
RESEARCH ARTICLE

Quantifying Human Visible Color Variation

from High Definition Digital Images of Orb

Web Spiders

Horacio Tapia-McClung1*, Helena Ajuria Ibarra2, Dinesh Rao2
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Abstract

Digital processing and analysis of high resolution images of 30 individuals of the orb web spi-

der Verrucosa arenata were performed to extract and quantify human visible colors present

on the dorsal abdomen of this species. Color extraction was performed with minimal user

intervention using an unsupervised algorithm to determine groups of colors on each individ-

ual spider, which was then analyzed in order to quantify and classify the colors obtained,

both spatially and using energy and entropy measures of the digital images. Analysis shows

that the colors cover a small region of the visible spectrum, are not spatially homogeneously

distributed over the patterns and from an entropic point of view, colors that cover a smaller

region on the whole pattern carry more information than colors covering a larger region. This

study demonstrates the use of processing tools to create automatic systems to extract valu-

able information from digital images that are precise, efficient and helpful for the understand-

ing of the underlying biology.

Introduction

Digital images are created when light is captured using digital sensors that respond to the emit-

ted and reflected photons of the various sources that make a scene. High resolution digital

images record large amounts of information of the colors close to how they are perceived by

the human eye and sometimes in other wavelengths, and have been used in biological studies

of color patterns and variations among different individuals of the same species to help under-

stand the relation between coloration and behavior [1–7]. Quantifying color as perceived by

the human eye can help understand some features regarding the function of coloration on a

particular species; for example, the study of spatial patterns in the distribution of colors allows

for testing for discrete color morphology among individuals of a species [3, 6–11], for relations

between morphology and the ecology [2–5, 8, 12, 13], aposematism, sexual selection, etc.

Bright body coloration in orb web spiders has been thought to function as an insect lure

[14]: pollinating insects are deceived by the flower-like patterns of the spiders and thus fall into

the web. However, the same properties that make the spider attractive to prey, including bright

color and reflection in the UV part of the spectrum also attract potential predators such as
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wasps and insectivorous birds, resulting in a trade-off between prey attraction and predator

attention [15]. One of the fundamental characteristics necessary for successful deception is

that the body patterns need not mimic a particular flower, but rather the generalized appear-

ance of a flower. For example, in the case of the orchid mantis, flower seeking prey are signifi-

cantly more likely to approach an individual even though its appearance does not mimic a

particular orchid, but rather the general characteristics of an orchid [16]. In the case of orb

web spiders, bright body coloration has been shown to attract insects in several spider species

[14]. However, flowers are rarely colored uniformly. They consist of a series of variations in

both color and distribution. For there to be successful deception and, thereby, an efficient

visual lure, the spiders should not only mimic the common floral colors but also the color pat-

terns. A first step towards modelling the appearance of the spider seen from the perspective of

potential prey or predators requires the quantification of color patterns and their relative dis-

tribution on the body. This is possible using high resolution digital images. For this study, we

used the species Verrucosa arenata, a color polymorphic orb web spider widely distributed

across North America. A previous study [12] with this species showed that the two morphs,

white and yellow (Fig 1), are sympatric and occur in a ratio of roughly 3:1 (white:yellow) in the

population. White morphs are generally in better body condition than the yellow morphs but

attract fewer prey. However, in that study, only the dominant color from a human perspective

was used to categorize the two morphs, while in reality morphs can be placed on a continuum

between the extremes of completely white and yellow. Furthermore, as can be seen in Fig 1,

there are other colors present on the abdomen such as brown and black, making the categori-

zation based on the human perception of dominant color subjective and insufficient to capture

possible functions of the color pattern on the spiders.

Fig 1. (Color online) A representative sample from the abdomens of 30 Verrucosa arenata individuals,

captured using high resolution digital images. Patterns show a range of human visible color variation between

extremes of white and yellow. Note, however, that other colors are present in the patterns.

doi:10.1371/journal.pone.0166371.g001
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In some studies of the distribution of colors in biological systems [17], the colors of inter-

est are obtained by segmenting the digital images using threshold values selected according

to the perceived presence or absence of a particular color. This approach has the disadvan-

tage that the color is chosen subjectively, according to the human visual system. The high

complexity and variability in composition of color signals is best suited for an unsupervised

algorithm that segments labeled pixels according to the color represented by similar pixel

values from a digital image, preventing a bias by selecting preset threshold values [17]. Usu-

pervised algorithms are commonly used for digital image processing [18–20]. While the

comprenhensive toolbox for image calibration and analysis described in [21] provides a set

of techniques for digital image processing, it is best suited to perform specialized measure-

ments towards estimating colors in non-human visual systems, including tools to linearize

digital images and to map signal to animal cone-catch values, ultimately allowing for more

objective measurements from digital images that are independent of the human visual sys-

tem. The approach described here aims to complement the toolboox in the analysis of color

pattern variation.

To provide new understanding of the presence of color variations among individuals of a

species, and to help in classifying individuals using color features [12, 17, 22], in this work an

unsupervised clustering algorithm is applied to high resolution digital images of individuals of

the orb spider Verrucosa arenata to extract human visible colors present in the bright colour

pattern on the abdomen of the spiders [12, 23].

After extracting the color information contained in the pixel values, measurements of the

energy and the entropy of the digital image are obtained. Both image measurements have

been used in different applications of image processing to evaluate the quality of digital

images [24], and chemical properties extracted from digital images [20], among others. The

energy quantifies the average intensity of the pixels and the entropy quantifies the uncer-

tainty of information provided by the image; when entropy of a digital image increases, the

information associated to the image is closer to random, when it decreases, it is less random

[18–20].

Finally, the available pixel information is used to develop a basic model to detect regions

with large color coverage in the patterns. The model is based on the probability that a region

in the pattern contains pixels with color values corresponding to the color that is more promi-

nent in the whole data set, thus an a priori probability can be assigned to that pixel; a probabil-

ity distribution is estimated from the complete pixel data.

The remainder of the manuscript is divided into three main sections. The first section

describes the methods for acquiring and processing the digital images. Next, the results of

applying the unsupervised algorithm and the analysis of the extracted human visible color fea-

tures of the patterns is presented, concluding with a discussion and plans for future work.

Methods

A brief description of the image acquisition process is first presented, followed by the

pre- and post-processing operations performed on the high resolution digital images,

which are key to determining the regions containing the color patterns on the spiders and

to extract the colors from the images. In this work we only look at human visible colors

present in the patterns; whenever the word color is used throughout the text we refer to

these frequencies. Colors are extracted using an unsupervised clustering method and pro-

cessed to obtain energy and entropy measurements of each pattern. Finally, a basic probabi-

listic model to detect the color with the highest coverage in the patterns is developed from

the image data.
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Image acquisition

A total of 30 adult females of the spider Verrucosa arenata (Araneae:Araneidae) [12, 23] were

collected during December of 2014 at the Parque Ecológico El Haya in Xalapa, Veracruz,

Mexico. Spiders were placed inside a cardboard box at a distance of 15 cm above the back-

ground, consisting of a blue chroma key fabric (Flashpoint™). Green, purple and blue back-

grounds were tested, with the blue one providing the best contrast against the color pattern of

the spiders. Digital images of the abdomen of each spider were acquired using a Canon EOS

7D camera fitted with an EF 100 mm f/2.8 USM macro lens, placed at a distance of 15 cm.

from the spider.

A Macro Twin Lite MT—24 EX flash unit was used as illumination. Exposure settings were

adjusted manually and kept constant for all images acquired. Photographs were recorded in

both 16 -bit RAW and 8 -bit JPEG image device types. The RAW images where used for the

analysis. Fig 1 shows four examples of the raw images. V. arenata is commonly known as the

arrowhead spider, since the brightly colored part of the abdomen forms a distinct triangular

shape. The spider varies in coloration not only in the pigmented part, but also in the surround-

ing area, see Fig 1. The abdomen is fringed by short spines of which two of the lower ones are

white color irrespective of the morph.

Image processing

Processing and analysis was performed using functions and tools available in the commercial

software Mathematica [25] running on an 8M RAM Intel i7-3770 desktop computer with a

64-bit Linux Operating System. All the processing code and sample images are available on

request.

The typical size of the 16-bit high resolution RAW images acquired is about 5194 pixels

wide by 3457 pixels high. This level of resolution, about 18 million pixels per image, allows for

a very detailed extraction of the colors present in the pattern captured by the digital image, but

can also be a computationally expensive process. A pre-processing step performed to automat-

ically determine a region of interest (roi) in the image consists of extracting the foreground

containing the spider’s color pattern by removing the constant background. This process is

efficient due to the high contrast between the colors in the patterns and the blue background

used to acquire the digital images. Removal of the background from the original image leaves

about 10 to 12 million pixels with information pertaining only to the color pattern on the spi-

der abdomen. No image rescaling is necessary, thus avoiding data loss. The resulting images

are processed, segmenting the image according to the values of each pixel using an unsuper-

vised algorithm to determine groups of colors.

Background removal and region of interest

As described previously, images were acquired using a high contrast chroma blue background,

which is useful in determining the region of interest. A first approach to determine this region

is to segment images using preset threshold values for the RGB triplet of the background. This

approach can prune pixels from the region containing the color pattern if an inadequate

threshold value is selected (see Fig 2).

A better approach is to select the threshold based on the mean luminance value of the back-

ground, obtained by averaging different pixels from regions with blue background in the

image. In this work, for each image, pixels on vertical stripes along both edges of the original

image are used to determine a threshold value based on the mean luminance. Choosing it in

this manner makes the extraction of the pixels corresponding to the color pattern precise and

efficient, taking into account possible light variations captured during the acquisition of the
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images. Fig 2 shows the effect of extracting the region of interest using different threshold val-

ues that are calculated as a percentage of the mean background luminance. In the figure, dark

areas correspond to regions detected as background pixels, and white areas correspond to the

region of interest. A large threshold value removes pixels that belong to the color pattern

region. In general, a threshold value below 10% of the mean luminance of the background is

enough to extract the foreground pixels containing the region of interest, and is the value used

when processing all the original images in this work. The resulting region of interest for the

example images of Fig 1 is shown in Fig 3.

After extracting the foreground containing the color patterns, the resulting images contain

approximately 60% of the information of the original raw images before background removal,

still leaving very high resolution images containing only the information on the colors that

make the patterns.

Color extraction

The region of interest containing the color patterns focuses on the abdomen of the spiders. This

region of the body is included because the contrast between the color pattern and the abdomen

may be biologically relevant.

The color extraction algorithm used to determine the colors on the digital images of each

pattern is based on the k-means clustering algorithm. This method for grouping pixels parti-

tions the image into clusters so that each pixel belongs to the cluster with the nearest mean [18,

19]. These clusters are obtained by measuring the distance between pixel values in a color

space that separates gray-scale information from color information by entirely encoding the

first in the values of a lightness variable, denoted by L�, and the latter in values of red minus

green color and green minus blue colors, respectively denoted by a� and b�. This color space

is know as the L � a � b� system [18]. In contrast to other color spaces like the HSI which also

decouples the intensity (I) from the color information (Hue and Saturation), the L � a � b�
color space was designed so the Euclidean distance corresponds with perceived differences

between colors. The space is defined so that the colors are independent of the device on which

they are displayed.

When applied to each image in the dataset, ten groups of pixels were determined that have

color pixel values close to a centroid color (the mean). Following the idea of the spatial granu-
larity analysis used by some authors to quantify the contribution of marking sizes to a given

pattern in biological entities [9, 26], this color decomposition is referred to as the color granu-
larity of the pattern.

Fig 2. Effect of choosing different threshold values to remove the background. The threshold values shown represent a

percentage of the average luminosity of the background (see main text). Values below a 10% of the mean luminosity show no significant

difference in the extracted region of interest from the digital images.

doi:10.1371/journal.pone.0166371.g002
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The color granularity quantifies the amount of color and its spatial location on the abdo-

men of the spider ordered by area coverage on the pattern. Fig 4 shows the color granularity

for the patterns of Fig 3. The color granularity contains information that provides a set of fea-

tures of each pattern that can be used to characterize it instead of the�12 million pixel color

values on each image.

Probability model for color detection

A probability based model for the detection of the color with the largest covering in the pattern

can be constructed from the color granularity. The model is built based on the prior probability

for the color value of a pixel in the pattern. In this work, a very basic model is presented in

which each pixel is classified either as belonging to the class with the highest coverage, or not.

To describe the model, ω1 denotes the state of the element of the color granularity with the

highest coverage in the pattern, and ω2 denotes the state of any other element of the color gran-

ularity (any other with a lower coverage value). The a priori probabilities of a pixel being in

either state ω1 or ω2 satisfy the rule P(ω1) + P(ω2) = 1 (uppercase P is used to denote probabili-
ties, while lowercase p denotes probability density functions).

Consider the measurement x of some property of a pixel on the pattern; for example x
could be the RGB color values. Taking these measured values to be a continuous random

Fig 3. (Color online) Resulting region of interest containing the full color pattern obtained using the

preprocessing steps described in the main text. These images are still very high resolution, about� 60%

of the original raw images (Fig 1).

doi:10.1371/journal.pone.0166371.g003
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variable, the conditional probability density of x given that the state is the color granularity

with the highest coverage, is described by a probability density function, pdf, expressed as p(x|

ω1). Similarly the pdf of x, given that the state is any other color granularity, is denoted by p(x|

ω2). Both probability density functions describe the difference in the property x between colors

with the highest coverage and any other in the pattern. From Bayes’ formula, the probability

for the element of the color granularity with the highest coverage in the pattern, ω1, given that

the feature value x has been measured is:

Pðo1jxÞ ¼
pðxjo1ÞPðo1Þ

pðxÞ
ð1Þ

where the denominator

pðxÞ ¼ pðxjo1ÞPðo1Þ þ pðxjo2ÞPðo2Þ ð2Þ

is a normalizing factor that ensures that the probabilities add to 1. The pdf p(x|ω1) in the

numerator of Eq 1 represents the likelihood that the element of highest coverage in the pattern

ω1 is measured given that, or conditioned to, the property x’s value. Similarly, p(x|ω2) is the

likelihood that any other element of the color granularity is measured, conditioned to the

property x’s value. If P(ω1|x)> P(ω2|x) then the state ω1 is more likely to be the one to which

the pixel with measured feature x belongs.

Applying Eq 1 to the color values of each pixel in a pattern, the conditional probability den-

sity functions p(x|ω1) and p(x) can be approximated from the color granularity extracted from

the pixel data of the 30 digital images as described in the previous section. The distribution of

colors of the pixel values of each pattern covers a small portion of the RGB color space, as can

be seen from the RGB color space chromaticity diagrams shown in Fig 5, where pairs of color

coordinates inside a triangle in a two dimensional space containing all possible chromaticities

in a given color space are shown [18, 19]. The boundary of the diagrams is displayed with the

colors and wavelengths corresponding to the human visible spectrum. The diagrams show that

the colors extracted from the pattern cover a small portion of the RGB color space and that

they overlap, making it hard to differentiate the color that covers the largest portion of the pat-

tern. To better distinguish colors on the pattern, the pixel values are transferred to the CIE

XYZ color space, decomposing them into two chromaticity coordinates and one luminance

Fig 4. (Color online) Representation of the color granularity for the patterns of Fig 3.

doi:10.1371/journal.pone.0166371.g004
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coordinate. Keeping only the chromaticity coordinates, defined as

x ¼
X

X þ Y þ Z
ð3aÞ

y ¼
Y

X þ Y þ Z
ð3bÞ

the probability model expressed in Eq 1 is built in the two dimensional chromaticity plane

color space defined by Eqs 3a and 3b. In order to train the statistical model to detect the colors

with a larger coverage, the probability density functions p(x|ωj) are approximated by a two

dimensional distribution fitted to the chromaticity coordinates given by Eqs 3a and 3b and

shown in Fig 6 for the states of largest cover, ω1, and the others, ω2.

The priors P(ωj) are approximated as the total sum of pixels with the largest/others coverage

for all the color granularity elements, divided by the total number of pixels in all the color

granularity sets of the whole data corresponding to the 30 images.

The conditional probabilities P(ω1|x) and P(ω2|x) of test pixels are obtained and compared.

If P(ω1|x)> P(ω2|x) then the testing pixel is classified as belonging to the element of the color

Fig 5. (Color online) Chromaticity plots showing the distribution of pixel color values corresponding to the patterns of Fig 1.

The boundary is colored according to the visible spectrum; notice how the visible colors present in the patterns overlap covering only a

small region of the RGB color space. The colors on the pattern cover a small portion of the RGB color space and they overlap,

suggesting the use of a different color space to build the probability model.

doi:10.1371/journal.pone.0166371.g005
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granularity with the highest area coverage, otherwise, it does not belong to this element. In this

way pixels in a pattern can be classified into pixels belonging to the highest coverage color

granularity or not. The results of applying this simple probability-based pixel classifier are pre-

sented in the next section.

Results

For each pattern in the database, the ten extracted colors are arranged and displayed in stacked

bars in which the height of each bar is proportional to the percentage of coverage of that color

in the corresponding pattern. The corresponding charts for the sample patterns of Fig 3 are

shown in Fig 7. Each bar represents an element of the color granularity of a pattern. Each full

stack is normalized to 1, meaning that all the colors displayed cover the whole region of inter-

est; the numbers appearing at the side of each bar represent the percentage of coverage in the

pattern of each color.

The energy and the entropy associated to each color granularity element of a pattern are

then measured. Fig 8 shows the values of these measurements on the color granularity of the

Fig 6. (Color online) Probability density functionsp(x|ωj) for states of color with the highest coverage (ω1) of the pattern, and all

the others (ω2), approximated by a two-dimensional distribution fitted to the chromaticity coordinates of the converted color

data of the patterns.

doi:10.1371/journal.pone.0166371.g006
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sample patterns of Fig 3, plotted as a function of the coverage value of each element of the

color granularity.

Both energy and entropy vary monotonically with the coverage of the extracted color:

energy/entropy decreases/increases for colors that cover larger areas over the patterns. This

monotonic behavior for the measured values of energy/entropy is observed across all the pat-

terns analyzed, as can be seen from the nearly constant values of the slopes of the best fit lines

across the whole image dataset plotted in Fig 9.

The basic probability model described above is trained using the whole data set of patterns.

The a priori probability for the proportion of pixels corresponding to the largest coverage on

Fig 7. (Color online) Stacked bar charts showing the proportion of each color covering the roi for the sample patterns of Fig 3.

doi:10.1371/journal.pone.0166371.g007

Fig 8. (Color online) Energy (top data points) and entropy (bottom data points) measurements and best

line fit as a function of coverage area over the region of interest for the images of Fig 3.

doi:10.1371/journal.pone.0166371.g008
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the patterns was found to be P(ω1)� .17 in the million—pixel training datasets. The a priori
probability for all other colors in the data is P(ω2) = 1 − P(ω1)� .83. The conditional probabil-

ity distribution functions p(ωi|x) are approximated from the data by fitting a kernel distribu-

tion to the chromaticity coordinate pairs x, y, thus obtaining a function of the measured

property x, which is applied to each pixel color value of the patterns in the database, resulting

in the classified pixels shown in Fig 10.

The figure shows the result of applying the probability based method to detect the color

with the largest coverage and a qualitative comparison to the result of the unsupervised cluster-

ing method for the same pattern. The probability method overestimates the region of highest

color granularity in the pattern, but it is nevertheless promising that the corresponding color

Fig 9. (Color online) Value of the slopes of the best fit lines to the energy/entropy data shown in Fig 8 for the whole image dataset.

doi:10.1371/journal.pone.0166371.g009

Fig 10. (Color online) Example showing the resulting region of highest coverage detected using the simple

probabilistic method described in the main text. The left image is the original pattern, the middle image is the result of

applying the probabilistic model and the image to the right shows the result of the unsupervised algorithm.

doi:10.1371/journal.pone.0166371.g010
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and region seems correctly detected, at least qualitatively. Because the probability model is

very basic, precise results are not expected; acquiring and using more images corresponding to

different individuals to train this model will provide better classification results in the future.

Discussion

The method described proves to be an effective tool to automatically extract colors from pat-

terns of the Verrucosa arenata spider. A key benefit compared to other approaches is its suitabil-

ity for the automatization of color selection without human intervention, removing any

subjectivity due to user perception of the color. The color quantification and analysis is carried

out exclusively for human visible colors, as a first step in studying the patterns, before non-

human visual systems like those of the spider’s predators are considered. Further work is

required, but the approach used in this work could be incorporated into more comprehensive

tools for performing detailed image analysis, such as that described in [21], which focus on

other aspects of visual ecology and serve a different purpose. A difference from the approach

described here is that there is no need to resize images and there is no requirement of uniformly

scaled images for pattern analysis when comparing the patterns from different individuals.

The present study only looked at human visible colors. However, the analyses presented

can be easily extended to false color images (that incorporate nonhuman visible wavelengths)

generated by the toolbox described in [21]. Color information is of vital importance in many

biological systems, and is used in processes such as sexual selection where the color of a male is

actively evaluated by the female. Using an unsupervised algorithm on color patterns that are

visible to the animal receiver can reveal focal points of selection pressures that have been hith-

erto ignored due to logistical difficulties.

Using the information about the extracted colors, the color granularity of the pattern is

defined and used to quantify the amount and spatial location of colors of the spider’s abdo-

men. A simple probability-based model for detecting the largest covering color in the pattern

is constructed and trained with available data, and then qualitatively compared with the results

of the unsupervised method applied to extract the colors.

The color granularity of the patterns, Fig 4, and the stacked charts with the area coverage of

each color, Fig 7, support the observation that brighter colors are usually the ones with lower

coverage and are found inside the patterns, while colors with higher coverage are found in the

body portion enclosing the brighter ones. Consequently, the appearance of the spider may

serve to obscure its form and enhance the illusion [14, 15]. It is not yet clear if the area of the

body enclosing the color region of the pattern serves some particular biological function. In

flowers, the colors on the periphery play a distinct role in the process of attracting pollinators.

Flowers with a bright centre and a dim periphery are potentially perceived as having blurred

edges by honeybees [27]. The information on each color granularity set suggests that colors on

the spider pattern are not distributed over a large range of wavelengths in the human visible

spectrum, but rather span a small region of low wavelengths.

Energy and entropy measurements of all the color granularity sets are presented and show

the same behavior across all patterns: the energy, a measure of the intensity of the pixels,

monotonically decreases as the area covered by the color present on the pattern increases. The

rate at which energy decreases with the increasing cover area appears to be the same for all pat-

terns regardless of the particular color, remaining nearly constant with very small dispersion

(Fig 8). Further work is required to understand if this is a feature of the color granularity as

defined or an intrinsic feature of the patterns themselves.

Entropy, on the other side, increases monotonically with (increasing) coverage, a behavior

observed for all the patterns analyzed. This feature, summarized in the plot showing the
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dispersion of the slope of the best line fits to the entropy on Fig 9, suggests an interpretation in

terms of loss of information from the colors covering larger areas of the pattern, or alterna-

tively, a gain of information from the color covering a smaller area. In probability terms, colors

with lower coverage represent rare events and provide more information about the color pat-

tern. A comparison of the perceived colors from the visual system of this species’ predator/

prey can shed more light into the relevance of each color granularity and point towards the

role of the colors with less coverage with respect to the biological functions of the pattern: if

spiders mimic flower-like patterns, then the variations in color also matter.

Finally, regarding the probability model given by Eq 1, it is possible to generalize it to con-

sider the conditional probabilities that the pixel to be tested belongs to any of the color granu-

larity set, not just the one with the highest coverage. In this work the model was trained using

only two conditionals: either it belongs to the color with highest coverage or not. The condi-

tional probabilities can be better approximated using a larger data set thus improving the

model. The basic model presented gives qualitatively acceptable results in classifying pixels as

belonging to the region of highest coverage or not, and it shows that the data contained in the

digital images are rich with information that can be analyzed using different approaches.

Future work is underway to quantitatively test the model and refine it with more measure-

ments and to continue combining morphological operations on digital images together with

probability based methods using larger datasets to contribute to a better understanding of the

color distributions on the spider’s pattern and their biological function.
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