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We present a feasible method for the preparation of one-dimensional N-doping

carbon nanofibers encapsulated NaTi2(PO4)3 (NTP-NCNFs) through electrospinning

accompanied by calcination. The poor electrical conductivity of NTP is significantly

improved and the as-prepared NTP-NCNFs exhibit stable and ultrafast sodium-storage

capability. The NTP-NCNFs maintains a stable specific capacity of 121 mAh g−1

at 10C after 2,000 cycles, which only drop to 105 mAh g−1 after 20,000 cycles.

Furthermore, the NTP-NCNFs show excellent rate performance from 0.2 to 20C, whose

recovery efficiency still reaches 99.43%. The superior electrochemical property is mainly

attributed to the large specific surface area, high porosity, N-doping carbon coating, and

one-dimensional structure of NTP-NCNFs.
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INTRODUCTION

Because of the high energy density, stable cycling performance, and environmental benignity, Li-
ion batteries have been widely applied in portable devices and electric vehicles (Duncan et al., 2016;
Kim et al., 2016; Zhang et al., 2018; Zheng et al., 2018). However, the limited lithium mineral
reserves restrict the wide application of LIBs in grid-scale energy storage system. As cost-effective
alternatives to Li-ion batteries, sodium ion batteries have been investigated for next-generation
energy storage system, benefiting from sodium abundance (Wu et al., 2016;Wang et al., 2017, 2018;
Xu et al., 2017). SIBs basically have similar battery components and electrical storage mechanisms
as LIBs. However, the poor electrochemical kinetics and large volume change caused by large size
of Na ions leads to severe capacity loss and cycling degradation. Therefore, the challenge of looking
for sodium storage materials with good stability and high-rate capacity still remains.

Recently, NTP as one of sodium super-ionic conductor (NASICON) has been demonstrated
as potential long life-time and high-rate electrode material for SIBs (Guin and Tietz, 2015; Wu
et al., 2015; Hu et al., 2018; Liang L. et al., 2018). The strong P-O covalent bond in the phosphates
offers remarkable structural and thermal stability and the open three-dimensional (3D) framework
in NTP allows for fast sodium ions transfer(Li et al., 2012; Yang et al., 2015; Wang et al., 2016).
However, pristine NTP with low intrinsic electronic conductivity displays poor electrochemical
performance. In order to address this issue, some strategies including nano-sizing the particle,
coating a conductive layer on the surface, and mixing with high conductive materials have been
proposed (Fang et al., 2016; Ha-Kyung et al., 2016; Liang et al., 2018b). Although significant
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enhancement has been achieved, the satisfactory electrochemical
performance with high rate capability and stability of NTP is still
of great urgent.

Electrospinning is a fascinating way to prepare CNFs (Li et al.,
2017; Zhu et al., 2017; Liang et al., 2018a). Meanwhile, due to
the presence of carbon and nitrogen source from the starting
polymer, electrospinning can be adapted to a feasible preparation
for N-doping carbon matrixes encapsulated NTP nanoparticles
to realize high performance for sodium storage. Herein, NTP
nanoparticles are embeded into conductive N-doping carbon
nanofibers (denoted as NTP-NCNFs). 1D nanofibers provide
fast charge transfer pathway, ensuring the NTP-NCNFs with
superb rate performance. The NCNFs matrix also contributes
to the ultra-long cycling stability. At 10C rate, the NTP-NCNFs
maintained a specific capacity of 105mAh g−1 after 20,000 cycles.

EXPERIMENTAL SECTION

Preparation of NTP-NCNFs
NaH2PO4·2H2O (0.211 g) and polyacrylonitrile (PAN)
(0.8 g) were dissolved into N, N-dimethylformamide (DMF)
(10ml) to obtain a homogeneous solution. Then, titanium
tetraisopropanolate [(CH3CH3CHO)3Ti] (0.5ml) was dropped
into above solution and stirred overnight. And then, the
solution was injected into the syringe with a 21G needle, which
the flow rate was 10 uL min−1. Al foil was employed as the
collector with distance to the needle of 15 cm and voltage
of 15 kV. The as-electrospun fibers were carbonized in a
tube furnace at 700◦C (denoted as 700NTP-NCNFs), 800◦C
(denoted as 800NTP-NCNFs), 900◦C (TiN) for 2 h under inert
atmosphere. As a fair comparison, the NaTi2(PO4)3 powder
was synthesized via mixing the same ratio of NaH2PO4·2H2O
and [(CH3CH3CHO)3Ti] annealed at 800◦C under argon
atmosphere.

Materials Characterization
The crystal structure of the fibers was characterized using
powder X-ray diffraction (XRD) on a Rigaku D/Max-2400 X-
ray diffractometer with Cu-Kα radiation (λ = 1.54056 Å). The

FIGURE 1 | Schematic representation of (A) the synthesis process and (B) the structure illustration of NTP-NCNFs.

specific surface area and the pore size distribution of as-prepared
N-doping carbon coating NTP nanofibers (700 and 800◦C) were
evaluated by the Brunauer-Emmet-Teller (BET) at 77K using
a NOVA 1200e Surface Area. Raman spectra of samples were
acquired with a Lab RAM HR 800 Raman microscope with an
excitation laser beam (λ = 532 nm). SEM images were obtained
on a scanning electronmicroscope (Hitachi, S4800) attachedwith
an energy-dispersive X-ray spectroscopy (EDS) facility. TEM and
HR-TEM images were recorded on a JEOL JEM-2010 (JEOL Ltd,
Tokyo, Japan) at 200 kV. Ex-situ XPS records were performed on
a VG scientific ESCALAB 250 spectrometer.

Electrochemical Analysis
The electrochemical properties of the N-doping carbon coating
NTP nanofibers was tested by assembling 2016 coin-type cells
with Na as the counter electrode. NTP-NCNFs, Super P,
and polyvinylidene fluoride (PVDF) binders dissolved in N-
methylpyrrolidone (NMP) were mixed into slurry with a weight
ratio of 8:1:1, which was coated on a Cu foil and dried in
a vacuum oven at 110◦C for 6 h, further dividing into wafers
with 12mm diameter. The active material is about 0.64mg
cm−2. The separator was a glass fiber filter. The electrolyte was
1M NaClO4/ethylene carbonate (EC) and propylene carbonate
(PC) with volume ratio of 1:1. The specific capacity is based
on the whole mass of NTP-NCNFs. Electrochemical capacity
measurements of the NTP-NCNFs were tested on the Neware
battery test system by applying galvanostatic charge-discharge.
Cyclic voltammetry (CV) was performed on a BioLogic-
VMP3 electrochemical workstation at the same voltage window
with a sweep rate of 0.1mV s−1. Electrochemical impedance
spectroscopy (EIS) was recorded at an AC voltage of 5mV
amplitude in the frequency range from 1.0 to 100 mHz at room
temperature.

RESULTS AND DISCUSSION

Figure 1 depicts the synthesis of NTP-NCNFs. It should be noted
that (CH3CH3CHO)3Ti was added into the mixture solution
under vigorous stirring followed by electrospinning. Figures 2a,b
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FIGURE 2 | SEM images of 800NTP-NCNFs before (a,b) and after (c,d) calcination.

FIGURE 3 | (a) Typical TEM image and (b) HRTEM image of 800NTP-NCNFs, (c) HAADF/STEM image of 800NTP-NCNFs, and corresponding EDS elemental

mapping images: (d) C, (e) O, (f) P, (g) Ti, and (h) Na.
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show the continuous nanofibers with diameter of ∼ 500 nm.
The as-prepared nanofibers will be subjected to a calcination
process under argon atmosphere at 800◦C, during which
the PAN will convert into N-doped carbon materials while
keeping its 1D morphology (Wang et al., 2013). The result of
thermogravimetric analysis shows that the mass ratio between
NaTi2(PO4)3 and N-doped carbon materials is about 1:1 (Figure
S1). Meanwhile, the NaH2PO4 and (CH3CH3CHO)3Ti form
NTP nanoparticles via a solid reaction process (Ribero et al.,
2016; Wang et al., 2016). As shown in Figures 2c,d, the
surface of the fiber become rough and evenly decorated by
nanoparticles after calcination. However, after pyrolysis at 900◦C
in argon atmosphere, the as-prepared sample has changed to
TiN (JCPDF#65-0715) as demonstrated by the XRD analysis
(Figure S2). This might be caused by the reduction of NTP at
higher pyrolysis temperature by ammonia, which was formed
by the decomposition of PAN (Liu et al., 2013). As-prepared
TiN still keeps as nanofibers, shown in Figure S3. Though it
is beneficial to the electrical conductivity of NTP-NCNFs, the
further pyrolysis of carbon layer leads to a bad influence on its
electrochemical performance, which was exhibited in Figure S4.

Therefore, the further research mainly focuses on 700/800NTP-
NCNFs.

High resolution TEM (HRTEM) measurements further
confirmed the formation of NTP. Figure 3a shows that NTP
nanoparticles evenly distributed over the carbon fiber. HRTEM
(Figure 3b) reveals the lattice fringes of 0.21 nm, matching with
the spacing of (119) plane of NTP. The elemental mapping using
EDS coupled with HAADF/STEM was utilized to investigate
the compositional distributions of C, O, P, Ti, and Na in
800NTP-NCNFs (Figures 3c–h), which clearly shows that these
elements are uniformly distributed in 800NTP-NCNFs. The
uniform structure of N-doping carbon matrix should improve
the electrical conductivity of NTP.

Figure 4A shows the XRD patterns of NTP-NCNFs, in which
all the peaks can be indexed to the standard NTP peaks
(JCPDF#33-1296). To clarify the degrees of defect structure and
graphitization, Raman spectroscopy is carried out. As shown
in Figure 4B, the D (1,350 cm−1) and G (1,600 cm−1) bands
are significantly observed, which represents disordered and
graphitization, respectively. The ID/IG value of 800NTP-NCNFs
is 1.05, which is evidently lower than that of 700NTP-NCNFs

FIGURE 4 | (A) The X-ray diffraction patterns and (B) Raman spectrum of 700NTP-NCNFs and 800NTP-NCNFs.

FIGURE 5 | (A) N2 absorption-desorption isotherm and (B) the pore-size distribution curves of the 700NTP-NCNFs and 800NTP-NCNFs.
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(1.14) (Wang et al., 2015). The significantly decreased value of
ID/IG indicates an enhanced degree of graphitization, which is
likely beneficial to fast electron transport of NTP-NCNFs.

N2 adsorption and desorption isotherms (Figure 5A) of
both 700NTP-NCNFs and 800NTP-NCNFs can be identified as
type IV isotherms, with pronounced hysteresis loops, implying
the mesopores in NTP-NCNFs. The BET surface area of
800NTP-NCNFs is 153.86 m2 g−1, which is much higher
than that of 700NTP-NCNFs (∼10 m2 g−1). The high BET
surface area of 800NTP-NCNFs is likely due to the higher
carbonization degree and the release of gas generated at
higher pyrolysis temperature. The pore size distributions are
shown in Figure 5B, which suggest the formation of micro-,
meso-, and macro-pores. The larger specific surface area and
hierarchical pore structures can effectively increase the mass

transport and the contact between NTP and electrolyte, which
would be beneficial to the electrochemical performance of the
800NTP-NCNFs. Therefore, we believe that 800NTP-NCNFs will
have better electrochemical performance than 700NTP-NCNFs
(Figure S5).

We first use cyclic voltammetry (CV) to investigate the
sodium storage mechanism of 800NTP-NCNFs (Figure 6A).
During the initial cathodic scan, the peaks at 0.81 and 0.51V are
higher than those of subsequent cycles, which are caused by the
formation of solid electrolyte interface layer (SEI). Remarkably,
nearly all the shape and the position of the peaks are overlap
after the second CV curve, suggesting excellent electrochemical
reversibility and stability of 800NTP-NCNFs for sodium storage.

The discharge-charge profiles of 800NTP-NCNFs are
recorded at various rates (Figure 6C). The plateaus at ∼2.1

FIGURE 6 | Electrochemical performance of 800NTP-NCNFs: (A) CV curves for the initial 4 cycles, (B) the cycling performance at a current density of 200mA g−1

(1 C) and corresponding coulombic efficiency, (C) galvanostatic discharge-charge profiles at different current rates with initial discharge capacity excluded, (D) rate

capability at different current rates ranging from 0.1 to 20C and back to 0.1–0.2C, (E) cycle performance at high current density of 2 A g−1 (10C).
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FIGURE 7 | Electrochemical impedance spectroscopy (EIS) measurements of

800NTP-NCNFs and pristine NTP powders.

and ∼0.32V during discharge and plateaus at ∼0.5 and ∼2.2V
during charge are in agreement with the CV results. Here,
the NCNFs contribute to Na+ storage and the overall specific
capacity is based on the whole mass of 800NTP-NCNFs (Stevens
and Dahna, 2000; Dahbi et al., 2014).

Figure 6D shows the rate performance of 800NTP-NCNFs at
different current densities. The reversible specific capacity was
176 mAh g−1 at 0.1 C. As the rate increased from 0.2 to 0.5, 1,
2, 5, 10, and 20C, the corresponding specific capacity was 163,
149, 138, 127, 110, 95, and 71 mAh g−1, with a capacity retention
ration of 92.61, 84.66, 78.41, 72.16, 62.50, 53.98, and 40.34%
as reference to that at 0.1 C, respectively. As the rate returned
to 0.1 C, the specific capacity of 800NTP-NCNFs recovered to
175 mAh g−1, which demonstrated the excellent reversibility
of 800NTP-NCNFs during Na+ insertion and extraction. As
illustrated in Figure 6E, the 800NTP-NCNFs deliver ultra-stable
cycling performance and rate capability for 20,000 cycles at
10C. The 800NTP-NCNFs maintain a stable specific capacity
of 121 mAh g−1 after 2,000 cycles, which is about 80% of
initial capacity. After 20,000 cycles, the 800NTP-NCNFs even
deliver a considerable capacity of 105 mAh g−1. The astonishing
electrochemical property of 800NTP-NCNFs is attributed to
several features: (i) NASICON-structured NTP ensures sufficient
ion transport; (ii) N-doping carbon coating on the surface of NTP
improves the electronic conductivity of NTP, which provides
fast electronic transport; (iii) 1D structure with large surface
area ensures rapid ion transport by enhancing electrode and
electrolyte contact; (iv) the hierarchical pore distribution is
favorable for the electrolyte penetration and accommodation of
volume change.

The 800NTP-NCNFs displayed superior cycling stability
with high specific capacity to that of pristine NTP powder
(Figure 6B), which further demonstrated that 800NTP-NCNFs
intrinsically improved the electronic conductivity of NTP.
To investigate the improvement of 800NTP-NCNFs, EIS was

performed in Figure 7. The charge-transfer resistance (Rct)
for pristine NTP powder electrode is 1100�, and this high
resistance reflects the low intrinsic electrical conductivity of NTP.
The Rct of 800NTP-NCNFs is significantly lower than that of
pristine NTP powder electrode (around 150�), which implies
that NTP encapsulated in N-doping carbon fiber structure
successfully enhance the electrical conductivity and, in turn, the
electrochemical performance of NTP (Figure 6B).

CONCLUSION

In summary, we presented a feasible method to prepare NTP-
NCNFs which exhibits excellent rate capability and stable cycling
performance for sodium storage. The NTP-NCNFs could deliver
a specific capacity of 105 mAh g−1 under 10C even after 20000
cycles. The nanosized NTP shorten the solid-state ion diffusion
length and accelerate surface electrochemical reaction in the
electrode. The 1D N-doped carbon coating enhances electronic
conductivity of NTP and ensures the fast electron transfer.
Moreover, the 3D woven network is beneficial to the penetration
of electrolyte and accommodates the volume change of NTP
during cycling.
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