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Oral cavity is an ideal habitat for more than 1,000 species of microorganisms. 

The diverse oral microbes form biofilms over the hard and soft tissues in the 

oral cavity, affecting the oral ecological balance and the development of oral 

diseases, such as caries, apical periodontitis, and periodontitis. Currently, 

antibiotics are the primary agents against infectious diseases; however, the 

emergence of drug resistance and the disruption of oral microecology have 

challenged their applications. The discovery of new antibiotic-independent 

agents is a promising strategy against biofilm-induced infections. Natural 

products from traditional medicine have shown potential antibiofilm activities 

in the oral cavity with high safety, cost-effectiveness, and minimal adverse 

drug reactions. Aiming to highlight the importance and functions of natural 

products from traditional medicine against oral biofilms, here we summarized 

and discussed the antibiofilm effects of natural products targeting at different 

stages of the biofilm formation process, including adhesion, proliferation, 

maturation, and dispersion, and their effects on multi-species biofilms. The 

perspective of antibiofilm agents for oral infectious diseases to restore the 

balance of oral microecology is also discussed.
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Introduction

The oral cavity represents a favorable habitat for over 1,000 species of 
microorganisms, including viruses, bacteria, archaea, and fungi, due to its moist 
condition and suitable temperature (Marsh et al., 2011; Morse et al., 2018). Most oral 
microorganisms exist in the form of biofilms (Hu et  al., 2019). Maintaining the 
ecological balance between the human host and intrinsic oral microorganisms is 
essential for oral health (Lof et al., 2017; Bacali et al., 2022). However, the dysbiosis of 
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oral microbiota may promote the growth of some pathogenic 
species to form the oral pathogenic biofilms, which cause many 
oral infectious diseases such as caries, apical periodontitis, and 
periodontitis (Lof et  al., 2017). These diseases have highly 
increased economic pressure and seriously affected global 
public health (2020) (Olusanya et al., 2020).

In recent years, the overuse of antibiotics in infectious 
diseases has gradually challenged their clinical treatment due to 
the rapid increase in drug resistance (Tent et  al., 2019). 
Moreover, the broad-spectrum antimicrobial effects of 
antibiotics have been proved to cause the microecological 
dysbiosis (Kuang et al., 2018). Therefore, many non-traditional 
treatments have been developed, such as the application of 
virulence disruptors, immunomodulators, phage therapies and 
so on (Tse et al., 2017). The natural products from traditional 
medicine have been proved to be one of the practical alterative 
for antibiotics in infectious diseases (Melander et al., 2020). The 
various functions, high safety and low cost of natural products 
also highlight their future broader application in clinical practice 
(Fan et al., 2021).

Oral infectious diseases are mainly caused by biofilms (Marsh 
and Zaura, 2017). To better understand the mechanisms and 
functions of natural products from traditional medicine against 
oral biofilms, we summarized and discussed the antibiofilm effects 
and mechanisms of natural products targeting at the different 
stages of oral biofilm formation. We also highlighted that restoring 
the balance of oral microecology without killing oral 
microorganisms broadly was a preferable way to develop new 
antimicrobial agents for oral infectious diseases.

Oral microbiome and its 
importance in oral cavity

According to the Human oral microbiome database (HOMD), 
there are nearly 150 genera and 700 prokaryote species in human 
oral cavity, and 96% of which are classified in six phyla (Gao et al., 
2018). Over 250 species have been cultured and characterized; 
however, 20–60% of the species in the oral microbiome are 
unculturable currently. Some of the oral bacteria have been 
confirmed as the main pathogens of oral infectious diseases 
(Sedghi et  al., 2021). For example, Streptococcus mutans and 
Porphyromonas gingivalis are considered as the key pathogens to 
cause caries and periodontitis, respectively. Beyond the bacterome, 
oral mycobiome is relatively rare (<0.1% in microbiome) and has 
not been well characterized (Baker et al., 2017). In recent years, 
large evidence proved the interaction between oral infectious 
diseases and oral microbiome, such as caries (Bowen et al., 2018), 
periodontitis (Lamont et al., 2018), and oral cancer (Irfan et al., 
2020). Many systematic diseases, such as those from the 
gastrointestinal system and nervous system are also associated 
with oral microbial dysbiosis (Peng et al., 2022). The relationships 
between oral microbiome and oral or systematic health highlight 
the importance to maintain the balance of oral microbiome.

Mechanism of biofilm formation 
and its significance

Biofilms are composed of microbial cells living in a dynamic 
and structured manner as well as the three-dimensional (3D) 
extracellular matrix of polymeric substances such as 
exopolysaccharides, proteins, and nucleic acids (Klein et  al., 
2015). Oral biofilm development can be roughly divided into 
four steps: adhesion, proliferation, maturation, and dispersion 
(Figure 1). Initially, the planktonic cells reversibly adhere to the 
tooth surface or other niches in oral cavity. Then, they interact 
with polymeric substances to form an irreversible adhesion and 
build three-dimensional structures. Finally, the matured biofilm 
displays motility characteristics and disperses to other surfaces, 
starting the same cycle (Stoodley et  al., 2002; Mann and 
Wozniak, 2012). Biofilms have higher virulence and reduced 
susceptibility to antimicrobial agents compared with planktonic 
microorganisms due to the following aspects: first, the 
abundance of extracellular polysaccharides in biofilms can 
surround the microbial cells, thus restricting the penetration of 
antibacterial agents (Ciofu et al., 2017); second, the gradient of 
the micronutrient composition of the biofilms allows 
opportunistic pathogens to survive in nutrient-limited areas 
where they may become dormant and resistant to antibiotics 
(Ciofu et al., 2017); third, reciprocal, symbiotic, and antagonistic 
relationships occur among different species in the biofilm 
community. Their interactions can be  affected by the 
environment, nutrition, and other factors to promote the 
resistance of biofilms to antibacterial agents. Moreover, the 
quorum sensing (QS) systems activated in the biofilm also 
increase the virulence and survival rate of biofilm 
microorganisms (Marsh et  al., 2011; Hu et  al., 2019). Thus, 
biofilm infection is more difficult to control and it is necessary 
to find new approaches for the treatment and prevention of 
biofilm infection.

Advantages of antibiofilm therapy

Antibiofilm therapies are highly effective in controlling oral 
biofilm infections. For example, the usage of tetracycline, 
doxycycline, and minocycline in the clinical treatment of 
periodontitis resulted in a great effect on the primary outcome 
(probing pocket depth, PPD; Matesanz-Pérez et al., 2013). Except 
the antibiotics, many other therapies, including surgical therapy, 
bacteriophages and natural products, are also available to control 
oral biofilm infections with different specific advantages (Tse et al., 
2017). Natural products, especially those from traditional 
medicine, are available from wide sources with various biological 
activities, which are well practical resources for oral biofilm 
control (Melander et al., 2020). Natural products have already 
been applicated in clinical practice for hundreds of years, thus, 
they are more cost-effective and safe in the controls of biofilm 
infections (Atanasov et al., 2021).
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Antibiofilm effects and 
mechanisms of natural products 
targeting at the different stages 
of biofilm formation

Natural products have become a hot research topic in recent 
years due to their promising antibacterial effects and various 
mechanisms. Many natural products have shown effective 
potential in inhibiting oral biofilms and controlling biofilm-
related diseases, such as caries and periodontitis (Zheng et al., 
2011). However, the pharmacological mechanisms of most natural 
products are not fully elucidated, and their mechanisms of 
inhibiting biofilm formation may be quite different from those of 
inhibiting the planktonic microorganisms. Biofilm development 
can be roughly divided into four stages: adhesion, proliferation, 
maturation, and dispersion. Here, we summarized and discussed 
the natural products targeting at the different stages of oral biofilm 
development (Table 1).

Targeting at the cell colonization and 
adhesion

Adhesion is the initial step in biofilm formation and 
preventing the adhesion is the key strategy in controlling 
biofilm-related diseases. Oral microbial cells are reversibly 
attached to solid or non-solid surfaces and are further 
encapsulated by extracellular polymeric substances (EPS). The 
microcolonies formed by microorganisms and EPS are a 
hallmark feature of biofilms (Nadar et  al., 2022). The 
interaction between microorganisms and substratum through 
specific protein receptors is essential during the adhesion 

process. Thus, the disruption of the interaction between 
microorganisms and substrate surfaces (such as cell surface-
associated adhesins, EPS) can effectively prevent 
biofilm formation.

Effect of natural products on cell adhesion
Natural products have strong anti-adhesion effects on both 

bacteria and fungi. For some gram-positive oral bacteria, such as 
Streptococcus spp. and Staphylococcus spp., previous studies have 
shown that curcumin and tea extracts had excellent anti-adhesion 
effects. Curcumin, a natural product isolated from Curcuma longa 
(turmeric), decreased Streptococcus mutans adhesion to glass at a 
concentration of 8 μg/ml (Song et al., 2012) and inhibited 34–66% 
adhesion of Staphylococcus aureus to human keratinocytes 
(HaCaT) at 4.375 μmol/l (Sardi et  al., 2017). Tea catechin 
epigallocatechin gallate (EGCG), a polyphenol extracted from tea, 
inhibited S. mutans adhesion in a dose-dependent manner at 
7.8–31.25 μg/ml and reduced cell adhesion by 98.33% at 2 h (Xu 
et  al., 2012). Similarly, the inhibition rate of emodin, an 
anthraquinone isolated from Chinese rhubarb, was 65% at the 
concentration of 4 μg/ml (Xiang et al., 2017). More importantly, 
natural products have also shown an excellent anti-adherent effect 
on antibiotic-resistant strains such as methicillin-resistant 
Staphylococcus aureus (MRSA). Curcumin showed an inhibitory 
effect at 8.65 μmol/l against MRSA (Sardi et al., 2017). For gram-
negative oral species, EGCG showed a dose-dependent inhibition 
on Porphyromonas gingivalis adhesion at a concentration of 
25–62.5 μg/ml (Fournier-Larente et al., 2016), whereas it inhibited 
Fusobacterium nucleatum adhesion at 125 μg/ml (Ben Lagha et al., 
2017). Natural products can also inhibit the adhesion of oral fungi. 
Raspberry extracts (fruit of a shrub in Europe and northern Asia) 
exhibited a strong anti-adhesion effect on Candida spp. at 

FIGURE 1

The four steps of oral biofilm formation and the anti-oral biofilm targets of natural products.
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TABLE 1 Anti-oral biofilm natural products and their molecular mechanisms.

Plant extracts/ 
compounds Mechanism Target bacteria Antibiofilm effect Reference

Propolis Inhibiting SpaP and glycosyltransferases 

enzymes (GtfB, GtfC, GtfD)

S. mutans Decreased adhesion rate and EPS 

production.

Veloz et al. (2016)

Curcumin Inhibition of SrtA, Gbps, Gtfs, Ftfs gene 

expression.

S. mutans Decreased biofilm viability: 84.059%. 

Decreased biofilm thickness and EPS 

production.

Li et al. (2020b)

Curcumin Inhibition of SpaP, Gtfs, SrtA, ComCD, and 

LuxS gene expression.

S. mutans Decreased EPS production and biofilm 

formation.

Li et al. (2018)

Curcumin Inhibition of key adhesins (Als1 and Als3) 

gene expression, promotion of genes related 

to aggregation (Als5 and Aaf1).

C. albicans Decreased biofilm formation, initial 

adhesion, and promotion of Candida 

albicans aggregation.

Alalwan et al. (2017)

Theaflavins Inhibition of Gbps and Gtfs S. mutans Decreased virulence factors (adherence, 

acid production, and EPS production) and 

biofilm formation.

Kong et al. (2021)

Sodium new 

houttuyfonate

Inhibition of Gtfs, quorum sensing S. mutans Decreased biofilm formation, EPS 

production, and quorum sensing. (100 μg/

ml).

Shui et al. (2021)

Sodium 

houttuyfonate

Inhibition of BdlA (biofilm dispersion 

regulator) and FliC (gene related to flagella-

mediated swimming motility) gene 

expression and pyocyanin production.

P. aeruginosa Decreased biofilm formation, virulence 

factors, and inhibition of biofilm 

dispersion.

Shao et al. (2013); Wang et al. 

(2019)

Sodium New 

Houttuyfonate

Inhibition of Ras1-cAMP-Efg1 pathway 

related genes.

C. albicans Decreased biofilm formation, adhesion, 

and change in the morphology of cells.

Wu et al. (2020)

EGCG Inhibition of Gtfs, Ftfs gene expression. S. mutans Decreased biofilm viability:97% (4.4 mg/

ml) and decreased EPS production.

Schneider-Rayman et al. 

(2021)

Green tea extract 

and EGCG

Inhibition of genes related to host 

colonization (FimA, HagA, HagB), tissue 

destruction (RgpA, Kgp), and heme 

acquisition (Hem).

P. gingivalis Decreased biofilm initial adhesion and 

quorum sensing.

Fournier-Larente et al. (2016)

Tea extract/EGCG Inhibition of H2S production. F. nucleatum Decreased biofilm formation, adhesion; 

inhibition of the growth and hemolysis 

and hydrogen sulfide production

Ben Lagha et al. (2017)

Water extract of 

Galla chinensis

Inhibition of IcaABD, YycFG gene expression 

and carbohydrate metabolic processes.

MRSA Decreased biofilm formation and EPS 

production.

Wu et al. (2019)

Aloe-emodin Inhibition of extracellular proteins and PIA 

production.

S. aureus Decreased adherence, extracellular matrix 

production and biofilm formation.

Xiang et al. (2017)

Emodin Inhibition of biofilm-related genes (DltB, 

SarA, SrtA, AgrA, IcaA, CidA).

S. aureus Decreased biofilm formation and eDNA 

(importance to initial adherence) level.

Yan et al. (2017)

Baicalin Inhibition of genes related to acid production 

(Idh), quorum sensing (ComX), and biofilm 

formation (FtsZ, GtfC, GbpB VicR, LuxS and 

BrpA)

S. mutans Decreased acid production and biofilm 

formation.

Elango et al. (2021)

Baicalin Inhibition of virulence-related gene 

expression and suppression of T3SS via PqsR 

of the PQS System

P. aeruginosa Decreased virulence factors, especially 

T3SS.

Zhang et al. (2021a)

Berberine Inhibition of SrtA and esp. gene expression. E. faecalis Decreased biofilm formation and 

promotion of biofilm dispersion.

Chen et al. (2016)

Berberine Inhibition of the aggregation of PSMs into 

amyloid fibrils.

MRSA Decreased biofilm formation and 

extracellular amyloid fibrils production.

Chu et al. (2016)

Allicin Inhibition of Hwp1 gene expression. C. albicans Decreased biofilm formation. Khodavandi et al. (2011)

(Continued)
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100 μg/ml (Dutreix et al., 2018), and curcumin prevented Candida 
albicans adhesion at 50 μg/ml (Alalwan et al., 2017).

Anti-adhesion mechanisms of natural products

Reduction in cell surface adhesins

SpaP (also known as antigen I/II, Pac, P1, and antigen B) 
represents a series of proteins that contribute to cell-surface 
adhesion and can be encoded by the SpaP genes in oral bacteria 
(Brady et al., 2010). Propolis is a resinous substance collected by 
bees. SpaP gene expression in S. mutans was reduced by nearly 
80% after being treated with 0.1 μg/ml polyphenol-rich extract 
from propolis (PEP), which was even better than chlorhexidine 
(CHX), a commonly used cation antimicrobial agent in oral cavity 
(Veloz et  al., 2016). Similarly, the expression of SpaP gene in 
S. mutans was downregulated approximately one-fold after being 
treated with curcumin, which was similar with CHX (Li et al., 
2018). Baicalin is a hydroxy-flavone extracted from the genus 
Scutellaria. SpaP gene expression of S. mutans was downregulated 
after baicalin treatment, indicating the ability of baicalin to reduce 
oral bacterial cell adhesion (Elango et al., 2021).

Glucan binding proteins (Gbps) can mediate bacterial 
aggregation. GbpB is crucial in the initial sucrose-dependent 
biofilm formation and cell shape maintenance in S. mutans 
(Duque et al., 2011). Gbps is also an essential protein involved in 
cell-surface adhesion (Zhu et  al., 2009). Theaflavins (TFs), a 
bioactive component of black tea (Zhang et al., 2020c), inhibited 
GbpB and GbpC gene expression in S. mutans during its biofilm 
formation (Kong et al., 2021). Curcumin also decreased GbpB 
gene expression in S. mutans biofilm by approximately 0.5 times 
(Li et al., 2020b).

Sortase A (SrtA) is a membrane enzyme that facilitates the 
anchoring of surface proteins to the cell wall (Mazmanian et al., 

2000). SrtA is a virulence factor in oral gram-positive species, 
including Streptococcus spp., Staphylococcus spp., and Enterococcus 
spp. (Cascioferro et al., 2014). SrtA in S. mutans is essential for 
sucrose-independent adhesion, which facilitates the antigen I/II 
and Gbps attachment to the cell wall (Scharnow et al., 2019), while 
the srtA gene expression in S. mutans was downregulated by 
approximately one-fold after curcumin treatment (Li et al., 2020b). 
SrtA in Enterococcus spp. has played a key role in bacterial survival 
and is the potential treatment target to combat Enterococcus spp. 
(Cascioferro et al., 2014). Berberine, one of the main alkaloids 
isolated from Rhizoma coptidis, inhibited SrtA gene expression by 
50% compared with the control group at 80 μg/ml (Chen et al., 
2016). SrtA in Staphylococcus spp. also acts as a catalyst for the 
adhesion of proteins (such as FnBPA and FnBPB) to the cell wall 
(Paterson and Mitchell, 2004). Kaempferol, a typical flavonol, 
inhibited both SrtA activity and cell adhesion at 64 μg/ml, 
suggesting that its inhibition of biofilm formation was achieved by 
inhibiting SrtA activity to weaken the adhesion of S. aureus (Ming 
et al., 2017).

Als family, a class of cell wall glycoproteins, regulates cell 
adhesion and biofilm formation in C. albicans (Xu et al., 2022). 
Als1 and Als3 proteins play a vital role in adhesion to host 
endothelial and epithelial cells. Als5 is related to the binding to 
host extracellular matrix proteins (Ponde et  al., 2021). 
Curcumin treatment downregulated the Als1 and Als3 gene 
expression, while upregulated Als5, indicating that curcumin 
reduced cell adhesion but enhanced cell aggregation (Alalwan 
et  al., 2017). Garlic, a member of the Liliaceae family, also 
exerted inhibitory effects on Als1 and Als3 from C. albicans 
(Fahim et al., 2022).

Esp is a key surface protein of Enterococci that regulates the 
initial adhesion of cells to the surface. Berberine treatment 
deceased its gene expression in E. faecalis at 80 μg/ml, indicating 

TABLE 1 Continued

Plant extracts/ 
compounds Mechanism Target bacteria Antibiofilm effect Reference

Farnesol Inhibition of the Ras1-Cdc35-PKA-Efg1 

pathway

C. albicans Decreased hypha formation. Davis-Hanna et al. (2008)

Luteolin Inhibition of Agr quorum sensing system S. aureus Decreased biofilm formation and initial 

adhesion.

Yuan et al. (2022)

Quercetin Inhibition of quorum sensing system related 

gene expression (LasI, LasR, RhlI and RhlR)

P. aeruginosa Decreased biofilm formation and virulence 

factors (pyocyanin, protease and elastase).

Ouyang et al. (2016)

Coumarin 

compound DCH

Competitively bind to the arginine repressor 

ArgR.

MRSA Decreased biofilm formation. Qu et al. (2020)

Rhodiola rosea Inhibition of Gtfs gene expression and 

quorum sensing system.

S. mutans Decreased biofilm formation and EPS 

production.

Zhang et al. (2020a)

Paeoniflorin Inhibition of LuxS/AI-2 system. S. suis Decreased biofilm formation and EPS 

production.

Li et al. (2021)

Macaranga tanarius Inhibition of hypha/biofilm-related genes 

(Ece1 and Hwp1) and reduction in cell 

aggregation.

C. albicans Decreased biofilm formation. Lee et al. (2019)
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the effectiveness of berberine in preventing E. faecalis cell 
adhesion (Chen et al., 2016).

Reduction in EPS generation

Extracellular polymeric substances is composed of proteins, 
polysaccharides, uronic acids, and nucleic acids, which 
significantly contribute to biofilm pathogenesis (Izadi et al., 2021). 
As a binding agent for initial bacterial adhesion, EPS also provides 
three-dimensional structure for oral biofilm. EPS can regulate the 
interactions among various bacterial species and protect the cells 
in the oral biofilm from antibiotics and environmental stresses 
(Lin et al., 2021). Thus, the inhibition of the EPS generation can 
be a promising target for the control of oral biofilm infection.

Extracellular polymeric substances of S. mutans is mainly 
produced by glucosyltransferases (Gtfs) and fucosyltransferases 
(Ftfs; Senadheera et al., 2005). Gtfs are a group of enzymes that 
split sucrose into glucose and fructose and then synthesize the EPS 
(Zhang et al., 2021b). Gtfs produce both insoluble and soluble 
glucans. GtfB produces insoluble glucans, GtfC can produce both 
insoluble and soluble glucans, while GtfD generates soluble 
glucans (Paes Leme et  al., 2006; Wang et  al., 2021). Insoluble 
glucans facilitate cell adhesion and provide a 3D structure in the 
biofilm, and soluble glucans act as an energy source and contribute 
to a low-pH microenvironment (Zhang et  al., 2021b). Ftfs  
are encoded by the ftf gene, and they contribute to convert  
sucrose into extracellular fructose homopolymers (Burne and 
Penders, 1994).

Epigallocatechin gallate was able to inhibit EPS production as 
GtfBC gene expression of S. mutans were reduced by 77–90% at a 
sub-MIC concentration of 0.55 mg/ml (Schneider-Rayman et al., 
2021). The Ftf gene expression of S. mutans was also downregulated 
by 70% after EGCG treatment for 24 h at this dosage (Schneider-
Rayman et al., 2021). Sodium new houttuyfonate (SNH), a sodium 
bisulfite of houttuynia isolated from Houttuynia cordata, also 
showed an excellent ability to reduce EPS production. GtfBC of 
S. mutans was downregulated after the SNH treatment at 100 μg/
ml (1/2 MIC), and GtfB expression was even downregulated by 
>50% (Shui et al., 2021). Curcumin treatment for 5 min was also 
downregulated the Ftf gene expression of S. mutans by 0.541-fold 
(Li et al., 2020b).

Staphylococcus spp. produce polysaccharide intercellular 
adhesin (PIA) to regulate their biofilm formation (Mack et al., 
1994). PIA is encoded by a group of genes, including IcaADBC 
and the regulatory gene IcaR (Heilmann et al., 1996). Similar to 
EPS produced by Streptococcus, PIA is essential in the whole 
process of biofilm formation (Nguyen et al., 2020). In particular, 
PIA contributes to the hydrophobicity of Staphylococcus 
epidermidis and S. aureus cell surface and regulates the their initial 
adhesion during the biofilm formation (Nuryastuti and Krom, 
2017). Galla chinensis, a natural product isolated from Rhus 
chinensis, suppressed IcaABCD gene expression in S. aureus at 
7.81 μg/ml (Wu et al., 2019), while IcaABCD gene expressions in 
S. epidermidis was downregulated by 0.1–0.7-fold when treated 
with propolis (Ong et al., 2019), indicating their capabilities of 

anti-adhesion effects and furtherly inhibitory activities on the 
biofilm formation of S. aureus and S. epidermidis.

Targeting at the biofilm formation

After the initial adhesion, the biofilm accesses the proliferation 
phase. In this phase, cells adhering to the surface continue to grow 
and produce EPS to form a biofilm matrix (Blackman et al., 2021). 
This structure provides a stable condition for microorganisms in 
the biofilm. The QS system represents the intercellular signaling 
in bacteria community, which regulates gene expression and 
actions in response to local cell density during the formation of 
the biofilm (Parsek and Greenberg, 2005).

Antibiofilm effect of natural products on 
biofilm formation

Natural products exerted a strong antibiofilm effects and 
reduced the total biomass of biofilm formation. Punica granatum, 
the pomegranate fruit, inhibited S. mutans biofilm formation by 
94.76% at 1.56 mg/ml (Gulube and Patel, 2016). Biofilm formation 
of S. aureus was reduced by 45% after berberine treatment at 
256 μg/ml (Guo et al., 2015), and coumarin can inhibit MRSA 
biofilm formation in a dose-dependent manner (0.25–4 μg/ml; Qu 
et al., 2020). Theaflavins, the major ingredients of tea polyphenols, 
reduced P. gingivalis biofilm formation by 50% at 1,000 μg/ml 
(Kong et al., 2015), while thymoquinone, the major component of 
black cumin essential oil, significantly inhibited F. nucleatum 
biofilm formation (Tada et al., 2020). The biofilm formation of 
C. albicans was completely inhibited by the treatment of 150 μM 
magnoflorine (an aporphine alkaloid; Kim et al., 2018).

Mechanisms inhibiting oral bacterial biofilm 
formation

Inhibition of cell proliferation and killing bacterial cells

Many natural products have microbiocidal properties on 
planktonic cells through various ways, including cell wall 
decomposition (Zhang et al., 2020b), cell membrane disruption 
(Abram et al., 2013), leakage of cell contents (Kang et al., 2015), 
inhibition of the synthesis of proteins and DNA (Fathima and Rao, 
2016), and blockage of cell metabolism (Belenky et al., 2015). The 
bacterial cells on the surface of the biofilm can also be eradicated 
by natural products, then inhibit bacterial cell proliferation and 
biofilm formation. Rhodiola rosea, a medicine plant, reduced the 
viability of S. mutans by >99% (Zhang et  al., 2020a). EGCG 
reduced the cell viability of P. gingivalis by 40% at 5 mg/ml, and the 
ratio of live cells were also significantly decreased after the 
exposure to EGCG (Asahi et al., 2014), which was result of the 
reduction in biofilm biomass.

Reduction in EPS Production

Extracellular polymeric substances, the major component of 
the biofilm, is not only pivotal in the adhesion process of cells to 
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the surface but also important to the whole process of biofilm 
formation (Flemming and Wingender, 2010), thereby natural 
products which are capable to reduce the genes related to EPS 
generation (including Gtfs and Icas) can contribute to both 
inhibition of cell adhesion and biofilm formation. Rhodiola rosea 
reduced the total EPS in S. mutans biofilm at 0.25 μg/μL (Zhang 
et al., 2020a). G. chinensis inhibited EPS production of S. aureus 
biofilm by 44% at 7.81 μg/ml (Wu et al., 2019). The EPS inhibition 
of these natural products contributes to the total biofilm 
biomass reduction.

Inhibition of the QS system

The QS system regulates the bacterial behavior through small 
signaling molecules at the whole population levels, and this system 
is essential for biofilm formation in both gram-negative and gram-
positive species (Abisado et  al., 2018). The QS system can 
recognize the changes in the population density to regulate 
virulence factors (Holm and Vikström, 2014). The molecular 
mechanisms of the QS system are different in Gram-positive and 
Gram-negative species (Rutherford and Bassler, 2012; Papenfort 
and Bassler, 2016).

There are two main QS systems in the S. mutans: CSP-ComDE 
and ComRS systems (Kaur et al., 2015). The CSP-ComDE system 
is composed of a signal peptide (CSP, encoded by ComC; Leung 
et al., 2015) and the ComDE two-component system (Kaur et al., 
2015; Figure  2). The ComRS system consists of the signaling 
peptide pheromone XIP (encoded by ComS) and a transcriptional 
regulator (ComR). The XIP interacts with and activates ComR to 
regulate the expression of ComX (Wenderska et  al., 2017). 
Rhodiola rosea downregulated the ComDE gene expression at 
0.25 mg/ml (Zhang et al., 2020a), while the gene expression of 
ComD was suppressed by >50% under SNH treatment at 100 μg/
ml (Shui et al., 2021). Baicalin was able to inhibit ComX gene 
expression at 500 μg/ml (Elango et al., 2021).

The accessory gene regulator (Agr) system is a key QS pathway 
in S. aureus, which is also common in gram-positive bacteria and 
essential for their virulence (Le and Otto, 2015). The Agr system 
contains four elements: AgrA, AgrB, AgrC, and AgrD (Figure 3; 
Schilcher and Horswill, 2020). Emodin reduced the expression of 
AgrA gene by 2.2 folds at 4 μg/ml (Yan et al., 2017). Luteolin, a 
bioactive component in fruits and vegetables, decreased the 
pathogenesis of S. aureus through interference of the Agr system. 
The wild strain exhibited weaker virulence compared with 
△AgrBCD, including biofilm formation, initial adhesion, and 
virulence gene expression, suggesting that the Agr system is the 
target of luteolin against S. aureus (Yuan et al., 2022).

In gram-negative bacteria, such as P. aeruginosa, the 
autoinducer acyl-homoserine lactones (AHL) acted as QS 
molecule can bind to cytoplasmic receptors to regulate bacterial 
actions (Galloway et al., 2011). There are three key pathways in the 
P. aeruginosa QS system: two LuxI/LuxR-type QS pathways 
(Rutherford and Bassler, 2012) and the pseudomonas quinolone 
signal (PQS) system, named Las, Rhl, and Pqs (Guzzo et al., 2020; 
Figure 4). Quercetin (QCT), a flavonol extracted from vegetables 

and fruits, significantly suppressed the expression of LasI, LasR, 
RhlI, and RhlR, which were related to Las and Rhl pathways 
(Ouyang et al., 2016). Additionally, baicalin inhibited the Type III 
secretion system (a virulence factor for infection) through 
inhibiting the PQS system (Zhang et al., 2021a).

Mechanisms of inhibiting fungal biofilm 
formation

Candida albicans is a major opportunistic fungal pathogen 
in oral cavity and highly associated with several oral diseases, 
such as caries (especially root caries; Xiong et al., 2020; Du et al., 
2021) and oral candidiasis (Zhou et al., 2021). Berberine induced 
a decrease in the viability of C. albicans biofilms with the actions 
on the integrity of plasma, mitochondrial membranes, and DNA 
(Da Silva et al., 2016). The viability rate of C. albicans after the 
treatment with berberine was reduced by 43.54% (Xie 
et al., 2020).

The hyphal form is an important phase of C. albicans biofilm 
formation and is the key virulence factor (Chen et  al., 2020). 
Berberine inhibited the yeast to hyphae growth of C. albicans and 
significantly downregulated hypha growth-related gene expression 
(Efg1, Hwp1, Ece1, and Als1) at the sub-MIC concentration 
(8–128 μg/ml; Huang et  al., 2020b). After SNH treatment, the 
transcriptome sequencing showed that the biofilm formation-
related genes in the Ras1-cAMP-Efg1 pathway (Als1, Ala1, Als3, 
Eap1, Ras1, Efg1, Hwp1, and Tec1) were downregulated (Wu et al., 
2020). The combination of garlic and bakuchiol significantly 
reduced Als3 and Sap5 gene expressions associated with hyphal 
growth (Fahim et al., 2022).

Farnesol and tyrosol are the major QS signaling molecules 
found in C. albicans (Davis-Hanna et al., 2008). Farnesol is an 
autoregulatory molecule that inhibits the yeast phase’s 
transformation to the hypha phase (Xu et al., 2022). Farnesol is 
also widely distributed in propolis and fruits (Costa et al., 2021). 
Farnesol inhibited the hyphal growth by repressing Ras1-Cdc35-
PKA-Efg1 pathway, indicating that farnesol is a promising 
molecule in inhibiting biofilm formation of C. albicans by 
interfering with the QS system (Davis-Hanna et al., 2008).

Eradication of mature biofilms

The EPS acts as a protective multifunctional scaffold in the 
mature biofilm (Flemming and Wingender, 2010). The cells in the 
biofilm are closely aggregated and facilitates interactions and food 
chains among proximal neighbors (Kuramitsu et al., 2007). In 
mature stage, biofilm shows an increased tolerance to 
antimicrobial agents (Cadena et  al., 2019). For example, the 
minimum inhibitory concentration (MIC) of CHX to kill 
Streptococcus sobrinus in the established biofilm increased 300 
times compared with planktonic cells (Shani et  al., 2000). 
Therefore, many refractory infectious biofilm-related diseases 
caused by mature biofilms are difficult to remove (Noiri 
et al., 2002).
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Natural products have the potential to remove mature microbial 
biofilms. Propolis was effective in eradicating Candida. spp. 
biofilms, which could eradicate 50% Candida. spp. biofilm with the 
concentration of 2.5% (Gucwa et al., 2018). Propolis also reduced 
the viability of S. aureus biofilm by 92.9% at a concentration of 
125 μg/ml but did not decrease the total biomass. The results 
demonstrated that propolis penetrated the biofilm and killed the 
cells inside but did not decrease the total biomass of mature biofilms 
(De Oliveira Dembogurski et  al., 2018). In another study, the 
treatment with propolis reduced S. aureus biofilm biomass by >50% 
at 200 μg/ml, and the thickness of biofilm decreased by 47–87% in 
different isolates (Bouchelaghem et al., 2022).

Inhibition of biofilm dispersion

When the nutrients are limited and waste products in the 
biofilm accumulate a lot, biofilm dispersion allows microorganisms 
to depart from biofilms and to colonize new niches (Solano et al., 
2014). The biofilm dispersion made infection worse and hard to 
control, and even caused an acute infection, such as sepsis (Lister 
and Horswill, 2014). Sodium houttuyfonate was able to inhibit 
P. aeruginosa biofilm dispersion through the inhibition of 
chemotaxis transducer protein BdlA gene expression (a key gene 
that regulates the dispersion response of P. aeruginosa; Wang et al., 

2019). Phenol-soluble modulins (PSMs) are biofilm-dispersion-
associated factors related to S. aureus infection (Zheng et  al., 
2018). Berberine inhibited PSMs production as evidenced by the 
calculation of amyloid fibril formation (Chu et al., 2016). Reducing 
biofilm dispersion is of great significance in controlling infection 
spread in clinical practice (Rumbaugh and Sauer, 2020).

Combinational application of natural 
products and other strategies

Combination of natural products and 
nanoparticles

Nanoparticles have a significant potential in the delivery of 
drugs against oral biofilm due to their flexible properties (Benoit 
et al., 2019). Some natural products extracted by oil and ethanol, 
such as propolis and curcumin, have poor water solubility, which 
limits their clinical usage (Kubiliene et al., 2015). Nanoparticles 
can be designed to enhance drug solubility. Propolis-loaded poly 
(lactic-co-glycolic acid, PLGA) nanoparticles were synthesized to 
enhance the solubility of propolis, and this nanoparticles showed 
excellent antibiofilm effects on C. albicans (Iadnut et al., 2019). A 
combination of nanoparticles and natural products may result in 
synergistic antibiofilm effects due to the high surface area-to-
volume ratios of nanoparticles (Shrestha and Kishen, 2016). 

FIGURE 2

Quorum sensing system in S. mutans and the inhibitory effects of natural products on this system. The CSP-ComDE system is composed of a 
signal peptide (CSP, encoded by ComC) and the ComDE two-component system. During the cell density increase, the accumulated CSP interacts 
with ComD (membrane-bound histidine kinase receptor) directly to cause the phosphorylation and activation of ComE (the cytoplasmic response 
regulator). The activated ComE regulates the gene expression of bacteriocin production and biofilm formation. The ComRS system consists of 
signaling peptide pheromone (XIP, encoded by ComS) and a transcriptional regulator (ComR). The XIP interacts with and activates ComR to 
regulate the expression of ComX, and thus switches the genes related to competence and persister formation. Rhodiola rosea inhibited ComDE 
gene expression and baicalin inhibited ComX gene expression.
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Pterostilbene, a kind of Vitis-inducible phytoalexins, showed a 
much higher antibiofilm effect after being loaded in PLGA 
nanoparticles (Simonetti et  al., 2019). Furthermore, the 
combination with nanoparticles extended the release time of 
natural products, which is important for long-term antibiofilm 
effects (Maghsoudi et  al., 2017). For example, Berberine in 
nanoparticles exerted a better S. aureus biofilm removal ability 
than berberine alone, which might be  attributed to the 
spontaneous adhesion property and continuous release 
characteristics of nanoparticles (Huang et  al., 2020a). The 
integration of nanoparticles and natural products enhanced the 
efficacy of natural products for multifunction properties at the 
same time, providing a great potential in clinical applications (Yu 
et al., 2017, 2021).

Combination of natural products and 
antibiotics

The combination of products and antibiotics is a practical 
way to reduce the development of antibiotic resistance and also 
to reduce the toxicities or side effects of some antibiotics by 
decrease the antibiotic dosages against biofilms (Li et al., 2013; 
Zhu et  al., 2021). Artemisinin, a famous antimalarial 
sesquiterpene lactone extracted from the traditional Chinese 
herb Artemisia annua L, was able to increase the cell membrane 
ergosterol levels of C. albicans to synergize with amphotericin B 
to inhibit C. albicans and oral candidiasis (Zhu et al., 2021). The 

combination of berberine and fluconazole showed synergic 
effects on C. albicans biofilms by enhancing the susceptibility of 
C. albicans to fluconazole. Interestingly, the antibiofilm effect was 
related to berberine in a concentration-dependent manner 
instead of fluconazole, indicating that berberine played a major 
role in the antifungal effect (Li et al., 2013). Similarly, natural 
products in combination can improve the antibiofilm properties 
in the elimination of mature biofilm. The combination of 
berberine and fusidic acid significantly inhibited cell viability in 
S. aureus mature biofilms, while the single drugs did not show 
any antibiofilm effects (Liang et al., 2014).

Combination of natural products and 
photodynamic therapy

Photodynamic therapy (PDT) is an effective method in cancer 
management (Li et al., 2020a), periodontitis (Manresa et al., 2018), 
and oral mucosal diseases (Cosgarea et al., 2020). In recent years, 
it has been demonstrated that PDT was able to enhance the 
activities of natural products, even on drug-resistant 
microorganisms. Many natural products have shown stronger 
antibiofilm effects in combination with PDT, such as emodin 
(Pourhajibagher et al., 2022), propolis (Afrasiabi et al., 2020), and 
curcumin (Santezi et al., 2018). The combination of curcumin and 
PDT is effective in infection control (Polat and Kang, 2021). 
Combination of curcumin and PDT reduced P. aeruginosa biofilm 
formation through interfering quorum sensing network, and 

FIGURE 3

Quorum sensing system in Staphylococcus aureus and the interference of natural products on quorum sensing system. AgrD is the precursor of 
autoinducer peptides (AIP). AIP can be modified by AgrB and secreted into the matrix. AIP secreted by bacteria accumulates in the environment 
and binds to kinase receptors (AgrC) on the bacterial membrane to transmit signals, activating the related genes’ expression, such as RNAII and 
RNAIII. RNAIII regulates most QS-related genes, while some genes are controlled by AgrA directly. Emodin inhibited AgrA gene expression and 
luteolin interfered Agr system.
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importantly, the combination significantly enhanced antibiofilm 
effect compared with curcumin alone (Abdulrahman et al., 2020). 
The combination of natural products and PDT provides a new 
direction in managing biofilm-related oral infections.

Combination of two natural products
Propolis and carnosic acid (a compound extracted from 

rosemary) showed synergistic effects against C. albicans, while the 
1:4 ratio of carnosic acid and propolis resulted in a best decrease 
in C. albicans survival rate and biofilm formation (Argüelles et al., 
2020). Curcumin and berberine co-encapsulated in liposomes 
showed synergistic effects against MRSA by reducing their MICs 
by 87 and 96% compared with single drugs and the biofilm 
formation also significantly decreased (Bhatia et al., 2021). These 
results indicate that the combination of different natural products 
with different antimicrobial mechanisms can enhance their 
activities even on drug-resistant pathogens.

Effects of natural products on 
multi-species biofilms

Multi-species biofilms represent the most important lifestyle 
of oral microbes in oral cavity (Marsh et al., 2011; Yang et al., 

2011). The interactions among microbes regulate the structure 
and function of biofilms and significantly influence the biofilm 
formation (Yang et al., 2011; Deng et al., 2019a,b). Microorganisms 
in the multi-species biofilm enhance the have metabolism 
efficient, tolerance to inhibitory agents and virulence (Marsh 
et al., 2011).

Natural products have shown effective activities in multi-
species biofilms. Curcumin reduced the biomass and viability of 
C. albicans and S. mutans dual-species and mono-species biofilms. 
Interestingly, more eradication of S. mutans was found indicating 
that the effect of curcumin on S. mutans was enhanced in the 
C. albicans and S. mutans dual-species biofilm. Moreover, 
curcumin also blocked the EPS generation of C. albicans and 
S. mutans dual-species biofilm through the inhibitions on the QS 
system, EPS generation, and Als protein production (Li et al., 
2019). Brazilian red propolis (BRP) showed an antibiofilm effect 
on multi-species biofilm composed of periodontopathogens (34 
species). The metabolism of multi-species biofilms decreased to 
45 and 55% after 800 μg/ml BRP and 0.12% CHX treatment, 
respectively. Biofilm cells were reduced to 10 and 5% after being 
treated with 1,600-μg/mL BRP and 0.12% CHX, respectively. In 
addition, BRP had a significant antibiofilm effect on species in the 
orange-complex group, while 0.12% CHX did not have such an 
effect (Miranda et  al., 2019). BRP extract (400 μg/ml) also 

FIGURE 4

Quorum sensing system in P. aeruginosa and the interference of natural products on quorum sensing system. There are three key pathways in the 
P. aeruginosa QS system: two LuxI/LuxR-type QS pathways and the pseudomonas quinolone signal (PQS) system, named Las, rhl, and pqs. The 
synthesis of AI’s 3-oxo-C12-HSL and C4-HSL is modulated by Las and Rhl, which serve as their autoinducers, respectively. In addition, alkyl-4-
quinolones (AQs), including PQS and HHQ, are signal molecules in the PQS pathway. Interconnections between the three pathways regulate the 
activity of the QS system, resulting in changes in cell adhesive proteins, virulence factors, biofilm formation and proteases. Quercetin inhibited 
LasI, LasR, RhlI, RhlR gene expression and baicalin inhibited Pqs system.
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exhibited an almost equal ability to that of amoxicillin (54 μg/ml) 
to remove red-complex of multi-species subgingival mature 
biofilms (De Figueiredo et al., 2020). These findings indicated its 
promising effects in periodontitis treatment.

In recent years, the microcosm biofilm model (consisting of 
natural oral microbiota) has been established to better simulate 
the in vivo oral cavity conditions (Garcia et al., 2021). G. chinensis 
extract inhibited biofilm formation in both nascent and mature 
microcosm biofilms, and the acid metabolism in biofilms was also 
inhibited (Cheng et al., 2011). Coffea canephora reduced mixed 
biofilms formed from the pooled human saliva by 15.2% at the 
concentration of 20% (Antonio et al., 2012). Psidium cattleianum 
leaf extract reduced in situ oral biofilms formation and EPS 
production at 167 mg/ml for 1 min per 12 h for 14 days treatment 
(Brighenti et al., 2012). Natural products contained in clinical 
products also showed antibiofilm effects on microcosm biofilms. 
Myrcia bella Cambess. and Matricaria chamomilla L. in the 
toothpastes reduced the bacterial number in the microcosm 
biofilms. The enamel demineralization assay revealed that 
Vochysia tucanorum, Myrcia bella, Matricaria chamomilla, and 
Myrrha & propolis toothpastes reduced mineral loss and lesion 
depth compared with the placebo group (Braga et  al., 2022). 
Another study demonstrated that natural products (including 
Commiphora myrrha resin extract, propolis extract) in the 
commercial toothpastes reduced microcosm biofilm viability and 
increased mineral loss (Braga et al., 2019). These results indicated 
the clinical potential in the control of oral biofilms.

Natural products as an alternative 
treatment for oral infection

The strong antibiofilm effects of natural products on both 
mono-species biofilms and multi-species biofilms with various 
mechanisms highlight their clinical oral disease controls. Several 
ex vivo & in vivo studies and clinical trials have been implemented 
to evaluate the efficacity of natural products, especially in caries 
and periodontitis.

In dental caries, many natural products, such as propolis and 
sodium new houttuyfonate, were able to inhibit S. mutans biofilm 
virulence, EPS production and QS system (Veloz et al., 2016; Shui 
et al., 2021). Propolis inhibited S. mutans biofilm formation and 
dental caries development in a rat model (Duarte et al., 2006), 
while magnolol and honokiol extracted from magnolia bark 
reduced the biofilm formation by an in vivo Germ-kill model 
(Greenberg et al., 2007). Importantly, a randomized controlled 
trial also showed that magnolia bark have encouraging results in 
maintaining oral health by reducing S. mutans proliferation, 
plaque acidogenicity and bleeding on probing (Campus 
et al., 2011).

In periodontitis, the natural products EGCG showed a great 
antibiofilm effect on P. gingivalis (Fournier-Larente et al., 2016) 
and F. nucleatum (Ben Lagha et al., 2017). BRP extract (400 μg/ml) 
used in multi-species biofilms exhibited an almost equal ability to 

that of amoxicillin to eliminate the red-complex of multi-species 
subgingival mature biofilms which suggested its promising action 
in periodontitis treatment (De Figueiredo et al., 2020). The mouth 
rinses containing Aloe vera reduced the plaque and gingival 
inflammation and finally significantly reduced clinical scores 
indicating the potential application of Aloe vera in periodontitis 
(Laleman and Teughels, 2020).

Natural products have strong antibiofilm effects on key 
pathogens of other oral infectious diseases, and the diversity, 
efficiency and safety of natural products make them the alternative 
agents to antibiotics against biofilms even from the drug-
resistant strains.

Prospects of maintaining oral 
microecology balance

The resident microflora in the oral cavity of healthy individuals 
has great significance in maintaining health, preventing foreign 
pathogens colonization and contributing to host physiology 
(Rosier et al., 2018). The oral microbiota in a healthy condition is 
more stable than other microbial communities (Zhou et al., 2013) 
and resists diseases (Rosier et al., 2018). However, many factors 
can disturb the balance, including systematic diseases, unhealthy 
diet, and poor oral hygiene, and the usage of broad spectrum 
antibiotics (Lamont et  al., 2018). In caries, an unhealthy diet 
(fermentable carbohydrates in high amounts and frequency) often 
results in the accumulation of fermentation extract (organic acid; 
Lamont et al., 2018). When the acid caused the decrease in pH 
subsequently, the oral microbiota shifted toward the adaption of 
the low pH conditions and became the cariogenic microbiota 
(Pitts et al., 2017). It is important to restore the microecological 
balance instead of only killing the oral microbes indiscriminatingly 
(Baker et al., 2017).

BRP used in a periodontitis model showed an excellent 
antibiofilm effect on the red-complex and orange-complex species, 
but showed less effect on other species, indicating that this 
compound was less harmful to beneficial microorganisms 
(Miranda et al., 2019; De Figueiredo et al., 2020). Currently, the 
influence of natural products on the whole oral microflora and 
how does the microflora change after drug treatment remain 
unclear; however, natural products have shown potential to restore 
microecological balance compared with broad-spectrum 
antibiotics (Melander et al., 2020).

Discussion and future prospective

Biofilms represent the common form of microorganisms in the 
oral cavity and the dysbiosis of biofilms are highly related to 
many oral infectious diseases, such as caries and periodontitis 
(Marsh and Zaura, 2017). Natural products from traditional 
medicine are promising agents against oral biofilms due to their 
excellent antibiofilm effects, relatively low cost, and safety 
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(Atanasov et al., 2021). However, there are still many concerns on 
natural product applications in clinical practice. For example, 
many of them have low solubility, which greatly limits their usage. 
Meanwhile, the active ingredients of herbal medicines are complex, 
and currently, microbiocidal and antibiofilm mechanisms of most 
herbal medicines have not been fully elucidated. Although many 
studies performed clinical trials using many active ingredients such 
as tea, propolis, and Aloe vera, showing encouraging results 
(Laleman and Teughels, 2020), the toxicity to normal cells of 
natural products is another concern and need to be  further 
explored. Previous study revealed the nephrotoxicity of traditional 
medicine (including anthraquinones and flavonoids; Yang et al., 
2018), suggesting the necessity of a safety evaluation before the use 
of natural products in clinical practice.

Natural products have a broad prospective in oral clinical 
application. However, the effects of natural products on the local 
microbiota and their impact on the local microecological balance 
after drug treatment should be further explored. More clinical 
trials and safety test of natural products are also needed, while our 
review summarized and discussed the potential effects of natural 
products from traditional medicine against oral biofilms to 
highlight the importance of further investigations on natural 
products in treating oral infectious diseases.
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