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Comparative genomic analysis of innate
immunity reveals novel and conserved
components in crustacean food crop
species
Alvina G. Lai* and A. Aziz Aboobaker*

Abstract

Background: Growing global demands for crustacean food crop species have driven large investments in aquaculture
research worldwide. However, large-scale production is susceptible to pathogen-mediated destruction particularly in
developing economies. Thus, a thorough understanding of the immune system components of food crop species is
imperative for research to combat pathogens.

Results: Through a comparative genomics approach utilising extant data from 55 species, we describe the innate
immune system of the class Malacostraca, which includes all food crop species. We identify 7407 malacostracan genes
from 39 gene families implicated in different aspects of host defence and demonstrate dynamic evolution of innate
immunity components within this group. Malacostracans have achieved flexibility in recognising infectious agents
through divergent evolution and expansion of pathogen recognition receptors genes. Antiviral RNAi, Toll and JAK-STAT
signal transduction pathways have remained conserved within Malacostraca, although the Imd pathway appears to
lack several key components. Immune effectors such as the antimicrobial peptides (AMPs) have unique evolutionary
profiles, with many malacostracan AMPs not found in other arthropods. Lastly, we describe four putative novel
immune gene families, potentially representing important evolutionary novelties of the malacostracan immune system.

Conclusion: Our analyses across the broader Malacostraca have allowed us to not only draw analogies with other
arthropods but also to identify evolutionary novelties in immune modulation components and form strong hypotheses
as to when key pathways have evolved or diverged. This will serve as a key resource for future immunology research in
crustacean food crops.
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Background
The global human population is projected to escalate to
9.1 billion by 2050 [1]. With an increasing food con-
sumption per capita and changing demands for animal
proteins [2], there is a dire need for sustainable sources
to avoid further degradation of the environment. It has
been suggested that much of this may come from inver-
tebrate sources including insects [3], but clearly crusta-
ceans currently represent a source of protein that is

more culturally palatable in Europe and North America.
Crustaceans already represent a significant portion of
marine aquaculture produce, with the predicted annual
production exceeding 10 million tonnes and sales of $40
billion [4] that will continue to increase. The expansion
of farmed crustaceans is not without major issues. It is
estimated that up to 40% ($3 billion) of just shrimp pro-
duction alone can be lost each year due to disease
outbreaks [4]. Pathogens and diseases impacting crusta-
ceans have been recently extensively reviewed [4–9].
Some of the most common diseases in decapod crusta-
ceans are the white spot disease caused by the white
spot syndrome virus (WSSV) in penaeid shrimps [8],
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yellow head disease caused by the Yellow head Virus
[10–12], Taura syndrome caused by the Taura Syndrome
Virus [13, 14], fungal diseases in the Dungeness crab,
Cancer magister [15–17], infections by the parasitic
dinoflagellate Hematodinium sp. in crabs [18], the Panu-
lirus argus virus 1 (PaV1) infection in lobsters [19] and
bacterial diseases caused by Vibrio or Aeromonas [20].
There is broad agreement that without new interven-
tions and better understanding of pathology and im-
mune responses, current best practices for crustacean
aquaculture cannot be improved. The use of antibiotics
and chemical treatments for disease control in aquacul-
ture is undesirable due to long-term economic and
environmental ramifications [21–23]. Therefore, ap-
proaches that harness and aid the crustacean innate de-
fence mechanism should be exploited to limit and
prevent diseases, and therefore crop loss. For example,
assays for the measurement of innate immune activity
could provide early warnings for the presence of poten-
tial pathogens within closed aquaculture systems.
Systematic and cross-species characterisation of the

crustacean immune system has not been performed,
despite it being essential for the field to progress [24].
Previous comparisons amongst sequenced arthropod ge-
nomes of insects, chelicerates, the myriapod Strigamia
maritima, the branchiopod Daphnia pulex and the
amphipod Parhyale hawaiensis have recently revealed
signatures of conservation and diversity in innate im-
munity components across arthropod phyla [25–27].
However, not much is known about the evolutionary
events that define the immune system in malacostracans,
or within the order Decapoda that includes crop species.
The radiation of Pancrustacea (hexapods and crusta-
ceans) has been estimated to be between ~540 and ~666
million years ago (mya) [28, 29] while the split of
Branchiopoda from Malacostraca was estimated at 614
mya [28]. Others have made estimates of similar diver-
gence times based on crustacean hemocyanins [30].
Given the large evolutionary time scales involved, many
lineage specific changes in immune system components
within the Malocostraca may have occurred and using
only the branchiopod D. pulex and a single malacostra-
can P. hawaiensis to define immune regulation is un-
likely to provide either a rich or accurate picture.
Ultimately this will require both comparative and func-
tional genomics approaches to effectively understand
and exploit the immune system. Due to potential im-
portance of crustacean food sources, such studies are of
high impact and urgency. Currently, the lack of a com-
prehensive comparative genomics study of immunity
with the Malacostraca means that a clear staging point
for underpinning this work is lacking.
Here, we address this major deficit by performing an

in depth comparative study amongst the broader

Malacostraca, including extant data from the order
Decapoda that includes all the major food crop species
(Additional file 1: Figure S1). A large number of rela-
tively recent independent studies have started to gener-
ate publically deposited large transcriptomic data sets
from food crop species and other related malacostracan
species providing ample raw data for our study;
complete set of references provided in Additional file 2:
Table S1 [31–41]. We have annotated innate immunity
genes and pathways from 69 Malacostraca transcriptome
datasets from 55 species representing five Malacostraca
orders: Amphipoda (7 species), Decapoda (18 species),
Isopoda (27 species), Euphausiacea (2 species) and
Mysida (1 species) (Additional file 1: Figure S1; Additional
file 2: Table S1 and Additional file 3: Table S2) [42–44].
We used sequence, motif and domain similarity based ap-
proaches to identified 7407 genes, representing 39 im-
mune gene families in the Malacostraca (summarised in
Fig. 1). We annotate genes that encode pathogen recogni-
tion proteins, signalling components of key signal trans-
duction pathways such as Toll, Imd and JAK-STAT,
effector genes encoding proteins that perform immune
protection such as antimicrobial peptides and members of
the antiviral RNAi pathway. Within these key groups, we
define malacostracan specific evolutionary events that
suggest a previously unsuspected variation in immune
gene content, and that functional genomic studies of im-
munity specifically with species in this group will be re-
quired for clear understanding of host defence in food
crop species. A comparison across these data sets also
allowed us to expand the annotation of previously discov-
ered crustacean specific immune components, confirming
their importance across the group. Finally, taking a con-
servative approach using orthology analyses and Pfam an-
notations in the sequenced amphipod genome of the
crustacean P. hawaiensis [27], we describe four novel gene
families with immune related protein domains conserved
only within the Malacostraca. We show that these novel
Malacostraca genes exhibit tissue-specific expression in
the amphipod P. hawaiensis. Overall, our work provides a
comprehensive picture of the Malacostraca innate im-
mune system and a key staging point that will now facili-
tate important immunology research to underpin food
crop aquaculture.

Results and Discussion
Pattern recognition receptors in malacostracans are
dynamically evolving and exhibit family-specific
expansions
While vertebrates rely on adaptive immune systems and
immunological memory mediated by secreted antibodies
to ward off pathogens, many invertebrates, including ar-
thropods use a pre-encoded set of proteins known as the
pattern recognition receptors (PRRs) to recognise a
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broad spectrum of microbial ligands. Arthropods PRRs
facilitate microbial killing through a range of direct and
indirect mechanisms [45–50] upon the detection of non-
self pathogen structures known as pathogen-associated
molecular patterns (PAMPs) present on the surface of mi-
crobes [51]. Some examples of PAMPs include peptidogly-
cans (PGN) and lipotechoic acids (LTA) in Gram-positive
bacteria, lipopolysaccharides (LPS) in Gram-negative bac-
teria and β-glucans from fungal cell walls [51, 52]. We ex-
amined seven PRR families in Malacostraca, which
included the Gram-negative binding proteins (GNBPs),
Down syndrome cell adhesion molecules (DSCAMs),

scavenger receptors (SRs), Domeless proteins (discussed
in the signal transduction section), C-type lectins (CTLs),
galectins and thioester-containing proteins (TEPs; Fig. 1;
Fig. 2A). DSCAM, SRs and Domeless are transmembrane
receptors (Fig. 2a). GNBPs can either be associated with
the cell membrane via a glycosylphosphatidylinositol an-
chor or function as soluble receptors [53]. We identified
202 GNBPs, 49 DSCAMs, 443 SRs, 47 Domeless proteins,
1005 CTLs, 47 galectins and 432 TEPs in malacostracans
(Additional file 4: Table S3).
GNBPs are a group of proteins that share the

carbohydrate-binding β-glucanase domain. Multiple
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Fig. 1 Summary of gene copy number in representative malacostracans and arthropods. Gene copy number for malacostracans are determined
in this study. Gene copy number for arthropods were obtained from these cited sources [25, 133]. A complete list of immunity genes identified in
this study is presented in Additional file 4: Table S3, Additional file 9: Table S4, Additional file 11: Table S5, Additional file 13: Table S6, Additional
file 15: Table S7, Additional file 16: Table S8, Additional file 18: Table S9
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naming conventions exist for this group as they are also
called lipopolysaccharide and β-glucan binding proteins,
β-1,3-glucan binding proteins or β-1,3-glucanase-related
proteins. Originally discovered in lepidopterans as pro-
teins that can recognise β-1,3-glucans from fungal cell
walls [54–56], others have shown that insect GNBPs can
also recognise Gram-negative bacteria [57–61]. Func-
tional studies on malacostracan GNBPs revealed that
these proteins are expressed in hemocytes and hepato-
pancreas and expression is induced upon treatment with
WSSV, Gram-negative and –positive bacteria [62–67].
GNBPs have two active sites, identified in the β-
glucanase domain of the silk moth Bombyx mori that are
denoted as E188 and E193 [58]. Both glutamic acid resi-
dues are reported to be absent from most insect GNBPs,
which implied that insect GNBPs lack catalytic activity
[58, 68]. GNBPs have undergone significant evolutionary
changes within Arthropoda because chelicerates lack
GNBPs altogether [26] while Drosophila melanogaster
and D. pulex have 3 and 11 GNBP proteins respectively
(Fig. 1; Additional file 4: Table S3) [25]. We identified
202 GNBP genes from Malacostraca (Additional file 4:
Table S3; Fig. 2e). Of these, 150 have intact β-glucanase
domains. Alignment of these β-glucanase domains from
Malacostraca with the B. mori sequence revealed that
109 out of 150 malacostracan GNBPs possessed glutamic
acid residues at both E188 and E193 positions
(Additional file 5: Figure S2). From our analyses we
show that a clear GNBP expansion has occurred within
Malacostraca (Fig. 2e). Many decapods have expanded
GNBPs; for example Procambarus clarkii, Eriocheir
sinensis and Astacus leptodactylus have 8, 7 and 7
GNBPs respectively (Fig. 2e; Additional file 4: Table S3).
GNBP expansion more broadly in Crustacea may com-
pensate for the previously reported absence of peptido-
glycan recognition proteins (PGRPs) in the crustacean
lineage [25] since GNBPs can also recognise Gram-
positive bacteria. While we do find some PGRPs for the
first time in our analysis - see Immune deficiency (Imd)
signalling section, our data supports this idea. The 3
GNBPs in D. melanogaster are catalytically inactive [26]
and given that this species has 13 PGRPs, it is possible
that in D. melanogaster, PGRPs may compensate for in-
active GNBPs. Thus in the malacostracan and insect lin-
eages within Pancrustacea, these to key pathogen
detection systems have undergone opposing evolutionary
trajectories. This observation supports the suggestion
that detailed functional genomic studies of immunity
genes are required in a malacostracan species to prop-
erly make progress in food crop species immunology
research.
A major component of arthropod immune systems that

still requires further definition and is yet to be fully
exploited is the DSCAM proteins, which undergoes

startling levels of alternative splicing (AS) in the
Pancrustacean clade. The canonical DSCAM domain ar-
rangement consists of 9 (immunoglobulin; Ig) – 4 (fibro-
nectin; Fn) – (Ig) -2 (Fn) [69]. Since other Ig-containing
genes may confound the identification of bona fide
DSCAM transcripts in malacostracans, we searched for
genes/transcripts containing the Fn1-Fn2-Fn3-Fn4-Ig10-
Fn5 motif set from known DSCAM protein sequences
used as queries for BLAST. From this, we identified puta-
tive DSCAM transcripts in 49 out of 55 malacostracan
species in our study (Fig. 2b). We observed that DSCAMs
in brachyurans (except for Cancer borealis) are monophy-
letic and are likely to be orthologous (Fig. 2b). DSCAM
AS in arthropods has evolved to allow versatile pathogen
recognition and this is facilitated by the vast reservoir of
receptor diversity resulting from alternative splicing of the
hypervariable regions [27, 70–74]. Although it is likely
that most malacostracan DSCAMs have multiple splice
forms, accurate characterisation and annotation of splice
variants from transcriptome data alone is confounded by
long arrays of highly similar Ig exons. Genome and gen-
omic DNA based approaches will be needed to assess this
with accuracy. It seems likely that the DSCAM remains a
key PRR in malacostracans, and will need to be further
studied in the context of infection as potential diagnostic
marker and effector mechanism that might be exploited in
aquaculture.
Scavenger receptors (SRs) are a subclass of structurally

diverse membrane-bound PRRs, first described as pro-
teins having the ability to bind to oxidised low-density li-
poproteins (LDLs) (Fig. 2a) [51, 75–79]. SRs can
recognise a diverse range of cognate ligands and these
include modified self-molecules (eg: oxidised LDLs) and
non-self microbial structures such as LPS and LTA
[80, 81]. We considered two classes of SRs in Mala-
costraca, namely the macrophage class A scavenger
receptors (SCRAs) and the class B scavenger recep-
tors (SCRBs; Fig. 2a). We annotated 129 SCRAs and
314 SCRBs in malacostracans (Additional file 4: Table S3;
Fig. 2e). Malacostracans SCRAs are characterised by mul-
tiple domains; the cysteine-rich (SRCR) domain, C-type
lectin domain, lysyl oxidase or collagen domain (Fig. 2a)
[82–84]. Malacostracans SCRBs have the CD36 domain
and two transmembrane domains (Fig. 2a) [79]. To date,
the only SR reported in crustaceans is a homolog of Cro-
quemort, a SCRB family member in Marsupenaeus japo-
nicus [85]. Humans and Caenorhabditis elegans only have
three CD36-like proteins each [86, 87]. SCRBs in malacos-
tracans have however, undergone multiple gene duplica-
tions; the isopod Proasellus ortizi, the decapod C. borealis
and amphipod P. hawaiensis have 10, 6 and 8 SCRBs re-
spectively (Fig. 1; Additional file 4: Table S3). Major SCRB
gene expansion is likely to have occurred at the base of
Mandibulata as S. maritima, D. melanogaster and D. pulex
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have 7, 13 and 8 homologs respectively while the chelicer-
ate I. scapularis only has three (Fig. 1). Clearly the role of
SCRBs in mandibulate immunity needs further study as
almost nothing is known about the significance of the
SCRB expansion in arthropods. Perhaps not all SCRBs in
malacostracans are involved in host defence because
CD36-like proteins have been shown to participate in
other physiological roles such as facilitating cellular up-
take of carotenoids required for visual chromophore
formation [88], scavenging of apoptotic cells [89] and
lipoprotein homeostasis [90].
Lectins have been shown to be directly relevant to the

immune system of crustaceans [91, 92]. A C-type lectin
(CTL) in M. japonicus, expressed primarily in intestinal
tissues, is upregulated upon bacteria and WSSV infection
and can bind LPS and PGN in a dose-dependent manner
[93]. Nonetheless little is known about how many of each
of the different types of lectins are present in malacos-
traca. CTLs are a group of diverse proteins characterised
by a carbohydrate-recognition domain, some of which are
Ca2+-dependent and they can bind sugar and non-sugar li-
gands [94, 95], while galectins are another type of lectin
proteins that can bind β-galactoside sugars and are in-
volved in multiple cellular processes such as apoptosis,
cell proliferation and immunity [96]. We identified over a
thousand putative CTLs across Malacostraca with Litope-
naeus vannamei having 65 different CTLs, in line with a
general trend for decapods to have more CTLs than other
malacostracan groups (Fig. 1; Fig. 2e; Additional file 4:
Table S3). Although the copy number of CTLs varies
greatly between malacostracan species (Fig. 2e; Additional
file 4: Table S3), it is clear that divergent evolution
through multiple gene duplications has occurred within
this lineage, particularly in some amphipod and decapod
species (Fig. 2e). More broadly we find that this appears to
be a feature in many other arthropod lineages; S. mari-
tima, D. melanogaster, Aedes aegypti and D. pulex have
25, 33, 40 and 26 genes respectively (Additional file 4:
Table S3). To date, only five CTLs in L. vannamei have
been studied in the contexts of Gram-negative bacteria ag-
glutination and WSSV infection [97–101]. Future expres-
sion panel testing, particularly in decapods, will be
required to ascertain whether CTLs may have distinct
roles in recognising different pathogenic agents. Galectins
in malacostracans are present as single-copy homologs ex-
cept in two isopod species (Asellus aquaticus and Braga-
sellus peltatus that have two galectins each; Additional file
4: Table S3; Fig. 2d). Our analysis revealed that insects,
chelicerates, S. maritima and D. pulex have multiple cop-
ies of galectins (Fig. 1) suggesting that with respect to
galectins, malacostracans have evolved conservatively
(Fig. 2d).
The thioester-containing protein (TEP) superfamily in-

cludes the vertebrate complement system, the pan-

protease inhibitor α2-macroglobulin (α2M), insect TEP-
like proteins and macroglobulin complement related
(MCR) proteins [102]. TEPs have the unique propensity
to form covalent bonds with pathogens through their ca-
nonical thioester (GCGEQ) motifs to promote endo-
cytotic clearance or to neutralise pathogenic proteases
[103–105]. Amongst arthropods, some TEPs lack the ca-
nonical thioester motif and they presumably lack the
ability to form covalent bonds with pathogenic surfaces
[26]. We identified a total of 432 TEPs in all 55 malacos-
tracan species (Additional file 4: Table S3). Decapods in
general have more TEPs than other malacostracan or-
ders (Additional file 6: Figure S3B). P. clarkii has at least
25 different TEPs, the highest amongst the malacos-
tracan datasets considered here (Additional file 4:
Table S3). However, only a third (147/432) of mala-
costracans TEPs have the GCGEQ motif. Nonetheless,
as reports have indicated that a TEP protein in D.
melanogaster, although lacking the thioester motif,
could still bind to fungi and promote phagocytosis
[104], this TEP diversity in malacostraca and particu-
larly Decapoda may be immune related. We analysed
phylogenetic relationships between TEP members in
Malacostraca and observed that like TEPs in arthro-
pods, they fall into three major categories: α2Ms, in-
sect TEP-like proteins and MCRs (Additional file 6:
Figure S3). The α2Ms in amphipods (except for 1
gene in Talitrus saltator) form a monophyletic group
(Additional file 6: Figure S3A). The vertebrate C3 and
C4 factors are also monophyletic, while C3 from the
amphioxus Branchiostoma belcheri and C5 factors
from mouse and human are paraphyletic (Additional
file 6: Figure S3). Since we did not find any malacos-
tracan TEPs clustering with the vertebrate comple-
ment factors and together with the observation that
C3-like proteins are only found in chelicerates and
myriapods [26], we predict that C3-like proteins have
been lost in the Pancrustacea.
The recognition of PAMPs by PRRs is the first line of

defence against invading pathogens. In this study, we
have annotated known PRR families in Malacostraca and
established analogies to arthropod PRRs (Figs. 1 and 2).
We show that malacostracans have a large repertoire of
PRR proteins to efficiently cope with a broad range of
pathogens. Several PRR families, CTLs, GNBPs and
SCRBs, are expanded in malacostracans and this may, in
part, contribute to enhanced plasticity when dealing with
diverse microbial ligands. Our data will underpin com-
parative approaches as to how PRR activation in aqua-
culture affects outcomes in different conditions.
Together our analyses indicate that PRRs are evolving
rapidly within this lineage, reflecting the diverse selec-
tion pressure from pathogens encountered by different
malacostracan groups.
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Prophenoloxidases are invented at the base of
Pancrustacea
The prophenoloxidase-activating system (proPO) is an-
other non-self pathogen recogonition mechanism impli-
cated in arthropod immunity [106–108]. Upon the
recognition of LPS, PGNs or β-glucans by GNBPs, a
serine protease cascade ensues, which results in the pro-
teolytic cleavage of proPO into active phenoloxidase
(PO). PO then catalyses melanin formation [107] and
this creates a physical barrier to inhibit further pathogen
growth and movement [109]. Because PO plays func-
tional roles in the melanisation pathway and wound
healing [107, 110, 111], the emergence of PO is associ-
ated with the evolution of humoral immunity in arthro-
pods. POs are thought to be members of the
hemocyanin superfamily; a family that is exclusively
found in arthropods [112]. Due to shared sequence
similarities, it was proposed that hemocyanins could
be converted to proPOs upon chemical treatments
[113, 114]. Chelicerates (scorpions and spiders) and
the myriapod S. maritima lack sensu stricto proPOs
(Fig. 1) [25, 26, 112, 115, 116] and so perhaps they
would need to rely on activated hemocyanins for mel-
anin synthesis. To date, most crustacean proPOs were
identified from decapods [117–123]. We found only
two malacostracan proPOs from non-decapod species in
GenBank, Nebalia kensleyi (Leptostraca; ACV33307.1),
and Oratosquilla oratoria (Stomatopoda; ADR50356.1;
Additional file 7: Figure S4A), indicating that proPO exists
beyond decapod species. No other reports exist for pro-
POs in amphipods (except for P. hawaiensis) [27], isopods,
krills and mysid crustaceans. Some have reported that am-
phipods and isopods lack proPO [30, 124–127]. Failure to
identify proPOs from isopods by an independent study
could be due to the use of a limited EST dataset [127]. In
contrast to the previous studies, we were able to identify
proPOs from all five malacostracan orders (Additional
file 7: Figure S4A). Since proPOs and hemocyanins
have similar sequences, we confirmed that these are
bona fide proPOs through reciprocal BLASTs and
phylogenetic analysis (Additional file 7: Figure S4A).
Considering that proPOs are present in insects, D. pulex
and malacostracans but not in myriapod and chelicerate
lineages (although related proteins with predicted tyro-
sinase activity were identified) [26], it is likely that this
non-oxygen binding derivative of hemocyanin was
invented at the base of Pancrustacea. ProPOs may have
evolved distinct roles in immunity since we were still able
to identify many other hemocyanin genes in malacostra-
cans (Additional file 7: Figure S4B). Parallels have been
drawn between the initiation of serine protease cascades
and the conversion of proPOs into catalytically active
POs after exposure to PAMPs [128, 129]. POs must be
tightly regulated by serine proteases since PO activation

generates highly reactive toxic quinone intermediates
[109, 130, 131] and CLIP-domain serine proteases are
implicated in this process [132]. CLIP-domain serine pro-
teases are expanded in Diptera insects (D. melanogaster
has 47 genes) but not in D. pulex, S. maritima and cheli-
cerates (Fig. 1) [26, 133]. We made similar observations
on the expansion of CLIP serine proteases in Malacos-
traca (Additional file 7: Figure S4C). We annotated over
2163 CLIP serine proteases. The highest numbers across
five malacostracan orders are: the decapod L. vannamei
(72 genes), the amphipod P. hawaiensis (54 genes), the
isopod Proasellus meridianus (68 genes), the krill Mega-
nyctiphanes norvegica (57 genes) and the mysid crust-
acean Neomysis awatschensis (56 genes; Additional file 4:
Table S3). The expansion of CLIP serine proteases in
malacostracans may signify a need for highly regulated
PO activation and this correlates with our novel findings
of proPO presence across the broader Malacostraca.

Toll and JAK-STAT pathways are conserved in
Malacostraca while several key components of the Imd
pathway are lost
Signal transduction pathways link recognition of PAMPs
by PRRs with transcriptional activation. Three well-
studied pathways are the Toll, Imd and Janus Kinase
(JAK)- signal transducer and activators of transcription
(STAT) pathways. Components of the Toll pathway in
malacostracans include a chain of interacting proteins:
the Toll-like receptors (TLRs) [134–136], Spätzle
[137–140], myeloid differentiation factor 88 (MyD88)
[141], Tube, Pelle, Dorsal, Cactus and the Toll-inter-
acting protein (TOLLIP; Fig. 3A). Our investigation of
the malacostracan Toll pathway members suggests that
this pathway is broadly conserved. Malacostracan TLRs
appear to have undergone divergent evolution through
multiple gene duplications and from our phylogenetic
analysis, we saw that paralogs exhibited marked sequence
divergence (Additional file 8: Figure S5). Like in dipterans
(D. melanogaster and A. aegypti have 6 genes each), we
discovered multiple-copies of the gene encoding Spätzle,
the cytokine partner of Toll, in malacostracans. In par-
ticular we observed that Euphausia superba has at least
Spätzle encoding genes, while we found numbers more
in line with insects in E. sinensis (6 genes), A. leptodacty-
lus (6 genes), P. hawaiensis (7 genes), M. norvegica (5
genes), N. awatschensis (7 genes) and Proasellus sonalasi
(7 genes; Fig. 3B). We conclude that the unique expan-
sion in E. superba might be a unique curiosity of this spe-
cies. We identified intact MyD88-Tube-Pelle complexes
in only 13 out of 55 malacostracan species (Fig. 3c). As in
insects [133, 142], MyD88 and Tube each exist as single-
copy genes in Malacostraca (Additional file 9: Table S4).
We found Tube transcripts from 17 species representing
only the Decapoda and Isopoda orders. Only one report
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of a crustacean Tube homolog has been previously
shown [143]. Although dipterans have one copy of Pelle,
we observed duplications of Pelle in some malacostracan
species in the Decapoda (Homarus americanus and L.
vannamei), Amphipoda (Echinogammarus veneris, P.
hawaiensis and T. saltator) and Isopoda (Proasellus beti-
cus, P. coiffaiti, P. coxalis, P. grafi, P. hercegovinensis and
P. rectus) (fig. 3C; Additional file 9: Table S4). As two
copies of Pelle were found in D. pulex and the deer tick
Ixodes scapularis [26], it is possible that duplication of
Pelle may have occurred at the base of arthropod line-
ages, with subsequent loss of one copy in insects. We
identified single-copy homologs of Dorsal and Cactus in
malacostracans (Fig. 3d, f and g). TOLLIP is a negative
regulator of NF-κB in mammals [144]. Not much is
known about the function of TOLLIP in invertebrates
and to date, only one TOLLIP in crustaceans has been
described [145]. We identified single-copy homologs of
TOLLIP across five Malacostraca orders, D. pulex, the
myriapod S. maritima and chelicerates (Mesobuthus
martensii and Ixodes scapularis) (Additional file 9:
Table S4, Fig. 3e). Amongst dipterans, we identified
single-copy TOLLIP homologs in Anopheles gambiae
but neither in D. melanogaster nor A. aegypti, although it
is present in other insects like bees and ants (fig. 3E;
Additional file 9: Table S4). Malacostracan TOLLIPs share
similarities to mammalian TOLLIP proteins having both
the protein kinase C conserved region 2 and the C-
terminal coupling of ubiquitin to endoplasmic reticulum
degradation domain [144, 146].
Most components of the Imd pathway are present in

malacostracans except for three gene families (Fig. 4a).
Imd is conserved amongst insects, myriapods and D.
pulex, but not in chelicerates [26, 147]. Imd exists as a
single gene within malacostracans across all five orders
(Fig. 4b). Imd is preferentially activated by the inner
PGN layer of Gram-negative bacteria through the bind-
ing of PGRP-LC to PGN [148, 149]. To our knowledge,
no PGRP homologs have been previously reported in
crustaceans including D. pulex [25] and P. hawaiensis
[27]. Although we failed to identify PGRPs in most
malacostracans, we found four putative PGRP genes
from T. saltator (Amphipoda), Proasellus karamani
(Isopoda) and H. americanus (Decapoda; Additional
file 10: Figure S6A). This could indicate a complex
pattern of PGRP loss amongst crustacean taxa, that
PGRPs are present but not represented in available
malacostracan transcriptome and/or that the PGRP
sequences we have found have evolved convergently.
Sequence analysis revealed that these malacostracans
PGRPs possess the amidase domain and share striking
sequence similarities to D. melanogaster PGRP-SC1,
SC2 and SB2 (Additional file 10: Figure S6D). Within
this domain, five amino acid residues (H-Y-H-T-C;

marked in Additional file 10: Figure S6D) have been
shown to be critical for PGRP enzymatic activity
[150, 151]. These residues are present in the malacos-
tracans PGRPs annotated here, indicating that they
have the potential to be enzymatically active. These
data suggest that PGRPs are present in Crustacean
taxa but perhaps have greatly reduced representation.
Future genome sequenced based analyses will be re-
quired to clarify this. A negative regulator of Imd sig-
nalling is the Caspar protein, a homolog of the
mammalian Fas-associating factor 1 [152]. We identi-
fied single homologs of Caspar across all five mala-
costracan orders (Fig. 4C) and in other arthropods
(D. pulex, dipterans, chelicerates and myriapod) indi-
cating that it is conserved in Arthropoda (Additional
file 11: Table S5). Concerning other Imd pathway
components, we identified single-copy homologs of
Relish, death-related ced-3/Nedd2-like protein (DREDD),
IκB kinase β (IKKβ) and MAPKKK transforming growth
factor –β (TGFβ)-activated kinase 1 (TAK1) in malacos-
tracans indicating that these components of the Imd
pathway have remained intact (Fig. 4, Additional file 10:
Figure S6 and Additional file 11: Table S5). However, we
failed to identify clear homologs of IκB kinase γ (IKKγ),
FAS-associated death domain (FADD) and TAK1-
binding protein (TAB2) in malacostracan transcriptomes,
which could be due to sequence divergence or the re-
placement of these components with other functionally
related proteins. Independently, components of the Imd
pathway have been reported in the decapod Carcinus
maenas and the authors also did not find clear homologs
for IKKγ or FADD [37]. Not much is known about the
Imd pathway in crustaceans. To date, only two homologs,
Imd and Relish have been subjected to functional studies
in shrimps [153–156]. Overall, the Imd pathway appears
to be reduced in malacostracans. Whether this is a result
of actual gene loss, sequence divergence or the utilization
of alternative proteins for Imd signalling is presently un-
known and warrants further investigation.
Core components of JAK-STAT include the cytokine

transmembrane receptor Domeless, JAK (Hopscotch in
D. melanogaster) and STAT proteins (Additional file 12:
Figure S7A) [157–160]. Mammals have four JAK pro-
teins and seven STATs [161] while most arthropods,
except chelicerates, only have single-copy JAK and
STAT homologs [26, 133]. JAK and Domeless proteins
in malacostracans exist as single homoogs (Fig. 2C;
Additional file 12: Figure S7B, Additional file 13:
Table S6). Like Domeless, STAT in most malacostra-
cans exists as single homologs, except in two amphi-
pod species; Hyalella azteca (2 genes) and T. saltator
(3 genes; Additional file 12: Figure S7C, Additional
file 13: Table S6). Negative regulators of JAK-STAT
include the suppressor of cytokine signalling (SOCS) and
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protein inhibitors of activated STAT (PIAS) [162, 163].
SOCS and PIAS are also well conserved in malacostra-
cans (Additional file 13: Table S6; Additional file 12:
Figure S7D and Additional file 14: Figure S8). Mam-
mals have eight SOCS proteins while D. melanogaster
only has three [160, 164]. Copy number of SOCS
varies between malacostracans; some of the highest
numbers are in L. vannamei, P. hawaiensis and M.
nipponense where they have 6, 6 and 5 genes respect-
ively (Additional file 13: Table S6). Phylogenetic ana-
lysis of malacostracan SOCS proteins revealed that
they clustered in seven major groups (Additional file 14:
Figure S8). Few studies on crustacean SOCSs are available
[165, 166], and whether the entire malacostracan SOCS
repertoire have roles in immunity is yet unknown.
Overall we have shown that three signal transduction

pathways, Toll, Imd and JAK-STAT have remained
largely conserved in malacostracans. Nonetheless, sev-
eral components of these pathways exhibit lineage spe-
cific diversification, for example, the loss of three Imd
pathway modules (IKKγ, FADD and TAB2) and the di-
vergent evolution of core TLRs and Spätzle components
of the Toll pathway.

Anti-lipopolysaccharide factors and crustins are
malacostracan-specific antimicrobial peptides
Signal transduction culminates in the activation of im-
mune effector molecules to neutralise pathogenic agents.
Antimicrobial peptides (AMPs) are rapidly evolving,
highly specific effector proteins that are potent agents
against a broad range of microbes [167, 168]. D. melano-
gaster has seven AMP families, but only three of these,
attacins, cecropins and defensins, are shared with other
dipterans [133]. To date, fifteen AMP families have been
reported in crustaceans, fourteen of these are from
decapods and many are lineage-specific [169, 170].
We considered two of these AMP families, anti-
lipopolysaccharide factors (ALFs) and crustins, and
show that they are actually well conserved in malacostra-
cans beyond just the Decapoda (Figs. 5 and 6). While
ALFs have only been reported in decapods [170, 171],
crustins have been reported once in a non-decapod mala-
costracan species, the amphipod Gammarus pulex [172].
The branchiopod D. pulex lack ALFs and crustins or any-
thing with sequence similarity, and we did not identify
clear homologs in other arthropods, indicating that both
gene families are specific to Malacostraca (Additional
file 15: Table S7; Fig. 5a). We identified a total of 337
ALFs from malacostracans form a wide range of tis-
sue samples (Additional file 15: Table s7). The deca-
pod Hyas araneus has the highest number of ALFs
(20 genes; Additional file 15: Table S7; Fig. 5b). Using
homology modelling, we find that ALFs in malacos-
tracans share high structural similarities, consisting of

three β-sheets and three α-helices (Fig. 5a’). Align-
ment analysis of malacostracan ALFs revealed that
they contained two conserved cysteine residues predicted
to form a disulfide bridge (Fig. 5c) [170, 173, 174]. Be-
tween the cysteine residues, a region containing positively
charged amino acids is defined as the LPS-binding domain
[171]. This domain is present in all malacostracan ALFs,
which suggests a conservation of LPS binding across this
whole gene family (Fig. 5c).
Crustin is a cysteine-rich AMP containing a whey

acidic protein (WAP) domain and was first discovered in
the decapod Carcinus maenas to have a role in defence
against Gram-positive bacteria [175]. Crustins are abun-
dant in malacostracans and we identified 513 putative
genes with E. superba encoding at least 50 crustins
(Fig. 6a and b; Additional file 15: Table S7). In compari-
son with other WAP domain proteins, crustins are char-
acterised by an additional crustin domain consisting of
12 conserved cysteine residues, in which a single WAP
domain is present and we note that this the case in all
malacostracans crustins (Fig. 6c). Future studies can now
address the biological roles of these AMPs and questions
as to whether these AMPs are differentially regulated by
specific microbial ligands, whether they are broad
spectrum or selective and whether they are active in spe-
cific developmental stages. Our analyses show that the
immune effector phase in malacostracans has undergone
substantial lineage specific evolution, expansion and se-
quence diversification of AMPs, reflecting their modes
of action to guard against a broad range of pathogens
found in their natural habitats. We also note conserva-
tion of AMPs across Malacostraca, meaning that non-
food crop species that can be easily studied in the lab
will be potential model systems for this aspect of mala-
costracan immunity.

Malacostracans have a canonical RNAi-based antiviral
immune system
RNA interference (RNAi) is a conserved antiviral mech-
anism in many systems [176–181]. RNAi-mediated gene
silencing is now employed as a method to prevent viral
disease progression in shrimps through the targeting of
viral genes in order to inhibit replication [182–186]. No
direct mechanistic evidence exists regarding the involve-
ment of the RNAi pathway components in crustacean
innate immunity. Despite this, there have been increas-
ing efforts to identify RNAi pathway members in
penaeid shrimps because of the potential applicability of
RNAi-derived technologies in circumventing viral dis-
eases [180–182, 185, 187–192]. We annotated core
RNAi components in malacostracans, which include
Dicer, the trans-activating response (TAR) RNA-binding
protein (TRBP) and Argonaute-2 (Fig. 7a). We found
single-copy homologs of TRBPs across all five
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malacostracan orders and they share the conserved
dsRNA-binding domain (Fig. 7d; Additional file 16:
Table S8). We identified Dicer proteins in amphipods,
isopods, decapods and krills, but not in the mysid

crustacean N. awatschensis (Additional file 16: Table S8;
Fig. 7b). Dicer-1 and Dicer-2 have distinct roles in D.
melanogaster, where the former is involved in microRNA
(miRNA) biogenesis while the latter participates in
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dsRNAs processing into small-interfering RNAs (siRNAs)
[193]. Phylogenetic and sequence analysis of malacostra-
can Dicer proteins revealed that they form two clusters

representing Dicer-1 and Dicer-2 (fig. 7B). With a few ex-
ceptions, most malacostracans have single-copy homologs
of Dicer-1 and Dicer-2 proteins; the krill species E.
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superba and M. norvegica have only Dicer-2 transcripts
(Additional file 16: Table S8). With respect to Argonautes,
we observed that most malacostracan species have mul-
tiple copies of this gene. We show that these putative
Argonautes form a separate cluster from the closely re-
lated Piwi proteins (Additional file 17: Figure S9). We
identified single-copy homologs of Argonaute-1 and mul-
tiple copies of Argonaute-2 in malacostracans (Additional
file 17: Figure S9). Duplications of Argonaute-2 have oc-
curred independently in specific lineages because variable
copy number of this protein is reported in chelicerates but
not in insects [26, 194]. Also, the longer branch lengths of
Argonaute-2 proteins indicate that sequence evolution is
higher than those of Argonaute-1 (Additional file 17:
Figure S9). In L. vannamei, only Argonaute-2 is responsive
to dsRNA [191]. Hence, it was thought that Argonaute-1
operates through the miRNA pathway in shrimps [195].
As in arthropods, the miRNA pathway is associated with
crustacean antiviral defence [196, 197]. The expression of
miRNAs in M. japonicus was differentially regulated upon
viral challenge [198] and in other systems, viral infection
results in the modification of host miRNA profiles
[199–201]. Components of miRNA biogenesis are intact
in malacostracans; we identified single-copy homologs of
Drosha and partner of Drosha (Pasha) (Fig. 7c and e). Re-
search in the area of RNAi-mediated antiviral immunity
has remained comparatively sparse in crustaceans, despite
its rich therapeutic potential. Our results provide inde-
pendent evidence that malacostracans have a naturally oc-
curring antiviral defence mechanism in place. Much more
needs to be done to understand the role of RNAi in innate
immunity before it can be exploited for host defence
against viral infections.

Four novel gene families with potential involvement in
malacostracan immunity
We have shown that although most canonical immunity
genes and pathways in malacostracans share broad con-
servation with arthropods, lineage specific diversifica-
tions and gene duplications are common, which together
suggests that lineage specific immune components may
exist. With the advent of high-throughput sequencing,
we are now able to tap into the availability of growing
transcriptomic resources to find currently unknown pro-
teins that might have potential involvement in host de-
fence. Here, we present four novel gene families
classified on the basis of shared domains implicated in
immune function. We obtained a set of crustacean spe-
cific proteins from an orthology analysis using complete
arthropod genomes [27]. This list contained 750 protein
sequences that have no significant blast hit to any other
sequences in the NCBI nr database. We filtered this list
down to 82 genes based on the presence of known Pfam
domains [202] and then down to a selection of 4 genes

with domains suggestive of immune function (Additional
file 18: Table S9). We used P. hawaiensis as a starting
point for this analysis as this is the only complete Mala-
costraca genome available to date. While we are aware
of potential limitations of this approach; for example, we
may miss gene families that are not present in P.
hawaiensis, since we were interested in genes that are
found across all five malacostracan orders, we were able
to rationalise the use of P. hawaiensis, an established to
laboratory organism, as a basis for comparison. Consid-
ering genes with known Pfam domains allowed us to in-
vestigate potential structural characteristics that have
implied immune function. We observed broad conserva-
tion of all four novel gene families in Malacostraca. We
have named these gene families, pending functional
studies, according to their Pfam annotations: 1) chitin
binding peritrophin-A family, 2) death domain family, 3)
ML domain family and 4) von Willebrand factor type A
family (Additional file 18: Table S9). We found that
these genes are all expressed in the P. hawaiensis and
that they exhibited differential expression patterns be-
tween developmental stages and tissue types (Fig. 8;
Additional file 19: Table S10).
Peritrophins are chitin-binding proteins originally iso-

lated from the insect gut peritrophic membrane [203].
Peritrophic membrane is thought to constitute a barrier
for midgut epithelial cells to prevent the entry of mi-
crobes [204–206]. Peritrophin-like proteins are charac-
terised by peritrophin domains. One example is the
peritrophin-A domain, which contains six conserved
cysteine residues separated by other non-conserved
amino acids (Additional file 20: Figure S10) [207]. It has
been shown recently that crustaceans also have
peritrophin-like genes. Penaeid shrimps express peritro-
phins during oogenesis and these proteins have roles in
the protection of spawned eggs against Vibrio [203, 208].
A peritrophin-like gene cloned from Fenneropenaeus
chinensis could bind chitin and Gram-negative bacteria
[209] and another peritrophin-like protein from Exopa-
laemon carinicauda is involved in WSSV infection
[210]. To date, only 10 peritrophin-like genes have been
identified in crustaceans and no reports exist beyond
decapod species [203, 208–212]. Here, we identified 80
novel peritrophin-like genes across five Malacostraca
order (Additional file 18: Table S9; Additional file 20:
Figure S10A). This novel family of peritrophin-like pro-
teins have no significant similarities to other peritrophin
genes previously reported in crustaceans or arthropods.
They share 18 conserved cysteine residues, a chitin-
binding peritrophin-A domain and multiple conserved
aromatic amino acids (Additional file 20: Figure S10B).
In P. hawaiensis, we observed that one peritrophin-like
gene is highly expressed in gut, hemocyte and limb sam-
ples but not in whole embryonic or adult tissue samples
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(Fig. 8). This corroborates the observation that other
peritrophins are found in the gut peritrophic membrane.
They may serve additional roles in innate immunity
since we also saw increased expression in circulating
hemolymph (Fig. 8).
The second novel gene family specific to malacostra-

cans is characterised by a death domain (DD). The DD
superfamily represents evolutionarily conserved proteins
of four subfamilies: the DD subfamily, the caspase re-
cruitment domain subfamily, the pyrin domain subfamily
and the death effector domain subfamily [213, 214].
Many DD superfamily members are involved in the
regulation of immune response. Some examples are Imd,
FADD and DREDD of the Imd pathway [215–219],
MyD88, Tube and Pelle of the Toll pathway [137, 220]
and receptor interacting protein, tumor necrosis factor
receptor-1 (TNFR1), TNFR-associated death domain and
MAP kinase-activating death domain of the TNF path-
way [221–225]. This new malacostracan DD gene family
is a group of novel single-copy transcripts sharing a C-
terminal DD (Additional file 21: Figure S11A). This fam-
ily is specific to Malacostraca and has no significant blast
results to the nr database or any other DD-containing
proteins (Additional file 18: Table S9). The N-terminal
region of this family exhibited considerable similarities
within members of this group but no known domains
could be determined by hidden Markov model (HMM)
in this region (Additional file 21: S11B). Experimental
confirmation revealed that embryonic samples show the

highest expression of a P. hawaiensis DD gene (Fig. 8).
This observation is intriguing because programmed cell
death can be a key process during animal embryogenesis
[226] and many DD proteins are shown to be involved
in apoptosis [216, 227].
The third novel gene family we identified in malacos-

tracans is characterised by the presence of a MD-2-
related lipid recognition (ML) domain. The ML domain
was originally identified from a group of unknown pro-
teins that share regions of homology with the MD-2
protein [228]. We identified 39 transcripts containing
the ML domain; they have no significant blast hits to
any known genes so we named this the malacostracan
ML family (Additional file 22: Figure S12A; Additional
file 18: Table S9). The malacostracan ML family contains
six conserved cysteine residues and these residues may
be involved in the formation of disulfide bonds
(Additional file 22: Figure S12B). Mutation of a con-
served cysteine in MD-2 abolishes the response to LPS,
which suggests a role of the disulfide bond in MD-2
function [229]. Members of this ML family are expressed
in a wide range of tissue types; we observed expression
in brain and nervous system samples (Additional file 22:
Figure S12A; Additional file 18: Table S9). ML genes in
P. hawaiensis exhibited the highest level of expression in
adult tissue samples and to lesser degrees in embryos or
gut samples (Fig. 8). Since ML proteins have been
implicated in lipid signalling, metabolism and immunity
[228, 230–232], increased expression of P. hawaiensis
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ML in whole adult samples may imply a metabolic role
in addition to host defence, as expression is also be ob-
served in hemocytes. Although not much is known
about the direct roles of ML proteins in immunity,
others have proposed that they could participate as
lipid-binding cofactors in the recognition of pathogenic
agents [228]. In mammals, MD-2 directly binds LPS
through the MD-2-TLR4 complex of the Toll signalling
pathway [233–235]. MD-2 has a leader sequence for
endoplasmic reticulum targeting and secretion but lacks
any transmembrane domain [236]. We predicted the
presence of putative N-terminal transmembrane topolo-
gies in the malacostracans ML family, which indicates
that they could be anchored to the cell membrane and
have unknown PRR functions rather than being secreted
(Additional file 22: Figure S12B).
The final family of novel malacostracan genes with po-

tential involvement in immunity has the von Willebrand
factor type A (VWA) domain. Von Willebrand factor
(VWF) proteins were discovered in patients with blood
clotting disorders, named the von Willebrand disease
[237, 238]. They are ubiquitous in blood plasma and
connective tissues and have functions in binding blood
clotting factors and in mediating platelet adhesion at the
site of vascular injury [239–241]. It was thought that en-
zymatic components of the blood clotting and comple-
ment system utilise similar macromolecular building
blocks that existed before the protostome-deuterostome
divergence [242]. Since arthropods have open circulatory
systems and lack adaptive immunity, hemolymph clot-
ting is a pivotal part of the immune response because it
functions not only to prevent hemolymph loss but also
to immobilise pathogens at the site of wound [243].
Arthropod hemolymph is also sensitive to small
amounts of microbial polysaccharides [244–246] and
clotting enzymes in arthropods emerged via convergent
evolution from the assembly of domains found in
vertebrate factors rather than being exact orthologs
[242]. Here, we describe the novel observation of a gene
family that contained a VWA domain (Additional file 18:
Table S9). They are present as multiple-copy homologs;
we identified 87 genes from all five malacostracan orders
and they have no significant sequence homology to any
other known sequences (Additional file 23: Figure S13).
The malacostracans VWA family is made up of mem-
bers with long transcripts up to 7 kb in length, with cod-
ing sequences translated to polypeptides of up to 1500
amino acids; this feature is commonly seen in other
VWF proteins [247, 248]. We observed expression in tis-
sue specific datasets obtained from the brain, nervous
system, hepatopancreas, hemocytes, gill and eyestalk
(Additional file 18: Table S9). From our RT-PCR results,
the five VWA genes in P. hawaiensis exhibited diverse
patterns of expression; e.g. the VWA2 gene appears to

be highly expressed in embryos, limbs, gut, hemolymph
and adult tissues while the VWA3 gene is not expressed
in gut and hemolymph samples (Fig. 8). In summary, we
have described four novel gene families specific only to
malacostracans, which are good candidates for fulfilling
roles in host defence. These genes offer new avenues for
research and further analysis will be required to ascer-
tain if they fit into the conceptual framework of innate
immunity. Given our conservative approach to identify-
ing gene families with domains that relate to known
Pfam domains, it seems likely further comparative study,
coupled with functional genomics and immunobiology
approaches, will identify more malacostracan specific
immune related genes.

Conclusion
The recent availability of transcriptome sequences of
distantly related malacostracan species has allowed us to
describe molecular components of their innate immune
systems at a new level of detail. This data is now avail-
able to the community to inform the next stages of im-
mune research to underpin important aquaculture
developments. By separating the immune response into
successive phases, we observed dynamic evolutionary
adaptations in the pathogen recognition phase, signal
transduction and effector response systems. Malacostra-
cans achieve flexibility in recognising infections through
the divergent evolution of certain PRR families, notably
the gene expansions of GNBPs and CTLs. Upon recog-
nition, several enzymatic cascades are involved in signal
modulation and these too have novel evolutionary fea-
tures. Malacostracans achieve diversity in modulation
components through gene duplications of modulatory
families involving CLIP serine proteases and Spätzle.
When drawing comparisons to other arthropods, we ob-
served novelties in these immune modulation compo-
nents and are able to form strong evolutionary
hypotheses as when key pathways evolved or diverged
(e.g. the invention of proPO at the base of Pancrustacea).
Core immune signal transduction pathways are largely
conserved in malacostracans, although several compo-
nents of the Imd pathways have been lost. The Imd
pathway is activated through the digestion of PGNs by
PGRPs in D. melanogaster [53].
PGRPs are previously thought to be lost in Crustacea;

as D. pulex lack PGRPs [25] and no PGRPs are present
in the P. hawaiensis genome [27]. Despite this being true
for most malacostracan datasets we considered here, we
were able to identify four PGRP genes spread across the
Amphipoda, Isopoda and Decapoda orders, which are
predicted to be catalytically active based on the presence
of essential residues (Additional file 10: Figure S6A and
D). Although unlikely, PGRPs in these species may have
appeared through convergent evolution. Future studies
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will be required to determine the whether the biological
roles of these PGRPs have any relevance in host defence
and the evolutionary events that explain their relatively
patchy phylogenetic distribution.
Effector mechanisms in malacostracans, like in other

arthropods, are highly divergent and lineage specific. We
described two malacostracan-specific AMPs previously
confined to the Decapoda, and show that members of
these families are widespread in other non-decapod
malacostracan species. Crustaceans are regularly exposed
to viral components in their natural environments
[180, 249, 250] and hence need antiviral mechanisms in
place to counteract infection. We demonstrate that mala-
costracans have intact siRNA and miRNA components.
Finally, we present four novel gene families in Mala-

costraca as potential key players of the innate immunity.
We only addressed the structural significance of these
genes in the context of host defence based on compari-
sons with other immune proteins containing similar
structural features. More functional studies will be re-
quired in the future to ascertain the roles of these genes
and their potential function in innate immunity before
they can be confirmed as crustacean immune system
components. Resources presented in this study facilitate
and expand the scope of both basic and applied re-
search, in particular analyses on the mechanistic links
between specific immune modules and overall host de-
fence. Importantly our data suggest that non-decapod
species, like the laboratory model P. hawaiensis, may
nonetheless be suitable for studying malacostracan spe-
cific immune mechanisms relevant to food crop species.

Methods
Innate immunity datasets and query sets
We retrieved complete transcriptome datasets for malacos-
tracan species (available at the time of manuscript prepar-
ation) from the European Nucleotide Archive (http://
www.ebi.ac.uk/ena) (Additional file 24). These transcrip-
tomes included those generated from specific tissue types
or developmental stages. We also included the Parhyale
hawaiensis transcriptome generated by a separate study
[27]. All analyses were performed on a total of 69 tran-
scriptome datasets. A full list of datasets and accessions
used in this study is listed in Additional file 2: Table S1.
For query sequences used in homology searches, we re-
trieved a set of insect immunity genes from ImmunoDB
(http://cegg.unige.ch/Insecta/immunodb) [133] and known
malacostracan entries compiled from Uniprot and Gen-
Bank. Both gene sets are consolidated to generate a core
set of protein sequences used as queries.

Identification of Malacostraca innate immunity genes
First, we use CD-HIT (https://github.com/weizhongli/
cdhit) to generate ‘non-redundant’ datasets. CD-HIT

was used to collapse contigs that have at least 95% iden-
tity in order to merge potential splice variants. To gener-
ate a set of malacostracan immunity gene orthologs, we
used multiple Basic Local Alignment Search Tool
(BLAST)-based approaches such as PSI-BLAST, BLASTp
and tBLASTn with varying Blocks Substitution matrices.
This list was filtered by e-value of less than 10-6 and best
reciprocal BLAST hits against the GenBank non-
redundant (nr) database. We then filtered the best recip-
rocal nr BLAST hits by the presence of conserved do-
mains reported to be essential for function and tree-based
approaches to compile a final non-redundant list of Mala-
costraca innate immunity orthologs. Fasta files for all se-
quences are available as Additional file 25.

Identification of conserved domains and phylogenetic
tree construction
Malacostracan transcripts were in silico translated ac-
cording to the longest open-reading frames into protein
sequences. Conserved domains of the malacostracan hits
were annotated using the Batch CD-Search Tool by
NCBI (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/
bwrpsb.cgi). Hits without essential domains were dis-
carded. Multiple sequence alignments of protein se-
quences were performed using MAFFT [251].
Phylogenetic trees were built from the MAFFT align-
ments using the WAG +G model in RAxML [252] to
generate best-scoring maximum likelihood trees. Mul-
tiple sequence alignment images were generated using
the Geneious programme [253]. Graphical representa-
tions of Newick trees were also generated using
Geneious.

Identification of novel genes with putative immune
function in Malacostraca
We previously performed orthologous group analyses in
a separate study using complete arthropod genomes,
which included the genome of the Malacostraca P.
hawaiensis [27]. We retrieved a list containing 750 pro-
tein sequences that were found only in P. hawaiensis
and have no significant blast hits to any other sequences
in the NCBI nr database [27]. We performed a scan for
the presence of Pfam domains [202] using HMMER
(http://hmmer.org/) [254] on these 750 sequences and
identified 82 genes containing Pfam domains. Further
examination of predicted Pfam domains revealed four
genes with domains suggestive of immune function: 1)
chitin binding peritrophin-A domain pfam01607, 2)
death domain pfam00531, 3) von Willebrand factor type
A domain pfam05762 and 4) ML domain pfam02221
(Additional file 18: Table S9). These four genes were
used as query sequences for Blast against the other
malacostracan transcriptomes. We scanned putative
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malacostracan orthologues for transmembrane domains
and signal peptides using the Phobius tool [255, 256].

RNA extraction and reverse transcriptase-polymerase
chain reaction (RT-PCR) of novel Malacostraca immunity
genes in Parhyale hawaiensis
Five types of P. hawaiensis tissue samples were collected
from: 1) 100 mixed-stage embryos, 2) amputated limb
fragments from 15 adult animals, 3) dissected gut tissues
from 20 adult animals, 4) hemolymph from 50 adult ani-
mals and 5) adult whole tissues from two males and two
females. Embryos were dissected from gravid females
and rinsed with molecular grade water. Prior to tissue
collection from the adults, animals were washed with fil-
tered artificial seawater followed by treating with a mix-
ture of clove oil (Sigma) and milliQ water (1:5000
dilution) for anaesthetization. As soon as the animals
stopped moving after several minutes, the clove oil mix-
ture was rinsed off and the anaesthetized animals were
rinsed with molecular grade water. Limb fragments were
dissected using spring scissors (Fine Science Tools). Gut
tissues were collected using a scalpel and fine forceps.
Hemolymph samples were collected by allowing the ani-
mals to bleed out in molecular grade water. Immediately
after collection, 1 mL of Trizol reagent (Thermo Fisher
Scientific) was added to the tissue samples in eppendorf
tubes and samples were then snap frozen on dry ice.
RNA extractions were performed according to the Trizol
manufacturer’s instructions. Concentrations of total
RNA extracts were quantified using Qubit and Nano-
drop. One microgram of total RNA from each tissue
type was used for cDNA synthesis using the Qiagen
QuantiTect Reverse Transcription Kit according to man-
ufacturer’s instructions. PCR on each gene was per-
formed using Phusion High-fidelity polymerase (Thermo
Fisher Scientific) and the following program was used
for thermal cycling: 98C 30s, followed by 25 cycles of
98C 10s, 62C 30s, 72C 45 s, and then 72C 5 m. PCR
products were ran on a 1% agarose gel and stained with
SYBR Safe (Thermo Fisher Scientific). Primer sequences
used for PCR are listed in Additional file 19: Table S10.

Additional files

Additional file 1: Figure S1. Phylogenetic relationship of Malacostraca.
Malacostraca is shown within the Pancrustacea clade. Malacostraca tree is
adapted from Melands and Willassen 2007. Decapod phylogeny is
adapted from Scholtz and Richter 1995 and Schram [43]. Representative
species are shown at each branch. Species denoted in purple are edible
food crops. (PDF 153 kb)

Additional file 2: Table S1. A complete list of all 69 malacostracan
transcriptome datasets used in this study along with information on
tissue types, developmental stages, accession IDs and total number of
transcripts for each transcriptome. (PDF 65 kb)

Additional file 3: Table S2. List of species used in graphs along with
their corresponding number IDs. (PDF 46 kb)

Additional file 4: Table S3. Malacostracans pattern recognition
receptors and proPOs. (PDF 639 kb)

Additional file 5: Figure S2. Multiple sequence alignment of the β-
glucanase domains of Gram negative binding proteins of malacostracans
together with the β-glucanase protein from Bombyx mori (NP_001159614.1).
Two conserved Glu active site residues are labeled as E188 and E193 based
on positions in the B. mori protein. (PDF 924 kb)

Additional file 6: Figure S3. Thioester-containing protein (TEPs) family.
(A) Phylogenetic tree of the TEP family is constructed using the maximum-
likelihood method from an amino acid multiple sequence alignment. Amino
acid sequences include the macroglobulin complement related proteins,
the vertebrate C3, C4 and C5 complement factors, arthropod TEPs and the
alpha-2 macroglobulin family. Taxa labels are depicted as their respective
colour codes. Bootstrap support values (n=1000) for all trees can be found
in Supplementary figure 8. Scale bar represents substitution per site. (B)
Graph of putative TEP family transcripts. The y-axes represent total number
of genes identified in all 55 malacostracan species for each family. Each
species is represented by a number on the X-axes and a complete list of
species is available in Additional file 3: Table S2. Black horizontal bars below
each graph delimit the five orders of malacostracans and the numbers in
parentheses (x/y) represent the following: x = number of species in which a
particular gene family is found and y = total number of species in each
order. (PDF 1763 kb)

Additional file 7: Figure S4. Prophenoloxidase activation system. (A)
Phylogenetic tree of prophenoloxidase (proPO) is constructed using the
maximum-likelihood method from an amino acid multiple sequence
alignment. Taxa labels are depicted as their respective colour codes.
Bootstrap support values (n=1000) for all trees can be found in Additional
file 14: Figure S8. Scale bar represents substitution per site. The graphs
represent the total number of (B) hemocyanin and (C) CLIP-domain serine
protease transcripts in malacostracans. The y-axes represent total number
of genes identified in all 55 malacostracan species for each family. Each
species is represented by a number on the X-axes and a complete list of
species is available in Additional file 3: Table S2. Black horizontal bars
below each graph delimit the five orders of malacostracans and the
numbers in parentheses (x/y) represent the following: x = number of
species in which a particular gene family is found and y = total number
of species in each order. (PDF 579 kb)

Additional file 8: Figure S5. Malacostracans Toll-like receptors (TLRs).
(A) Phylogenetic tree of TLRs is constructed using the maximum-
likelihood method from an amino acid multiple sequence alignment of
toll-IL-1 receptor (TIR) domains. Taxa labels are depicted as their
respective colour codes. Bootstrap support values (n=1000) for all trees can
be found in Additional file 14: Figure S8. Scale bar represents substitution
per site. (B) Graph of putative TLR transcripts. The y-axes represent total
number of genes identified in all 55 malacostracan species for each family.
Each species is represented by a number on the X-axes and a complete list
of species is available in Additional file 3: Table S2. Black horizontal bars
below each graph delimit the five orders of malacostracans and the
numbers in parentheses (x/y) represent the following: x = number of
species in which a particular gene family is found and y = total
number of species in each order. (PDF 1124 kb)

Additional file 9: Table S4. Malacostracans Toll pathway components.
(PDF 474 kb)

Additional file 10: Figure S6. Additional members of the IMD
pathway. Phylogenetic trees of (A) PGRP, (B) IκB kinase β (IKKb); also
known as immune response deficient-5 (IRD-5) and (C) TAK1 are
constructed using the maximum-likelihood method from an amino acid
multiple sequence alignment. Taxa labels are depicted as their respective
colour codes. Bootstrap support values (n=1000) for all trees can be
found in Additional file 14: Figure S8. Scale bar represents substitution
per site. (D) Multiple sequence alignment of four PGRPs identified in
malacostracans. Conserved amidase catalytic residues are highlighted in
red boxes. (PDF 1151 kb)

Additional file 11: Table S5. Malacostracans Imd pathway
components. (PDF 351 kb)
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Additional file 12: Figure S7. JAK-STAT pathway members in
malacostracans. (A) Activation of the JAK-STAT signalling occurs
through the binding of ligands such as cytokines to the cytokine
receptor Domeless. Conserved protein domains of Domeless are
shown in the figure inset. This binding activates the phosphorylation
of the Janus kinase (JAK) proteins, which creates docking sites for
Signal Transducer and Activator of Transcription (STAT) proteins through
their Src Homology 2 (SH2) domains. STATs are phosphorylated by JAKs
and activated STATs dimerise and are translocated to the nucleus to
induce transcription. JAK-STAT transduction is controlled by suppressors of
cytokine signalling (SOCS) and protein inhibitors of activated STAT (PIAS).
SOCS proteins inhibit STATs phosphorylation via two mechanisms; 1) by
competing with STATs for phosphotyrosine binding sites on cytokine
receptors and (2) by binding to JAKs and preventing the recruitment of
STATs onto the Domeless receptor. PIAS, also known as the E3 SUMO-
protein ligase PIAS, is a transcriptional co-regulator that has the ability to
inhibit STAT function. Phylogenetic trees of (B) JAK, (C) STAT and (D) PIAS
are constructed using the maximum-likelihood method from an amino
acid multiple sequence alignment. Two groups of PIAS proteins have been
identified in malacostracans. Taxa labels are depicted as their respective
colour codes. Bootstrap support values (n=1000) for all trees can be found
in Additional file 14: Figure S8. Scale bar represents substitution per site.
(PDF 972 kb)

Additional file 13: Table 6. Malacostracans JAK-STAT pathway
components. (PDF 228 kb)

Additional file 14: Figure S8. Suppressor of cytokine signalling (SOCS)
gene family in malacostracans. Phylogenetic tree of the SOCS gene
family is constructed using the maximum-likelihood method from an
amino acid multiple sequence alignment. Seven main groups of SOCS
proteins are identified in malacostracans. Taxa labels are depicted as their
respective colour codes. Bootstrap support values (n=1000) for all trees
can be found in Additional file 14: Figure S8. Scale bar represents
substitution per site. (PDF 1157 kb)

Additional file 15: Table S7. Malacostracans antimicrobial peptides.
(PDF 107 kb)

Additional file 16: Table S8. Malacostracans antiviral RNAi pathway
genes. (PDF 378 kb)

Additional file 17: Figure S9. Argonaute and Piwi gene families in
malacostracans. Phylogenetic tree of the Argonaute and Piwi family is
constructed using the maximum-likelihood method from an amino acid
multiple sequence alignment. Seven main groups of SOCS proteins are
identified in malacostracans. Taxa labels are depicted as their respective
colour codes. Bootstrap support values (n=1000) for all trees can be
found in Additional file 14: Figure S8. Scale bar represents substitution
per site. (PDF 1315 kb)

Additional file 18: Table S9. Four novel malacostracan gene families.
(PDF 231 kb)

Additional file 19: Table S10. Primer sequences used for RT-PCR of
novel malacostracan genes in Parhyale hawaiensis. (PDF 33 kb)

Additional file 20: Figure S10. Novel gene family with potential innate
immunity function characterised by the chitin binding peritrophin-A
domain (pfam01607) found only in malacostracans. (A) Phylogenetic tree
of proteins containing the chitin binding peritrophin-A domain is
constructed using the maximum-likelihood method from an amino acid
multiple sequence alignment. Taxa labels are depicted as their respective
colour codes. Node labels represent bootstrap support values from 1000
replicates. Scale bar represents substitution per site. (B) Multiple sequence
alignment of peritrophin-A proteins showing the conserved peritrophin-A
domain marked with a blue box, conserved cysteine residues marked in
red boxes and conserved aromatic amino acids indicated by blue
asterisks. The yellow shaded box represents a group of proteins with
additional isopod-specific sequences. (PDF 5816 kb)

Additional file 21: Figure S11. Novel gene family with potential innate
immunity function characterised by the death domain (pfam00531)
found only in malacostracans. (A) Phylogenetic tree of proteins
containing the death domain is constructed using the maximum-
likelihood method from an amino acid multiple sequence alignment.

Taxa labels are depicted as their respective colour codes. Node labels
represent bootstrap support values from 1000 replicates. Scale bar
represents substitution per site. (B) Multiple sequence alignment of the
death domain family showing the death domain marked with a red
box and a novel gene-family-specific motif marked with a blue box.
(PDF 3603 kb)

Additional file 22: Figure S12. Novel gene family with potential innate
immunity function characterised by the ML domain (pfam02221) found
only in malacostracans. (A) Phylogenetic tree of proteins containing the
ML domain is constructed using the maximum-likelihood method from
an amino acid multiple sequence alignment. Taxa labels are depicted as
their respective colour codes. Node labels represent bootstrap support
values from 1000 replicates. Scale bar represents substitution per site. (B)
Multiple sequence alignment of the ML family showing the ML domain
characterised by six conserved cysteine residues marked with red
asterisks. Transmembrane domains were predicted using the Phobius
program (Käll et al., [254]; Käll et al., [255]) and are annotated with a
pink box. (PDF 3188 kb)

Additional file 23: Figure S13. Novel gene family with potential innate
immunity function characterised by the Von Willebrand factor type A
domain (pfam05762) found only in malacostracans. (A) Phylogenetic tree
of proteins containing the Von Willebrand factor type A domain is
constructed using the maximum-likelihood method from an amino acid
multiple sequence alignment. Taxa labels are depicted as their respective
colour codes. Node labels represent bootstrap support values from 1000
replicates. Scale bar represents substitution per site. (B) Multiple sequence
alignment of the Von Willebrand factor type A domain from this gene
family. (PDF 5243 kb)

Additional file 24: Supplementary references (DOCX 31 kb)

Additional file 25: Fasta files of all sequences. (ZIP 3690 kb)

Additional file 26: Figure S14. Phylogenetic trees presented in this
study with node labels representing bootstrap support values from 1000
replicates. Scale bars represent substitution per site. (PDF 11640 kb)

Additional file 24: Supplementary references (DOCX 31 kb)

Additional file 25: Fasta files of all sequences. (ZIP 3690 kb)

Additional file 26: Figure S14. Phylogenetic trees presented in this
study with node labels representing bootstrap support values from 1000
replicates. Scale bars represent substitution per site. (PDF 11640 kb)
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type lectin; DD: Death domain; DREDD: Death-related ced-3/Nedd2-like;
DSCAM: Down syndrome cell adhesion molecule; FADD: FAS-associated
death domain; Fn: Fibronectin; GNBP: Gram-negative binding protein;
HMM: Hidden Markov model; Ig: Immunoglobulin; IKKβ: IκB kinase β;
IKKγ: IκB kinase γ; Imd: Immune deficiency; JAK-STAT: Janus Kinase - signal
transducer and activators of transcription; LDL: Low-density lipoprotein;
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complement related; miRNA: microRNA; ML: MD-2-related lipid recognition;
MyD88: Myeloid differentiation factor 88; PAMP: Pathogen-associated
molecular pattern; Pasha: Partner of Drosha; PGN: Peptidoglycan;
PGRP: Peptidoglycan recognition protein; PIAS: Protein inhibitors of activated
STAT; PO: Phenoloxidase; proPO: Prophenoloxidase; PRR: Pattern recognition
receptor; RNAi: RNA interference; SCRA: Class A scavenger receptor;
SCRB: Class B scavenger receptor; siRNA: Small-interfering RNA;
SOCS: Suppressor of cytokine signalling; SR: Scavenger receptor; TAB2: TAK1-
binding protein; TAK1: MAPKKK transforming growth factor –β (TGFβ)-
activated kinase 1; TEP: Thioester-containing protein; TLR: Toll-like receptor;
TNFR1: Tumor necrosis factor receptor-1; TOLLIP: Toll-interacting protein;
TRBP: Trans-activating response (TAR) RNA-binding protein; VWA: Von
Willebrand factor type A; VWF: Von Willebrand factor; WSSV: White spot
syndrome virus; α2M: α2-macroglobulin
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