4) and

22 (54%) subjects had AHI�15. The hourly frequency of CVHR (Fcv) detected by the

ACAT algorithm closely correlated with AHI (r = 0.81), while none of the time-domain, fre-

quency-domain, or non-linear indices of pulse interval variability showed significant correla-

tion. The Fcv was greater in subjects with AHI�15 (19.6 ± 12.3 /h) than in those with AHI

<15 (6.4 ± 4.6 /h), and was able to discriminate them with 82% sensitivity, 89% specificity,

and 85% accuracy. The classification performance was comparable to that obtained when

the ACAT algorithm was applied to ECG R-R intervals during the PSG. The analysis of

wearable watch PPG by the ACAT algorithm could be used for the quantitative screening of

sleep apnea.

Introduction

Sleep apnea is a common health problem affecting 10–30% of adults [1, 2] and is associated

with sleepiness, reduced sleep quality, reduced labor and learning capacity, frequent traffic

accidents [3, 4], and increased cardiovascular disease risk [5]. Due to the limited clinical

resources of standard sleep apnea testing by polysomnography (PSG), a variety of simple test

devices have been developed to screen for sleep apnea at home [6, 7]. However, many patients

may not have the opportunity to be tested, because most patients with sleep apnea don’t have
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strong subjective symptoms or awareness to motivate them to visit a clinic or to access such

devices. Recently, wearable watch devices with photoplethysmography (PPG) sensors have

become popular. Although most of such devices still do not provide stable pulse wave signals

during daily physical activities, they can generally deliver reliable signals during sleeping [8–

10]. If sleep apnea could be screened by the pulse wave signals acquired by these devices, it

could be a considerable solution for this situation.

In this study, we examined if sleep apnea can be detected from PPG signals by applying an

automated algorithm that has been developed for sleep apnea detection from R-R intervals of

electrocardiography (ECG). The algorithm is called auto-correlated wave detection with adap-

tive threshold (ACAT) [11–13]. It detects the cyclic variations of heart rate (CVHR), a charac-

teristic pattern of R-R interval variations accompanying sleep apnea episodes [14]. In a

previous study of 862 subjects undergoing polysomnographic examination, the hourly fre-

quency of CVHR detected by the ACAT algorithm showed a correlation coefficient of 0.84

with the apnea-hypopnea index (AHI) and detected subjects with AHI�15 with 83% sensitiv-

ity and 88% specificity [11]. Although studies of pulse interval (PI) variability have reported

important differences in the amplitude of short-term fluctuation components from those of

R-R interval (RRI) variability [15–20], ACAT algorithm may be robust to such differences

because the cycle length of CVHR is long (25–130 s) and ACAT has ability to adapt the detec-

tion threshold according to the changes in CVHR amplitude.

Materials and methods

Ethics approval and consent to participate

This study was performed according to the protocol that has been approved by the Research

Ethics Committee of Nagoya City University Graduate School of Medical Sciences and Nagoya

City University Hospital (No. 60-20-0004). All subjects participated in this study gave their

written informed consent.

Subjects

The subjects of this study were consecutive patients who underwent a diagnostic overnight

PSG for sleep disordered breathing at Gifu Mates Sleep Clinic (Gifu, Japan) between March

2020 and May 2020. The inclusion criterion was adults of age�20 years. Subjects were

excluded if he or she had continuous atrial fibrillation, acute illness or chronic disease exacer-

bation requiring hospitalization within the last 3 months, or were pregnant or breastfeeding.

Protocol

Subjects visited a sleep clinic in the evening and spent overnight in a PSG testing chamber

equipped with an Alice diagnostic sleep system (Philips Respironics, Murrysville, PA, USA).

During the PSG, they wore a wearable watch device (E4 wristband, Empatica, Milano, Italy)

on their left wrist and made a continuous recording of the PPG.

Measurements

The PSG examination was started at 20:00 h and the data were collected from 21:00 h to 06:00

h the next morning. The standard PSG montages consisting of F4-M1, F4-M2, C4-M1,

C3-M2, O2-M1, and O1-M2 electroencephalograms, left and right electrooculograms, a sub-

mental electromyogram, a nasal pressure cannula, oronasal airflows, left and right tibial elec-

tromyograms, thoracoabdominal inductance plethysmograms, pulse oxy-metric arterial blood
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oxygen saturation (SpO2), a neck microphone, body position sensors, and a modified lead II

ECG.

Sleep stages and respiratory events were scored according to the AASM Manual for the

Scoring of Sleep and Associated Events [21] by registered polysomnogram technicians. The

average hourly frequencies of apneic episodes, hypopneic episodes, and the combination were

defined as apneic index (AI), hypopneic index (HI), and apnea-hypopnea index (AHI), respec-

tively. The average hourly frequencies of apneic episodes were also measured by the types

(obstructive, central, and mixed). Additionally, the averages of hourly frequency of 2% and 3%

oxygen desaturations were also measured. In the present study, time in bed instead of total

sleep time was used as the denominator in the calculation of these indices. Subjects with AHI

between 5 and 15 were defined as mild, those with AHI between 15 and 30 as moderate, and

those with AHI�30 as severe sleep apnea.

The ECG signal of the polygraph was sampled at a frequency of 100 Hz for the entire length

of the PSG. All QRS complexes were identified and labeled as normal (sinus rhythm), ventricu-

lar ectopic, supraventricular ectopic, and artifact, and R-R interval time series were generated

using only consecutive sinus rhythm R waves.

The wearable watch device (E4 wristband) emitted green light and recorded PPG as the

inverted intensity of reflected light at a sampling frequency of 64 Hz and a resolution of 0.9

nW/digit. The PPG data were uploaded offline to the manufacturer’s cloud via the Internet

(E4 connect, Empatica, Milan, Italy), where the PI time series were measured as the foot-to-

foot intervals of the pulse waves with motion artifacts removed [22, 23].

Data analysis

Both ECG RRI and PPG PI time series were analyzed by the same ACAT algorithm. The detail

of this algorithm has been reported previously [11, 12]. Briefly, the ACAT algorithm is a time-

domain method to detect the CVHR as cyclic and autocorrelated dips in beat interval time

series and determines the temporal position of the dips comprising the CVHR (Figs 1 and 2).

The ACAT algorithm are comprised of the following steps: First, the interval time series are

smoothed by second-order polynomial fitting, and all dips with widths between 10 and 120 s

and depth-to-width ratios of >0.7 ms/s are detected. Also, the upper and lower envelopes of

the interval variations are calculated as the 95th and 5th percentile points, respectively, within

a moving window with a width of 130 s. Second, the dips that met the following criteria are

considered CVHR: (1) a relative dip depth >40% of the envelope range at the point of dip

(adaptive threshold), (2) inter-dip intervals (cycle length) between 25 and 130 s, (3) a wave-

form similar to those of the two preceding and two subsequent dips with a mean morphologi-

cal correlation coefficients >0.4 (autocorrelated wave), and (4) three cycle lengths between

four consecutive dips that meet the following equivalence criteria: (3-2l1/s) (3-2l2/s) (3-2l3/s)
>0.8, where l1, l2, and l3 are three consecutive cycle lengths and s = (l1+l2+l3)/3. Finally, the

number of dips comprising the CVHR is counted and the mean hourly frequency of the dips is

calculated as Fcv.

To compare the performance of Fcv to estimate AHI, the following time-domain, fre-

quency-domain, and nonlinear indices of pulse rate variability were also computed from both

PPG PI and ECG RRI time series: the standard deviation of normal-to-normal (N-N) intervals

(SDNN), the standard deviation of 5-min average N-N interval (SDANN), the root mean

square of successive differences in N-N interval (rMSSD), deceleration capacity of N-N inter-

vals (DC) [24], short-term (4–11 beats) and long-term (>11 beats) scaling exponents com-

puted by detrended fluctuation analysis (α1 and α2) of N-N intervals [25], and the spectral

exponent (β), the total power, ultra-low-frequency (<0.0033 Hz) power (ULF), very-low-
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frequency (0.0033–0.04 Hz) power (VLF), low-frequency (0.04–0.15 Hz) power (LF), high-fre-

quency (0.14–0.40 Hz) power (HF), and LF-to-HF power ratio (LF/HF) of N-N interval varia-

tion. The N-N interval of PI was defined as the interval between 400 and 1400 ms with a

difference <20% from the local average interval. The N-N interval of RRI was defined as the

interval of consecutive beats in sinus rhythm. All these indices were calculated for the entire

data length of the PSG study. The total power, ULF, VLF, LF, and HF were calculated as natu-

ral-log transformed values.

Statistical analysis

The program package of Statistical Analysis System (SAS institute, Cary, NC, USA) was used

for statistical analyses. Relationships between quantitative variables were evaluated by linear

regression analysis and Pearson’s correlation coefficients. Differences in quantitative variables

between groups dichotomized by AHI level were evaluated by t-test. The discriminant perfor-

mance of indices between dichotomized AHI groups was evaluated by the area under the

curve (AUC) of receiver-operating characteristic (ROC) curve. The significance of differences

in AUC between indices were evaluated with Hanley and McNeil’s method [26]. The discrimi-

natory performance of indices with cutoff thresholds was evaluated with the sensitivity, speci-

ficity, accuracy, and positive and negative predictive values (PPV and NPV, respectively). The

GLM procedure was used to evaluate the factors that influence the relationship between Fcv

Fig 1. Algorithm of autocorrelated wave detection with adaptive threshold (ACAT). The algorithm detects the

temporal positions of cyclic variation of heart rate (CVHR) in the beat interval time series as the cyclic and

autocorrelated dips that meet four specific criteria (modified from Fig 1 in Ref. [11]).

https://doi.org/10.1371/journal.pone.0237279.g001
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and AHI, by which examining if the factors had a significant effect on the linear regression

model of AHI by Fcv. Statistical significance was considered for P<0.05.

Results

Subjects’ characteristics

Forty-one consecutive patients (age [IQR], 47 [42–58] year, 7 females) who underwent diag-

nostic PSG for sleep disordered breathing were studied (Table 1). They had a body mass index

(BMI) of 25.4 (IQR, 23.4–28.2) kg/m2 and an Epworth Sleepiness Scale score of 4.5 (1.3–16.6).

In the PSG study, the median AHI (IQR) was 17.2 (4.4 to 28.4), 22 (54%) of the subjects had

an AHI�15, and the proportion of obstructive, central, and mixed apnea episodes were 85%,

4%, and 11%, respectively.

Fig 2. Detection of CVHR from photoplethysmography (PPG) pulse interval time series by the ACAT algorithm in a representative

subject (a 66-y male with a body mass index of 27.0 kg/m2 and an apnea-hypopnea index of 79.3). Panel a: original pulse interval time

series. Panel b: second-order polynomial fitting line (solid line) and the upper and lower envelopes of the fitting line (dashed lines). Panel

c: the relative dip depth to the envelope width at the time. Panel d: mean morphological correlation coefficients of dip with the two

preceding and two subsequent dips. Panel e: temporal positions (blue bars) of dips detected as CVHR.

https://doi.org/10.1371/journal.pone.0237279.g002
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Detection of CVHR from PPG PI and ECG RRI time series

Fig 3 shows ECG RRI and PPG PI time series simultaneously recorded in a representative sub-

ject. Although the two trends differ in the fine structure of fluctuations, the repeated dips cor-

responding to CVHR (blue bars) appear similarly in both trends. Among indices of PI and

RRI variability, those reflecting long-term fluctuations (mean NN interval, SDNN, SDANN,

and total power) showed closer correlations between PI and RRI than those reflecting short-

term fluctuations (DFA α1, LF, and HF) (Table 2). Fcv measured from PI correlated with Fcv

from RRI at r = 0.90 (Fig 4b).

Relationships between PI and RRI variability and sleep apnea indices

Table 3 shows the correlation coefficients of PI and RRI variability indices with sleep apnea

indices. Fcv measured from PI correlated with AHI at r = 0.81, while Fcv from RRI at r = 0.85.

Common to both PI and RRI, Fcv showed closer correlations with AI than with HI, and with

OAI than with CAI, and it also showed close correlations with 2% and 3% ODIs. No such

strong correlations were observed for either time-domain, frequency-domain, or nonlinear

indices of variabilities of either PI or RRI, although weak positive correlations were observed

between VLF and AI for both PI and RRI.

Performance of screening for moderate-to-severe sleep apnea

To examine the performance of the Fcv of PI and RRI as indicators for screening sleep apnea,

the Fcv was compared between subjects with AHI <15 (no or mild sleep apnea) and those

with AHI�15 (moderate-to-severe sleep apnea). While no significant group difference was

observed for any variability index of either PI or RRI, Fcv was greater in subjects with

Table 1. Patients’ characteristics (n = 41).

Age, y 48 (42–58)

Female (%) 7 (17%)

Body mass index, kg/m2 25.4 (23.4–28.2)

Systolic blood pressure, mm Hg 128 (114–139)

Diastolic blood pressure, mm Hg 81 (74–91)

Epworth Sleepiness Scale score 4.5 (1.3–16.6)

Time in bed, min 471 (448–479)

Total sleep time, min 375 (332–418)

Sleep efficiency, % 81.4 (74.4–88.2)

AHI 17.2 (4.4–28.4)

AI 1.5 (0.5–6.9)

HI 12.0 (4.4–16.2)

OAI 1.3 (0.2–6.9)

CAI 0.1 (0.0–0.3)

MAI 0.1 (0.0–0.4)

2% ODI 15.2 (3.6–26.1)

3% ODI 8.0 (2.4–20.5)

AHI >15 (%) 22 (54%)

Data are median (IQR) or number (%).

The denominator in the calculation of the apnea and hypopnea indices is time in bed.

AHI = apnea-hypopnea index; AI = apnea index; HI = hypopnea index; OAI = obstructive apnea index;

CAI = central apnea index; MAI = mixed apnea index; ODA = oxygen desaturation index.

https://doi.org/10.1371/journal.pone.0237279.t001
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moderate-to-severe sleep apnea for both PI and RRI (Table 4). The AUC of ROC curve for the

group classification was 0.84 and 0.89 for the Fcv of PI and RRI, respectively, which were sig-

nificantly greater than the AUC of any other variability indices.

ROC curve analysis revealed that the optimal cutoff of Fcv to screening moderate-to-sever

sleep apnea was 11 /h for PI and 15 /h for RRI. With these cutoff values, the Fcv of PI detected

moderate-to-sever sleep apnea with 89% specificity, 82% sensitivity, 81% NPV, 90% PPV, and

85% accuracy, and the Fcv of RRI detected it with 95% specificity, 82% sensitivity, 82% NPV,

95% PPV, and 88% accuracy (Table 5). Fig 4 show the linear relationships between the Fcv of

PI and RRI and AHI with the cutoff values.

Factors affecting the relationships between Fcv and AHI

The effects of age, sex, BMI (both continuous and dichotomized at 25 kg/m2), systolic and dia-

stolic blood pressures, Epworth Sleepiness Scale score, time in bed, total sleep time, and sleep

efficiency on the relationships of Fcv and AHI were analyzed by the GLM procedure. None of

these factors, however, had a significant impact on the relationships for the Fcv of either PI or

RRI.

In the case-based analyses, Fcv of PI was <11 /h in four subjects with AHI >15 (false nega-

tive) and FCV of PI was >11 /h in two subjects with AHI <15 (false positive). Among the

false-negative cases, one subject had frequent ventricular ectopic beats (54% of total beats) dur-

ing the PSG, while Fcv of ECG was >15 /h and correctly detected CVHR even in this case. In

the other three false-negative subjects, ECG Fcv was also <15 /h. Beat interval variations asso-

ciated with their sleep apnea episodes showed large cycle length variability and were excluded

Fig 3. R-R interval and pulse interval time series from simultaneously recoded electrocardiogram (ECG) and PPG in a

representative subject (a 66-y male with an AHI of 79.3). Vertical blue lines show the temporal positions of CVHR.

https://doi.org/10.1371/journal.pone.0237279.g003
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from CVHR by the cyclicity criteria (Fig 1). In the false-positive cases, non-specific beat inter-

val variations were misidentified as CVHR due to over-adjustment for low CVHR amplitudes

during the classification step based on the relative depth criteria (Fig 1). This error did not

occur with ECG Fcv.

Table 2. Correlations between pulse interval and R-R interval variability indices calculated from simultaneously

recorded photoplethysmography (PPG) and electrocardiography (ECG) (n = 41).

Correlation coefficient r
Mean NN interval 0.99

SDNN 0.96

SDANN 0.96

rMSSD 0.74

DC 0.88

DFA α1 0.42

DFA α2 0.74

β 0.64

Total power 0.90

ULF 0.89

VLF 0.74

LF 0.69

HF 0.64

LF/HF 0.74

Fcv 0.90

All correlation coefficients are significant.

NN = normal-to-normal; SDNN = standard deviation of NN interval; SDAPI = standard deviation of 5-min average

NN intervals; rMSSD = root mean square of successive differences in NN interval; DC = deceleration capacity of NN

intervals; DFA = detrended fluctuation analysis; α1 and α2 = short-term (4–11 beats) and long-term (>11 beats)

scaling exponents of NN interval fluctuation; β = spectral exponent of NN interval fluctuation; ULF = ultra-low-

frequency (<0.0033 Hz) power of NN interval variation; VLF = very-low-frequency (0.0033–0.04 Hz) power;

LF = low-frequency (0.04–0.15 Hz) power; HF = high-frequency (0.14–0.40 Hz) power; LF/HF = LF-to-HF ratio;

Fcv = frequency of cyclic variation.

https://doi.org/10.1371/journal.pone.0237279.t002

Fig 4. Relationships of PPG and ECG Fcv with AHI. In all panels a-c, the plots represent individual subjects. The solid line in each panel represents the linear

regression line of the data for all subjects. Horizontal and vertical dashed lines in panels a and c represent the thresholds of 15 for AHI, 11 /h for PPG Fcv, and

15 /h for ECG Fcv, respectively.

https://doi.org/10.1371/journal.pone.0237279.g004
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Discussions

By applying the ACAT algorithm developed for the automated detection of sleep apnea from

ECG, we investigated if sleep apnea can be detected from PPG signals obtained by a wearable

watch device. We observed that the Fcv measured from PPG correlated with AHI at r = 0.81

and Fcv values�11 /h detected subjects with moderate-to-severe sleep apnea (AHI�15) with

89% specificity, 82% sensitivity, 81% NPV, 90% PPV, and 85% accuracy. The classification per-

formance of the Fcv of PPG was comparable to that of ECG. Our findings indicate that by

using the ACAT algorithm, PPG signal obtained from a wearable watch device can be used to

screen patients with moderate-to-severe sleep apnea.

To our knowledge, this is the first study to show that sleep apnea episodes in adults can be

quantitatively detected by PPG pulse wave signals of wearable watch devices. In a study of

simultaneous recording of PPG and ECG in normal subjects and patients with obstructive

sleep apnea during sleep, Khandoker et al [27] analyzed pulse rate and heart rate variability.

Table 3. Correlations of PPG pulse interval and ECG R-R interval variability indices with sleep apnea indices (n = 41).

AHI AI HI OAI CAI MAI 2% ODI 3% ODI

PPG pulse interval
SDNN 0.00 0.20 -0.24 0.18 0.10 0.15 0.02 0.06

SDANN 0.02 0.17 -0.18 0.17 0.03 0.11 0.02 0.05

rMSSD -0.14 0.04 -0.32� 0.05 -0.02 0.01 -0.12 -0.07

DC 0.02 0.08 -0.07 0.05 0.19 0.12 0.02 0.04

DFA α1 0.17 0.27 -0.02 0.22 0.26 0.31� 0.17 0.18

DFA α2 -0.22 -0.32� -0.01 -0.31� -0.15 -0.22 -0.23 -0.26

β -0.21 -0.24 -0.09 -0.23 -0.21 -0.14 -0.21 -0.21

Total power -0.02 0.20 -0.29 0.21 0.07 0.07 -0.01 0.04

ULF -0.20 -0.05 -0.31� -0.02 -0.11 -0.12 -0.19 -0.15

VLF 0.13 0.31� -0.15 0.30 0.22 0.20 0.14 0.17

LF 0.04 0.21 -0.18 0.19 0.25 0.16 0.05 0.08

HF 0.10 0.23 -0.10 0.24 0.16 0.05 0.10 0.13

LF/HF -0.08 -0.05 -0.09 -0.11 0.10 0.17 -0.10 -0.12

Fcv 0.81� 0.80� 0.53� 0.76� 0.29 0.58� 0.83� 0.83�

ECG R-R interval
SDNN 0.00 0.18 -0.24 0.17 0.10 0.14 0.01 0.04

SDANN -0.09 0.04 -0.22 0.03 0.01 0.05 -0.09 -0.06

rMSSD 0.06 0.27 -0.23 0.30 0.02 0.06 0.08 0.11

DC 0.06 0.16 -0.10 0.12 0.25 0.19 0.06 0.08

DFA α1 -0.01 0.08 -0.12 0.03 0.16 0.18 0.00 0.03

DFA α2 0.08 0.01 0.13 0.08 -0.05 -0.22 0.06 0.04

β -0.02 -0.17 0.18 -0.16 -0.12 -0.10 -0.03 -0.05

Total power 0.07 0.29 -0.25 0.30 0.13 0.13 0.08 0.12

ULF -0.11 0.05 -0.26 0.08 -0.01 -0.07 -0.10 -0.07

VLF 0.19 0.40� -0.16 0.38� 0.24 0.28 0.21 0.25

LF 0.00 0.29 -0.38� 0.26 0.25 0.21 0.02 0.08

HF 0.06 0.26 -0.22 0.27 0.14 0.08 0.07 0.11

LF/HF -0.05 -0.03 -0.06 -0.10 0.11 0.18 -0.07 -0.10

Fcv 0.85� 0.80� 0.60� 0.74� 0.33� 0.62� 0.85� 0.85�

�Significant correlation coefficients.

The abbreviations are explained in the footnote to Tables 1 and 2.

https://doi.org/10.1371/journal.pone.0237279.t003
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Table 4. PPG pulse interval and ECG R-R interval variability indices in patients grouped by AHI and the discriminant performance of the indices.

AHI�15 (n = 19) AHI >15 (n = 22) P (t-test) AUC

PPG pulse interval
SDNN, ms 86 ± 35 77 ± 26 0.3 0.54�

SDANN, ms 58 ± 26 54 ± 21 0.5 0.54�

rMSSD, ms 53 ± 20 43 ± 18 0.1 0.68

DC, ms 8.1 ± 2.4 7.8 ± 3 0.7 0.50�

DFA α1 0.93 ± 0.13 0.95 ± 0.23 0.8 0.54�

DFA α2 1.01 ± 0.07 1.00 ± 0.13 0.7 0.58�

β 1.19 ± 0.14 1.15 ± 0.22 0.5 0.62�

Total power, ms2 8.7 ± 0.6 8.5 ± 0.8 0.2 0.58�

ULF, ms2 8.2 ± 0.8 7.7 ± 0.9 0.06 0.66

VLF, ms2 7.2 ± 0.5 7.0 ± 1.2 0.5 0.47�

LF, ms2 5.9 ± 0.7 5.5 ± 1.4 0.2 0.53�

HF, ms2 5.7 ± 0.8 5.5 ± 1.6 0.5 0.46�

LF/HF 1.4 ± 0.7 1.3 ± 0.8 0.5 0.59�

Fcv, /h 6.4 ± 4.6 19.6 ± 12.3 <0.0001 0.84

ECG R-R interval
SDNN, ms 94 ± 43 85 ± 29 0.4 0.53†

SDANN, ms 67 ± 42 55 ± 21 0.3 0.55†

rMSSD, ms 39 ± 22 37 ± 21 0.7 0.51†

DC, ms 9.8 ± 2.1 9.3 ± 3.3 0.6 0.50†

DFA α1 1.13 ± 0.28 1.07 ± 0.43 0.6 0.53†

DFA α2 1.02 ± 0.08 1.08 ± 0.15 0.1 0.62†

β 1.13 ± 0.15 1.19 ± 0.16 0.2 0.61†

Total power, ms2 8.7 ± 0.5 8.6 ± 0.8 0.5 0.53†

ULF, ms2 7.9 ± 0.6 7.7 ± 0.9 0.4 0.55†

VLF, ms2 7.6 ± 0.7 7.6 ± 0.9 0.8 0.50†

LF, ms2 6.4 ± 0.6 5.9 ± 1.1 0.06 0.61†

HF, ms2 5.7 ± 1.1 5.5 ± 1.2 0.4 0.50†

LF/HF 2.52 ± 1.7 1.87 ± 1.15 0.1 0.60†

Fcv, /h 8.1 ± 5 26.9 ± 15.2 <0.0001 0.89

�Significantly smaller than the AUC of PPG Fcv.
†Significantly smaller than the AUC of ECG Fcv.

AUC = area under the receiver-operating curve for classification between patients with AHI�15 and >15. The other abbreviations are explained in the footnotes to

Tables 1 and 2.

https://doi.org/10.1371/journal.pone.0237279.t004

Table 5. Classification performance of PPG and ECG Fcv between patients grouped by AHI.

AHI�15 AHI >15

PPG pulse interval Fcv <11/h 17 4 NPV = 81%

Fcv�11/h 2 18 PPV = 90%

Specificity = 89% Sensitivity = 82% Accuracy = 85%

ECG R-R interval Fcv <15/h 18 4 NPV = 82%

Fcv�15/h 1 18 PPV = 95%

Specificity = 95% Sensitivity = 82% Accuracy = 88%

NPV = negative predictive value; PPV = positive predictive value. The other abbreviations are explained in the footnotes to Tables 1 and 2.

https://doi.org/10.1371/journal.pone.0237279.t005
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They found that frequency domains and complexity analysis measures of both pulse rate and

heart rate variability differ between 2-min epochs of normal and sleep apnea events. They also

observed that several variability measures (SDNN, rMSSD, HF, LF/HF, and sample entropy)

of pulse rate and heart rate differ significantly during sleep apnea. They concluded that pulse

rate variability could discriminate between epochs with and without sleep apnea, but it does

not precisely reflect heart rate variability in sleep disordered breathing. Using the Apple Watch

device, Tison et al [28] collected PPG pulse rate and step count continuously for an average of

8.9 weeks in 6,115 subjects. They performed machine learning using deep neural networks and

reported that the developed model predicted prevalent sleep apnea with 90.4% sensitivity and

59.8% specificity. The present study is in the same line with these earlier studies, but none of

the earlier studies has reported the quantitative relationships of metrics derived from PPG

with AHI. The method we reported here detects each episode of sleep apnea as the CVHR of

PI and thus, it can estimate the number and temporal positions of sleep apnea episodes.

The ACAT algorithm we used to detect CVHR has been developed and optimized for ECG

RRI [11–13], but the present study indicated that the ACAT algorithm can also be used for

PPG PI and performs as well as for ECG RRI. Many studies have reported discrepancies and

non-substitution of pulse rate and heart rate variability [15–19], particularly in various diseases

including sleep apnea [27]. Nonetheless, the present study showed equivalence of PPG and

ECG in the detection of sleep apnea. This seems to be due to the characteristics of CVHR and

to the features of ACAT algorithm. Although inconsistencies in pulse rate and heart rate vari-

ability have been reported with indicators that quantify short-term fluctuations such as LF and

HF components [8, 16, 19], CVHR is a long-term fluctuation with a cycle length between 25

and 130 s. In fact, we observed almost the same wave forms of CVHR for ECG RRI and PPG

PI, while higher-frequency fluctuations showed apparent differences (Fig 3). Consistent with

this, closer correlations between RRI and PI were observed for indices reflecting long-term

fluctuations than for those reflecting short-term fluctuations (Table 2). Additionally, the

ACAT algorithm performs the preprocessing of PI signals by 2nd-order polynomial fitting

with 20-s moving window to remove high frequency fluctuations with a cycle length <~20 s

(Figs 1 and 2). Furthermore, the algorithm uses an adaptive threshold (depth relative to the

envelope range) to detect dips, rather than a fixed threshold. These features are considered to

enhance robustness of the algorithm against differences in short-term components and in

amplitudes between heart rate and pulse rate variability.

For both PI and RRI, Fcv closely correlated with 2% and 3% ODI, and showed closer corre-

lations with AI than with HI (Table 3). These suggest that CVHR may be more likely to occur

with apnea causing hypoxemia than with hypopnea. In an earlier study, Nakano et al. [29]

reported the effect of BMI on the relationship between ODI and AHI. They reported that 3%

ODI�15 was the optimal cutoff to detect moderate-to-severe sleep apnea (AHI�15) in

patients with BMI�25 kg/m2, while 3% ODI�10 was the optimal cutoff in patients with BMI

<25 kg/m2, suggesting that sleep apnea in obese patients has a greater apnea-to-hypopnea

ratio than that in non-obese patients. In the present study, we observed no significant impact

of BMI on the relationship between Fcv and AHI; but we observed no significant difference

either in apnea-to-hypopnea ratio between those with BMI�25 kg/m2 and<25 kg/m2 among

patients with AHI�15 (apnea-to-hypopnea ratio, 1.3 ± 1.4 vs. 0.4 ± 0.3, P = 0.07). Further

studies are needed to clarify the impacts of obesity on the estimation of AHI by Fcv.

Given the widespread availability of wearable watch devices with a PPG sensor, the results

of the present study show great potential for using this social resource as a cost-effective large-

scale screening of sleep apnea. Sleep apnea is an increased risk of traffic accidents [3, 4] and

cardiovascular diseases [5], and this risk may be reduced by treatment [30–32]. Finding

patients who have been left undiagnosed will have great benefits to social safety and the health
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care economy. Currently, many excellent portable devices are available for sleep apnea screen-

ing, but their use depends on the patient’s motivation. Even if the diagnostic accuracy of PPG

sleep apnea detection is comparable to other Type 4 portable devices [33], PPG wearable

devices used regardless of motivation may contribute to the detection of sleep apnea in previ-

ously unscreened populations.

This study has several limitations. First, we used only one type of wearable watch device (E4

wristband, Empatica, Milano, Italy) and the pulse wave signals were analyzed by the manufac-

turer’s cloud application via Internet (E4 connect, Empatica, Milan, Italy). Therefore, the

results may vary when using other types of device and when measuring PI in other ways. The

ACAT algorithm, however, uses only smoothed PI data (2nd-order polynomial fitting with

20-s moving window), which makes the algorithm robust against noises and variations in the

accuracy of PI measurement. Second, the ACAT algorithm was developed to detect sleep

apnea from sinus rhythm ECG and is not applicable to atrial fibrillation. We excluded subjects

who showed continuous atrial fibrillation during the PSG, but sleep apnea, particularly its cen-

tral form, often accompanies atrial fibrillation [5]. Development of sleep apnea detection algo-

rithms under atrial fibrillation is desired. Third, this study compared the Fcv frequency with

AHI whose denominator was time in bed. This is because the PPG method cannot estimate

total sleep time (time in bed minus time of awakening). As a result, the Fcv frequency can

underestimate AHI with total sleep time as the denominator. To compensate for this differ-

ence, a method of estimating sleep efficiency from wearable devices need to be incorporated.

Finally, this study used the ACAT algorithm to detect CVHR by PPG, but the classification cri-

teria of this algorithm are optimized for ECG detection of CVHR. The performance of CVHR

detection by PPG may be improved by PPG-specific classification criteria. These limitations

are topics for future studies.

Conclusions

We examined if sleep apnea can be quantitatively detected from PPG pulse intervals by an

automated algorithm called ACAT. The Fcv of PI measured by the ACAT correlated with AHI

at r = 0.81 and Fcv values�11 /h detected subjects with moderate-to-severe sleep apnea (AHI

�15) with a PPV of 90%. The analysis of nighttime PPG by the ACAT algorithm could be used

for the quantitative screening for sleep apnea.
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