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Abstract Phagocytic leukocytes consume oxygen and

generate reactive oxygen species in response to appropriate

stimuli. The phagocyte NADPH oxidase, a multiprotein

complex, existing in the dissociated state in resting cells

becomes assembled into the functional oxidase complex

upon stimulation and then generates superoxide anions.

Biochemical aspects of the NADPH oxidase are briefly

discussed in this review; however, the major focus relates

to the contributions of various modes of microscopy to our

understanding of the NADPH oxidase and the cell biology

of phagocytic leukocytes.
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Introduction

Phagocytic leukocytes, when appropriately stimulated,

consume oxygen and produce superoxide (O2
-) in a process

often referred to as the respiratory burst. Much of the work

that has led to our current understanding of the regulatory

events and the molecular organization underlying the

respiratory burst is derived from studies of neutrophils, the

most abundant of the phagocytic cells in blood. Therefore,

this review will likewise focus on the neutrophil.

The respiratory burst is mediated by the NADPH-oxi-

dase complex, a multicomponent system that is rapidly

assembled following activation of neutrophils. As we have

discussed previously, the neutrophil NADPH oxidase pro-

duces O2
- and hydrogen peroxide (H2O2) following

activation (Robinson et al. 2004). The NADPH oxidase

catalyzes the production of O2
-:

NADPHþ 2O2 ! NADPþ þ 2O�2 + Hþ

A dismutation reaction occurs with O2
- to produce peroxide:

O�2 þ O�2 þ 2Hþ ! H2O2 þ O2

Both H2O2 and O2
- are components of the oxygen-depen-

dent, antimicrobial system of phagocytic leukocytes (e.g.,

Robinson and Badwey 1995).

In part, the cytotoxic effects of O2
- and H2O2 relate to

their ability to react with products of other microbicidal

systems in these cells to generate additional reactive oxygen

species (ROS) [e.g., hydroxyl radical (OH�), singlet oxygen

(1O2), ozone (O3)]. Superoxide can react with either hypo-

chlorous acid (HOCl) or nitric oxide (NO�) to produce OH�
(Beckman et al. 1990; Ramos et al. 1992).

O�2 þ HOCl! OH � þO2 þ Cl�

O�2 þ NO � þHþ ! OH � þNO2

Hypochlorous acid and nitric oxide are produced in

phagocytic leukocytes by myeloperoxidase and nitric

oxide synthase, respectively (Harrison and Schultz 1976;

Xie et al. 1992). Singlet oxygen can form by

nonenzymatic dismutation of superoxide (Corey et al.

1987). Additionally, hydrogen peroxide and the
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deprotonated form of hypochlorous acid (OCl-) can react

to form 1O2 (Steinbeck et al. 1992).

H2O2 þ 2OCl� !1 O2 þ H2O2 þ 2Cl�

More recently it was shown that 1O2 and H2O2 react in an

antibody catalyzed reaction to form ozone and that ozone

and H2O2 can react to form hydroxyl radical and

superoxide (Wentworth et al. 2002).

21O2 þ H2O! H2O2 þ O3

O3 þ H2O2 ! OH � þO�2 þ O2 þ Hþ

The NADPH oxidase

Physiological and biochemical changes associated with

leukocyte phagocytosis were noted some time ago (Bald-

ridge and Gerard 1933; Sbarra and Karnovsky 1959; Iyer

et al. 1961). It was subsequently shown that superoxide is a

product of the respiratory burst and that superoxide pro-

duction is defective in neutrophils from patients with the

genetic disease chronic granulomatous disease (CGD)

(Babior et al. 1973; Curnutte et al. 1974). However, a fuller

understanding of the underlying mechanisms associated

with the respiratory burst had to await a number of metho-

dological and technological advances. Neutrophils from

CGD patients are unable to generate normal amounts of O2
-

owing to the loss of components of the NADPH-oxidase

complex (reviewed in Segal et al. 2000; Heyworth et al.

2003; Malech and Hickstein 2007).

Regulation of the activation of the NADPH oxidase in

neutrophils is exquisite since the oxidase is dormant in

resting cells but is rapidly activated following appropriate

stimulation of these cells. Due to the toxicity of its products,

it is not surprising that the NADPH oxidase is highly regu-

lated and limited in its sites of action. Physiological stimuli

capable of activating the neutrophil oxidase include phago-

cytizable particles such as bacteria and yeast, certain

molecules that induce chemotaxis in these cells, certain

bioactive lipids, and antibodies. The chemotatic peptides,

such as f-Met-Leu-Phe, have served as models for the study

of receptor-ligand mediated activation of the NADPH oxi-

dase. Other ‘‘non-physiological’’ agents can also activate the

oxidase and have been important in understanding the regu-

lation of the phagocyte NADPH oxidase. This latter group

of compounds includes certain phorbol esters, fatty acids,

and retinoids as well as sodium fluoride. The time course of

activation of the oxidase and the amounts of reactive oxygen

species produced varies depending on the agent used to

stimulate cells and activate the oxidase. The rapid activation

of the oxidase and the response of neutrophils to agonists can

be appreciated by comparing the kinetics of the production

Fig. 1 The levels of O2
- produced and the rate at which it is

produced can vary depending upon the stimulus. Real-time kinetics

of O2
- production by thioglycolate-elicited guinea pig neutrophils

stimulated in three different ways is shown; the cytochrome c

reduction spectrophotometric assay was employed. Representative

curves of cells stimulated with either (A) NaF (12.5 mM) plus

AlCl3 (100 lM), (B) the chemotatic peptide f-Met-Leu-Phe (10-7 M),

or (C) a combination of f-Met-Leu-Phe and NaF plus AlCl3 at the

same concentrations used in curves A and B. Cells (1 9 106)

were added and allowed to equilibrate at 37�C for 3 min before

addition of the stimulus; during that time the resting cells did not

generate O2
-. Following the equilibration period, a stimulus was

added (arrow). With NaF plus AlCl3 there was a long lag period

prior to the release of modest amounts of O2
- (curve A). This lag

period is likely due to the slow entry of the stimulus into the cells. The

lag period was eliminated when cells were permeabilized by

electroporation in the presence of NaF plus AlCl3 (Hartfield and

Robinson 1990). When cells were stimulated with the chemotatic

peptide, production of O2
- was essentially instantaneous and was

largely shut down by 5 min post stimulation (curve B). When cells

were stimulated by a combination of f-Met-Leu-Phe and NaF plus

AlCl3, at the same concentrations used in curves A and B, the initial

rate of O2
- production was essentially the same as that for the

chemotatic peptide alone; however, the shut off of the f-Met-

Leu-Phe stimulated O2
- was abrogated and the cells continued to

produce O2
- at a high rate throughout the course of the incubation

period. This experiment shows that: (1) resting neutrophils in

suspension do not generate O2
-; (2) activation of the NADPH oxidase

and the production of O2
- can be very rapid in intact neutrophils;

and (3) different stimulatory conditions can lead to different levels of

O2
- production and the kinetics of O2

- production vary with different

stimulatory conditions. The continuous spectrophotometric assay for

O2
- production was as we have described previously (Robinson et al.

1987)
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and release of superoxide from neutrophils in response to

different stimulatory agents (Fig. 1) (Badwey et al. 1980).

The rate of O2
- released from neutrophils in response to a

variety of different agonists has been summarized (Robin-

son and Badwey 1995). An overview of the various methods

used to measure reactive oxygen species and limitations

associated with these methods has been presented (Tarpey

et al. 2004).

There are several excellent reviews describing the

components of the NADPH oxidase and the assembly of

these components into the multiprotein complex capable

of producing superoxide (Lambeth 2000; Babior et al.

2002; Vignais, 2002; Bokoch and Knaus 2003; Roos et al.

2003; Babior 2004; Cross and Segal 2004; Nauseef 2004;

Groemping and Rittinger 2005; Matute et al. 2005;

Sheppard et al. 2005; Dagher and Pick 2007; Nauseef

2007). Therefore a detailed analysis of this system will

not be presented herein; instead, a distillation of the major

features of the oxidase will be given. As is the case for

most aspects of cell function, location is a key factor.

This is certainly the case for the NADPH oxidase. Indeed,

separation of different components of the oxidase in

specific locations within the cell account for its dormancy

in unstimulated cells. This is important since products of

the oxidase are highly reactive and can lead to cell and

tissue damage. Thus activation of the oxidase should

occur only when necessary. It is only after appropriate

stimulation that all of the components of the oxidase

come together in a coordinated manner that this complex

multicomponent molecular system is functional in intact

cells (see below).

The so-called cell-free system in which homogenized

neutrophils were subjected to ultracentrifugation to gene-

rate cytosol and membrane fractions have been important

in sorting out the various components of the NADPH

oxidase (Bromberg and Pick 1984; Heyneman and Ver-

cauteren 1984; Curnutte 1985; McPhail et al. 1985). With

this approach in hand, investigators could take membranes

from one source and cytosol from another source and mix

them together and assay for O2
- production [reviewed in

Dagher and Pick 2007]. For example, membranes from

normal neutrophils and cytosol from neutrophils from

patients with chronic granulomatous disease (CGD) could

be mixed, and vice versa. In addition to this genetic

approach, recombinant forms of components of the oxidase

complex, mutated forms of these proteins, chimeric pro-

teins, and synthetic peptides have also been used in the

cell-free system to analyze the NADPH oxidase (Dagher

and Pick 2007). A large number of experiments have been

carried out by several groups using a variety of approaches

to study the NADPH oxidase in cell-free preparations.

Taken together, these data have been crucial in leading to

our current understanding of the components, their

assembly, and regulation of the phagocyte NADPH

oxidase.

The current model for the NADPH oxidase has the

catalytic component, flavocytochrome b588, located in the

membrane. This heterodimeric flavocytochrome is com-

posed of the proteins gp91phox and p22phox (Segal and Jones

1978; Dinauer et al. 1987; Parkos et al. 1988). The other

components of the oxidase complex are in the cytoplasm. It

is only after cell stimulation that the cytoplasmic compo-

nents migrate to the membrane and associate with the

gp91phox and p22phox complex. The cytosolic components

of the oxidase consist of the proteins p67phox, p47phox, and

p40phox, which appear to exist as a complex awaiting

mobilization to join the cytochrome b558 upon cell stimu-

lation (Wientjes et al. 1993, 1996; Zhan et al. 1998;

Lapouge et al. 2002). An additional component of the

NADPH oxidase is the GTP-bound form of Rac (Quinn

et al. 1993; Abo et al. 1994; Bokoch and Diebold 2002).

Until cell activation, Rac exists in association with

RhoGDI in the GDP-bound form; upon cell stimulation, it

dissociates from RhoGDI, exchanges GDP for GTP, and

binds the NADPH oxidase (Bokoch et al. 1994; Kreck et al.

1996). As noted earlier, there are several excellent reviews

covering the composition and assembly of phagocyte

NADPH oxidase that have appeared since the turn of the

century and the interested reader is referred to those pub-

lications. The present review will focus on the role

microscopy has played in our understanding of the

phagocyte NADPH oxidase.

Microscopy in the study of the respiratory burst

The tetrazolium method: detection of superoxide

Early microscopy studies of the respiratory burst in neu-

trophils relied on the dye nitroblue tetrazolium (NBT).

Indeed, NBT was used to diagnose the absence of the

respiratory burst in neutrophils from CGD patients

(Nathan et al. 1969). The so-called NBT test predated the

discovery that CGD neutrophils were unable to generate

O2
- (Curnutte et al. 1974). The chemical basis of the NBT

test has been presented elsewhere and will not be dis-

cussed herein (Auclair and Voisin 1985). The NBT

reaction was adapted for electron microscopy but it was

noted that the diformazan reaction product lacked suffi-

cient electron density to be useful in this application

(Briggs et al. 1975a). The tetrazolium 3-[4,5-dimethyl-

thiazol-2-yl]-2,5-diphenyltetrazolium has also been used

to monitor the respiratory burst (Pruett and Loftis 1990;

Oez et al. 1993).

A quantitative video-microscopy assay using NBT was

used to show heterogeneity in O2
- production among
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individual cells (DiGregorio et al. 1991). Other studies,

using an end-point assay have also provided quantitative

data for NBT reduction by activated leukocytes (e.g.,

Champelovier et al. 1993). A live cell imaging assay in

which cytosolic Ca2+ was measured with the fluorescence

probe Fura-2 and O2
- production was detected with NBT,

was developed. When neutrophils were stimulated with a

chemotactic peptide, localized production of O2
- corre-

lated with the location of a cytosolic ‘‘calcium cloud’’

(Davies et al. 1991). We have shown that the diformazan

deposits in activated neutrophils can be monitored by

laser scanning confocal microscopy using the reflectance

mode (Robinson and Batten 1989; Robinson and Badwey

1995) (see Figs. 2, 3).

H2O2 detection in phagosomes with diaminobenzidine

The presence of H2O2 within neutrophil phagosomes was

initially inferred from the cytochemical experiments of

Briggs et al. (1975a). Myeloperoxidase (MPO), present in

azurophil granules of neutrophils, is delivered to the

phagosome by fusion of azurophil granules with phago-

somes. Myeloperoxidase utilizes H2O2 in the generation

of hypochlorous acid, a potent microbicidal agent, in the

Fig. 2 Cytochemical detection

of sites of stimulated O2
-

generation with the NBT

reaction and laser scanning

confocal microscopy. A single

neutrophil was allowed to

adhere to a glass cover slip and

was subsequently stimulated

with 4 b-phorbol 12-myristate

acetate in the presence of NBT

is shown. The cell was then

optically sectioned and viewed

by transmitted light (a–f) and by

confocal laser scanning

microscopy in the reflectance

mode (a0–f0). The non-confocal

transmitted light images go

from the substratum region (a)

toward the apical portion of the

cell (f). The reflectance images

represent confocal sections

corresponding to these different

focal planes in the transmitted

light images. Reaction product

is present over the entire cell:

however, there is heterogeneity

in its distribution. Bar: 10 lm.

Reprinted from Robinson and

Badwey 1995

284 Histochem Cell Biol (2008) 130:281–297

123



phagosome (Klebanoff 1970). The activity of MPO in the

phagosome of intact neutrophils was detected with 3,30-
diaminobenzidine (DAB). Deposits of reduced DAB in

the phagosome strongly suggested that endogenous H2O2

was produced within the phagosome since exogenous

H2O2 was not added to the cytochemical medium (Briggs

et al. 1975a). Other DAB-based cytochemical methods for

the localization of ROS have been developed (see below).

The presence of MPO in the phagosome is important for

the production of the full complement of microbicidal

agents. The demonstration of MPO delivery to neutrophil

phagosomes at the electron microscope level is shown

(Fig. 4).

Detection of hydrogen peroxide with cerium

Hydrogen peroxide, produced by the rapid dismutation of

superoxide, was initially detected at the ultrastructural

level using a cerium-based cytochemical reaction (Briggs

et al. 1975b). The cerium-based reaction proceeds as

follows:

NADPHþ 2O2 ! NADPþ þ Hþ þ 2O�2
2O�2 þ 2Hþ ! H2O2 þ O2

H2O2 þ CeCl3 þ 3OH� ! Ce OHð Þ2OOHþ H2Oþ 3Cl�

In this reaction, sequence endogenous phagocyte NADPH

is utilized by the NADPH oxidase to generate O2
-. The O2

-

subsequently undergoes dismutation to form H2O2 which,

in turn, reacts with cerium to form cerium perhydroxide, an

electron dense product detectable in the electron micro-

scope. Cerium perhydoxide is a fine, non-crystalline,

electron-dense reaction product that generally forms with

low background. Thus the cerium reaction is ideal for

electron microscopy. However, the cerium perhydroxide

reaction product was not initially considered useful for

Fig. 3 Cytochemical detection of NBT-derived diformazan reaction

product by reflected-light laser scanning confocal microscopy. Two

neutrophils that were incubated with NBT in the absence of

exogenous stimulating agents are shown. a Cells were viewed by

non-confocal transmitted light. b The same cells were imaged by laser

scanning confocal microscopy in the reflectance mode. The adherent

neutrophils have a region of cell–cell contact. The reaction product,

indicative of O2
- production, is detected in both the transmitted light

image and the confocal reflectance image (arrows). c The co-

localization of the transmitted light image and the confocal reflec-

tance image is the pseudocolor merge of the two images; the reaction

product is indicated by the arrow. d A color wedge has been inserted

to estimate the intensity of the reflectance signal. Note that the

diformazan reaction product is almost entirely restricted to the area of

cell–cell contact, indicating the lack of a global signal transduction

cascade leading to the generation of O2
- over the entirety of the cells.

Bar: 10 lm. Reprinted from Robinson and Badwey 1995
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bright-field optical microscopy. This problem was over-

come as cerium perhydroxide could be converted to other

products visible by bright-field microscopy (Zimmerman

and Halbhuber 1985; Okada et al. 1987; Angermüller and

Fahimi 1988; Halbhuber et al. 1988). It was subsequently

found that the cerium perhydroxide reaction product can be

detected directly, without conversion to another product,

using the reflectance mode of the laser scanning confocal

microscope (Robinson and Batten 1990). This latter

method allows for direct visualization of the cerium reac-

tion product and permits precise localization by means of

confocal optical sectioning and collection of three-dimen-

sional data sets. Cerium has proven to be a versatile tool for

enzyme cytochemistry since it can also be used in the

detection of several phosphatases and has several advan-

tages over older methods for detection of these enzymes

(Robinson and Karnovsky 1983a, b). The use of cerium in

oxidase and phosphatase enzyme cytochemistry has been

reviewed (Van Noorden and Fredericks 1993; Halbhuber

et al. 1994; Karnovsky 1994).

When neutrophils are incubated with phagocytizable

particles, such as yeast cell walls, in the cerium-based

cytochemical medium developed by Briggs et al. (1975b),

the reaction product is evident within phagosomes and at

the cell surface. These results were confirmed in other

studies (Badwey et al. 1980; Ohno et al. 1982). There are

also deposits of reaction product in vesicle-like structures

in the cytoplasm (see more below). We have noted that

typically phagosomes can vary with regard to the apparent

amount of reaction product per phagosome with some

phagosomes lacking reaction product altogether suggesting

an asymmetric delivery of H2O2 to phagosomes (Fig. 5).

Similar asymmetry in the delivery of ROS to phagosomes

was obtained in living cells by Soret band transmitted light

microscopy of neutrophils that phagocytized antibody-

coated red blood cells (Petty et al. 1992). Griffiths (2004)

proposes that heterogeneity in phagosomes within the same

Fig. 4 Electron micrograph of a human neutrophil that has ingested

E. coli minicells; the neutrophil was subsequently reacted for the

cytochemical detection of MPO activity using the DAB method with

exogenous H2O2. Black electron dense deposits are present in

intracellular granules, the azurophil granules (asterisks), and within

a population of phagosomes (arrows). Under these incubation

conditions, there were some phagosomes that had not yet acquired

MPO (double arrows). The cytochemical reaction for the detection of

MPO activity following ingestion of minicells was carried out as we

have described (Fox et al. 1987). Bar: 1 lm

Fig. 5 Electron micrograph illustrating the cytochemical detection of

H2O2 with the cerium method in a neutrophil that was stimulated by

phagocytosis. This thin-section electron micrograph is of a cell that

had phagocytized zymozan particles (yeast cell walls) and was then

incubated for cytochemistry as described previously (Briggs et al.

1975b). Electron-dense reaction product is present on portions of the

cell surface (arrowheads) and in some phagosomes. In this cell profile,

five zymozan particles appear to be within phagosomes (P1–5), while

two additional particles are bound to the cell surface, but are

incompletely internalized (P6–7). Note that some particles (P1–3)

have reaction product surrounding the luminal aspect of the phago-

somes (arrows), while other particles (P4–5) lack reaction product in

the phagosomes (double arrows). Portions of the nucleus (N) are

evident. These results indicate an asymmetry in the spatial and/or

temporal delivery of H2O2 to phagosomes. Bar: 1 lm. Reprinted from

Robinson and Badwey 1995
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cell is the norm. The asymmetric delivery of ROS was also

noted in neutrophils attached to aggregated IgG associated

with glomerular basement membranes; in this case the

reaction product, indicative of H2O2 production, was on the

side of the neutrophil attached to the non-phagocytizable

basement membrane (Vissers et al. 1985). The asymmetric

generation of ROS has been observed by fluorescence

microscopy (see more below) in polarized neutrophils (i.e.,

crawling over a substratum) (Kindzelskii and Petty 2002).

We also observed polarized distribution of cerium perhy-

droxide, indicative of H2O2 production, in crawling cells

(Heyworth et al. 1997). This appears be similar to the sit-

uation reported by Kindzelskii and Petty (2002) who used

fluorescence microscopy. Another example of the asym-

metric generation of ROS was previously shown herein

using NBT as the detection reagent; in this case, O2
- was

detected where two polarized cells made contact (see

Fig. 3). These findings, enabled by microscopy, indicate

the complexity of the regulation of production of ROS by

phagocytic leukocytes and raise a number of intriguing

questions related to the cell biology and biochemistry of

the respiratory burst. Such asymmetric and/or polarized

generation of ROS may have important implications in

pathophysiology.

It is generally considered that the activated NADPH

oxidase is associated with the plasma membrane or its

derivative the phagosome (e.g., Nauseef 2004). However,

there are several findings that suggest that there may be a

separate intracellular pool of NADPH oxidase activity

(Lundqvist et al. 1996; Kobayashi et al. 1998; Lundqvist-

Gustafsson and Bengtsson 1999; Vaissiere et al. 1999;

Karlsson et al. 2000; Karlsson and Dahlgren 2002; Brown

et al. 2003; Ambruso et al. 2004). There are often small

vesicle-like structures containing cerium perhydroxide

indicative of the production of H2O2 in cells that have

phagocytized particles (Fig. 6). These structures can vary

in number from one thin section to another in conven-

tional electron microscopy such that some sections have

numerous cerium perhydroxide-containing vesicles and

other sections have few or even none of the positive

vesicles. A detailed analysis of serially sectioned neutro-

phils that had internalized particles and in which the

localization of H2O2 had also been carried out, would be

required to address this question adequately and to

understand further this intracellular pool of NADPH

oxidase in neutrophils following phagocytosis. Insofar as

the author knows, such an analysis has not been con-

ducted. The exact nature of these vesicles containing

reaction product needs further investigation to determine

if they are intracellular in origin or whether they are

derived from the plasma membrane since it has been

reported that a burst of pinocytosis accompanies phago-

cytosis (Botelho et al. 2002). However, even if these

Fig. 6 Electron micrographs of portions of two different neutrophils

that ingested zymosan particles; sites of H2O2 generation were

detected with the cerium-based cytochemical reaction. a A portion of

a cell is shown in which phagosomes show a spectrum of responses:

P1, heavy reaction product; P2, moderate reaction product; P3, little

reaction product. There are several small vesicular structures

containing reaction product in the periphagosome region (arrows)

suggesting intracellular sites of H2O2. Patches of reaction product are

at the cell surface (arrowhead). Portions of the nucleus (N) are

visible. b A portion of a cell is shown in which phagosomes show

different responses: P1, heavy reaction product; P2 and P3, little

reaction product. There are several small vesicular structures

containing reaction product in the periphagosome region (arrows)

suggesting intracellular sites of H2O2. Patches of reaction product are

at the cell surface (arrowhead). Portions of the nucleus (N) are

visible. Bars: 1 lm
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vesicles containing reaction product showing H2O2 pro-

duction are pinocytotic in origin, there remains the

question of how (and when) are the cytosolic components

of the oxidase directed to these sites.

O2
- detection with DAB-Mn2+

A cytochemical method for the ultrastructural localization

of O2
- was developed; the cytochemical medium contains

DAB-Mn2+ as the key components (Briggs et al. 1986).

Subsequent study showed that this method was specific for

O2
- and was not responsive to 1O2 (Steinbeck et al. 1993).

A modification of this methodology was used to localize

sites of superoxide production in rat endothelium in situ

(Babbs et al. 1991a, b). The DAB-Mn2+ procedure along

with modification of this DAB method has been reviewed

(Babbs 1994). The DAB-Mn2+ method was used to ana-

lyze intracellular sites of O2
- in phorbol ester-activated

neutrophils (Kobayashi et al. 1998). This latter study

generated interest since it identified intracellular sites of

O2
- production as being distinct from plasma membrane

derived vesicles. Two alternative explanations could be

posited for this observation. One explanation is that bona

fide sites of NADPH oxidase assembly and activation occur

on certain intracellular compartments; the second expla-

nation is that the cytochemical reaction occurs in vesicles

that were internalized and are in reality derived from the

plasma membrane and do not represent an intracellular

pool of NADPH oxidase. To address the source of the O2
- -

positive compartments, Kobayashi and colleagues used

native and cationic ferritin in conjunction with O2
- locali-

zation. Ferritin was used to mark plasma membrane-

derived endocytic vesicles. Sites of O2
- production were

distinct from ferritin-positive vesicles, indicating that these

sites of O2
- production were not derived from the plasma

membrane. However, the O2
- - positive compartments and

the ferritin-positive compartments did fuse and their con-

tents mix at later times. This illustrates the complex

patterns of intracellular membrane trafficking in activated

neutrophils. The Kobayashi study also combined O2
-

cytochemistry and cerium-based cytochemistry for the

detection of alkaline phosphatase. This was possible since

the electron-dense reaction products generated with these

two cytochemical reactions were distinct in their mor-

phology. It was found that these two cytochemical

reactions occurred in the same compartment. Moreover, the

kinetics of phorbol ester-induced O2
- generation (as mea-

sured biochemically) and the up regulation of alkaline

phosphatase activity to the cell surface (as measured bio-

chemically) occurred with a similar time course. This

further supports the contention that intracellular generation

of O2
- is associated with the alkaline phosphatase-positive

compartment. Previous work had shown that alkaline

phosphatase was unregulated to the cell surface in response

to chemoattractants (Borregaard et al. 1987). Subsequently

it was shown that alkaline phosphatase resides in unique

rod-shaped structures that are in lower abundance than

azurophil or specific granules and in response to chemo-

attractants these structures appeared to fuse into longer

tubular compartments that also fused with the plasma

membrane (Kobayashi and Robinson 1991; Robinson et al.

1999).

Immunocytochemical localization of components

of the NADPH oxidase

Immunocytochemical localization of NADPH oxidase

components has been important in understanding the

assembly of the NADPH oxidase. The rates of ROS gene-

ration by neutrophils during phagocytosis, with two

different types of particles, were measured biochemically

and compared to the kinetics of the association of cyto-

chrome b558 and p47phox and p67phox with phagosomes as

determined by immunofluorescence microscopy (DeLeo

et al. 1999). It was found that cytochromes b558 and p47phox

and p67phox are associated with phagosomes and that

p47phox and p67phox subsequently dissociated from the

phagosome; this later event correlated with the end of the

oxidase activity. This same group, using immunofluores-

cence microscopy, showed in neutrophils from patients

with X-linked CGD that p47phox and p67phox accumulated

in the periphagosomal region but did not remain when

phagocytosis was completed (Allen et al. 1999). In con-

trast, phagocytosis in normal neutrophils was accompanied

by a more stable assembly of p47phox and p67phox at the

phagosome membrane. These data suggested that cyto-

chrome b558, non-functional in X-linked CGD, was

required for more stable association of these cytosolic

components with the phagocyte membrane. Immunofluo-

rescence microscopy was used to show that gp91phox and

cytosolic phospholipase A co-localize to the plasma

membrane in stimulated PLB-985 cells (a neutrophil sur-

rogate) and that in the absence of gp91phox phospholipase A

does not translocate to the plasma membrane (Shmelzer

et al. 2003). The movement of gp91phox in PMA stimulated

neutrophils has been described with a set of monoclonal

antibodies using immunofluorescence microscopy; one of

these antibodies appeared to bind preferentially to the

active form of cytochrome b558 (Campion et al. 2007).

Biochemical and immunofluorescence microscopy experi-

ments were used to study the interactions of p47phox and

interleukin-1 receptor-associated kinase-4 (IRAK-4) in

neutrophils treated with lipopolysaccharide (LPS) (Pacqu-

elet et al. 2007). The authors report co-localization of

p47phox and IRAK-4 at sites near the plasma membrane in

LPS stimulated neutrophils. Comparison of the sub-cellular
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localization of cytochrome b in neutrophils and macro-

phages has been carried out using immunofluorescence

microscopy. Resting neutrophils showed a primarily

intracellular granular labeling pattern while macrophages

did not display an intracellular labeling pattern but instead

showed a cell surface pattern (Johansson et al. 1995).

While not a component of the NADPH oxidase, myelo-

peroxidase is important in the formation of downstream

ROS and for participating in microbicidal activity of neu-

trophils. Fluorescence microscopy and flow cytochemistry

have been used to analyze binding of quantum dots con-

jugated with anti-myeloperoxidase (Hoshino et al. 2007).

The Hoshino study reports that these quantum dots bind

neutrophils stimulated with proinflammatory cytokines but

not control cells.

Immunolocalization of components of the NADPH has

also been carried out at the electron microscope level.

Neutrophils that were cryofixed and prepared by mole-

cular distillation drying were used in conjunction with

antibodies to components of the cytochrome b558; it was

found that *20% of the immunolabel was associated

with the plasma membrane with the remainder associated

with cytoplasmic granules (Jesaitis et al. 1990). When

ultrathin cryosections were used as the labeling substrate

for a monoclonal antibody to the 22kD component of

cytochrome b558, there was little labeling associated with

the plasma membrane with the label being primarily

associated with the specific granules (Ginsel et al. 1990).

In a subsequent immunoelectron microscopy study,

cytochrome b558 co-localized to a significant extent with

albumin (Calafat et al. 1993). Albumin was previously

shown to be a marker for the matrix of the secretory

vesicle of neutrophils (Borregaard et al. 1992). This

secretory vesicle is the same structure as the alkaline

phosphatase-positive vesicle we described using enzyme

cytochemistry (Kobayashi and Robinson 1991; Robinson

et al. 1999). Cytochrome b558 has been reported as a

component of the specific granule, the gelatinase granule,

and secretory vesicles of the human neutrophil (reviewed

in Borregaard and Cowland 1997). The bacterium Ana-

plasma phagocytophilum invades neutrophils but appears

to repress the respiratory burst. Immunoelectron micro-

scopy showed that both subunits of cytochrome b558

were significantly reduced in phagosomes containing

A. phagocytophilum when compared to E. coli containing

phagosomes and thus could be part of the explanation for

the reduced respiratory burst (IJdo and Mueller 2004).

Combined immunoelectron and immunofluorescence

microscopy of neutrophils infected with A. phagocyto-

philum also demonstrated a low association of

cytochrome b558 subunits with phagosomes containing

A. phagocytophilum (Carlyon et al. 2004). These two

studies with A. phagocytophilum illustrate the importance

of immunolocalization in understanding the interaction of

particular microbes and the neutrophil phagosome.

Immunolocalization experiments and particularly dou-

ble or triple localization preparations can be very valuable

since low affinity interactions that may be detected by

immunolocalization techniques may not survive the

harsher conditions associated with cell-fractionation stud-

ies. For example, as noted above, transient recruitment of

p47phox and p67phox to phagosomes in neutrophils from

X-linked CGD was reported (Allen et al. 1999); cell frac-

tionation and cell-free activation systems from these cells

did not show translocation of these components (Heyworth

et al. 1991).

Fluorescence-based localization of ROS

The detection of ROS by fluorescence microscopy is an

attractive option since it permits evaluation of single-living

phagocytes. Endogenous autofluorescence associated with

NADPH and NADH can be monitored and a change in the

distribution of NAD(P)H at phagosomes has been observed

(Liang and Petty 1992). It is noteworthy that polarized

substratum-attached neutrophils produce bursts of O2
-

production (determined using an exogenous fluorescent

probe for ROS) that correlated with waves of NAD(P)H

[determined by monitoring the autofluorescence of

NAD(P)H] that traveled from the rear to the front of

crawling cells (Kindzelskii and Petty 2002). In this case,

cells were attached to quartz microscope slides. Production

of O2
- occurred in control cells as well as in cells stimu-

lated with a chemotactic peptide. The difference between

the NAD(P)H wave and the release of O2
- in the two

conditions was the periodicity; it was *22 s in the absence

of the chemotactic peptide and *11 s in its presence

(Kindzelskii and Petty 2002). It has long been known that

in standard biochemical assays for monitoring O2
- pro-

duction in populations of cells in suspension, that these

cells are quiescent (see Fig. 1). How are these two obser-

vations to be reconciled? In the case of crawling

neutrophils, they have undergone a dramatic shape change.

On the other hand, neutrophils assayed in suspension have

essentially the same rounded shape that they have in the

bloodstream. However, when intact neutrophils, in sus-

pension, are challenged with a stimulus (e.g.,

phagocytizable particles, phorbol myristate acetate, the

chemotactic peptide f-Met-Leu-Phe, arachidonic acid, or

retinoids) they too undergo changes in shape and reorga-

nization of intracellular compartments (e.g., Badwey et al.

1984; Robinson et al. 1987; Kobayashi and Robinson

1991). The degree to which shape change itself modulates

the phagocyte NADPH oxidase is not clear. Nathan (1987)

has shown that tumor necrosis factors did not induce pro-

duction of H2O2 in neutrophils in suspension but when
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these cells were attached to plastic surfaces coated with

proteins (e.g., serum, fibronectin), tumor necrosis factors

induced massive release of ROS. It was also observed in

that study that neutrophils attached to surfaces in the

absence of tumor necrosis factors also produced low levels

of ROS. Another study of adherent neutrophils also found

low levels of ROS release in the absence of additional

stimuli (Suchard and Boxer 1994). It is interesting to note

that rabbit synovial fibroblasts that had undergone integrin-

mediated cell shape change had activated Rac1 which was

correlated with the generation of ROS by these cells

(Kheradmand et al. 1998). As already noted above, Rac is a

component of the assembled NADPH oxidase. Taking all

of these factors into account, studies directed toward

understanding, in a detailed manner, how shape change

itself plays a role in generation of ROS and how shape

change modulates ROS production in response to stimu-

lation in phagocytic leukocytes seem in order.

Exogenous fluorescence probes used for monitoring

ROS production have been reviewed (Gomes et al. 2005).

Exogenous fluorescent probes have been used in several

studies of phagocytic leukocytes. The utility and the limi-

tations of current exogenous fluorescent probes for use with

phagocytes has been reviewed (Yeung et al. 2005).

Important considerations for use of the exogenous fluo-

rescent probes, such as dihydroethidine and

dihydrorhdamine 123 include mode of entry into cells and

the retention of the fluorescent product at the site of ROS

generation as well as the linearity of the response. A few

examples of the use of exogenous fluorescence probes with

neutrophils will be presented. Kobayashi et al. (2000) have

used fluorescent probes for ROS detection [succinimidyl

ester of dichlorodihydrofluorescein diacetate (H2DCFDA)]

and endocytosis [TRITC-dextran] to monitor intracellular

trafficking in phorbol myristate acetate-activated neutro-

phils. They found intracellular sites of ROS production and

a complex pattern of the interaction of the ROS-positive

compartments and endocytic vesicles. A reduction in

H2DCFDA was noted in the presence of fungal gliotoxin

(Li et al. 2004). Streptolysin-O permeabilized neutrophils

were tested for production of ROS using H2DCFDA. In this

study, the ROS-induced fluorescence was monitored by

flow cytometry and fluorescence microscopy (Brown et al.

2003). It was found that fluorescence was associated with

intracellular structures with a granule-like labeling pattern

in the permeabilized neutrophils.

An alternative strategy to applying the fluorescent probes

directly to cells consists of covalent attachment of the

fluorescent probe to phagocytizable particles. In this way,

the ROS-induced changes in fluorescence will be restricted

to the phagosome (Yeung et al. 2005). These same authors

discuss the potential of using ROS-sensitive fluorescent

proteins to monitor ROS production. These proteins could

be expressed in phagocytic cells, in some cases, or in the

target microorganism. This is an attractive prospect, how-

ever, the harsh conditions encountered in the phagosome

should be taken into account in the design of environmen-

tally-sensitive fluorescent proteins. Expression of

fluorescent proteins in primary phagocytes, such as human

neutrophils, is problematic so the use of microorganisms

expressing the ROS-sensitive fluorescent protein as targets

for phagocytosis would be preferable in this instance.

Fluorescence microscopy has been used in conjunction

with a micromanipulator in order to move phagocytic tar-

gets to human neutrophils, thus allowing the study of

changes in cytosolic Ca2+ and the respiratory burst asso-

ciated with a single phagocytic event at a defined site in

individual cells (Dewitt et al. 2003). The fluorescent probes

Fura-2 and dichlorodihydrofluorescein were used to mon-

itor changes in cytosolic Ca2+ and production of ROS,

respectively. Two Ca2+ peaks were observed to be asso-

ciated with phagocytosis but only the second peak

correlated with initiation of the respiratory burst.

An enzyme cytochemical experiment is shown to illus-

trate the dramatic nature of the morphological alterations

neutrophils can display during activation. Cytochalasin B,

a compound that disrupts filamentous actin in cells, has

been widely used in conjunction with stimuli such as f-

Met-Leu-Phe to enhance the release of ROS and the exo-

cytosis of intracellular granules (e.g., Zurier et al. 1973;

Honeycutt and Niedel 1986; Mukherjee et al. 1994). It has

also been shown that cytochalasin B reduces the cortical

tension and cytoplasmic viscosity in neutrophils (Tsai et al.

1994). We have studied the effects of cytochalasin B and

f-Met-Leu-Phe stimulation on the morphology of human

neutrophils. Cerium-based cytochemistry for the detection

of alkaline phosphatase has been used in conjunction with

‘‘thick section’’ electron microscopy. In resting cells, in

suspension, the alkaline phosphatase is present in rod-

shaped granules that can be detected by this cytochemical

method only if the cells are permeabilized (Fig. 7). Fol-

lowing stimulation, these cells undergo a dramatic

alteration in their organization. The cells display an ela-

borate system of tubular structures that are positive for

alkaline phosphatase. Moreover, the cytochemical reac-

tivity does not require cell permeabilization showing that

the tubular structures are in continuity with the extra-

cellular medium (Fig. 7). The use of ‘‘thick sections’’ in

electron microcopy enables the appreciation of how dra-

matic the alterations are when neutrophils are stimulated

with cytochalasin B and f-Met-Leu-Phe. The full extent of

these changes were not observed either with conventional

thin section electron microscopy or with light microscopy

(not shown). These results indicate dramatic modifications

in cell shape and organization that neutrophils are capable

of performing.
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Biophysical methods for study of the phagocyte

NADPH oxidase

A chemiluminesence signal was detected during phago-

cytosis and was thought to be associated 1O2 generation

(Allen et al. 1972). Luminol was incorporated into these

studies later to enhance the chemiluminesence signal

(Allen and Loose 1976). Subsequently, real-time visuali-

zation of chemiluminescence associated with the

respiratory burst was reported in a series of studies

(Suematsu et al. 1987, 1989; Suematsu and Tsuchiya

1991). For example, rabbit neutrophils were used to study

exocytosis associated with formation of the phagosome in

the presence of luminol (Suzaki et al. 1997). These studies

required the use of a very sensitive photon-counting cam-

era. Most of the recorded photons were in the vicinity of

particles in the phagosomes. It has been proposed that

chemiluminesence has advantages for imaging ROS gene-

ration in living cells when compared to fluorescence

microscopy (Suematsu and Tsuchiya 1991). The suggested

advantages are: (1) since the light is derived from the

chemical reaction itself (i.e., chemiluminescence), excita-

tion illumination is not required (excitation illumination

may alter structure and function in living cells); (2)

Fig. 7 Electron micrographs of thick sections (0.35 lm thickness) of

human neutrophils incubated for the cytochemical detection of

alkaline phosphatase. a An unstimulated cell that was incubated for

the detection of alkaline phosphatase activity in the absence of cell

permeabilization with Triton X-100. Note that there is no reaction in

the absence of permeabilization. b A cell that was incubated for the

detection of alkaline phosphatase activity following cell permeabili-

zation. In this case, numerous small rod-shaped organelles containing

reaction product are evident. c A cell stimulated with f-Met-Leu-Phe

(FMLP) and cytochalasin B (Cyt.B) that was incubated for the

detection of alkaline phosphatase activity in the absence of cell-

permeabilization. Note the dramatic rearrangement of the alkaline

phosphatase compartments into elaborate tubular structures. These

tubular structures appear to be in continuity with the extracellular

space since permeabilization was not required to detect the enzyme

activity. d A cell stimulated with f-Met-Leu-Phe (FMLP) and

cytochalasin B (Cyt.B) that was incubated for the detection of

alkaline phosphatase activity in the presence of cell permeabilization.

This cell has a appearance similar to the cell treated in the same

manner but without permeabilization. The cytochemical reaction was

carried out as we have described previously (Kobayashi and Robinson

1991). Bars: 1 lm
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photobleaching does not occur; and (3) generation of ROS

may be dissected further with specific chemilumigenic

probes.

The above arguments notwithstanding, fluorescence

microscopy in its various forms has been very important

in cell biological studies, including those with phagocytic

leukocytes. This is particularly so for live-cell imaging

of stimulated leukocytes. Imaging procedures to monitor

the endogenous autofluorescence signal from NAD(P)H

during activation of the NADPH oxidase have been

developed (Liang and Petty 1992). This procedure, when

coupled with monitoring ROS generation by fluorescence

microscopy, has provided intriguing data on metabolic

waves in these cells and was discussed in an earlier

section of this review (Kindzelskii and Petty 2002).

Other oscillations, ranging from structural to biochemi-

cal, have been observed in neutrophils (reviewed in Petty

2001). Also as already noted, this same group used Soret

band (absorption contrast) transmitted light to monitor

changes in hemoglobin in phagocytosed erythrocytes

(Petty et al. 1992).

Using high-speed fluorescence imaging (shutter speeds

*100 ns), it was possible to make ‘‘stop action movies’’ of

signaling events such as calcium waves in neutrophils that

had phagocytosed (Petty 2006). In this case, a calcium

wave moves around the periphery of the cell and then

jumps to the phagosome when it moves nearby. Rapid

image acquisition methodology enabled these observations

and should continue to provide new insights into cellular

behavior in future work.

Other advanced imaging modalities have been employed

for studying the phagocyte NADPH oxidase (reviewed in

Van Manen et al. 2006). The distribution of cytochrome

b558 has been imaged in resting and phagocytosing neu-

trophils at the single cell level by confocal resonance

Raman microscopy (van Manen et al. 2003). In this case,

Raman spectroscopy was used to visualize the cytochrome

b558 directly rather than with a labeling procedure as in

immunocytochemistry. While the cytochrome b558 accu-

mulates in the region of ingested particles, the spatial

resolution was rather low and thus does not provide

definitive localization. The authors noted that individual

specific granules were not resolved using this imaging

modality. Refinements in this instrumentation may improve

spatial resolution. The immunofluorescence localization of

gp91phox in hematopoietic stem cells mobilized by granu-

locyte-colony stimulating factor was determined by near

field scanning optical microscopy (NSOM) (Frassanito

et al. 2008). With NSOM imaging, they report the presence

of ‘‘specialized clusters’’ and also that ‘‘protein domains’’

in the 300–600 nm size range could be detected. The

precise nature of these small protein domains remains to be

determined.

The use of cell lines that display certain properties of

primary neutrophils have advantages over freshly isolated

neutrophils for some studies. The cultured cells (e.g., PLB-

985 and HL-60 cells) can be manipulated in ways that are

not readily applicable to primary neutrophils. For example,

they can be transfected to express components of the

NADPH oxidase that are tagged with fluorescent proteins

such that these components can be monitored in living cells

under various conditions with real-time fluorescence

microscopy. An analysis of this expanding area is beyond

the scope of this review; however, some examples are cited

to illustrate the potential for these types of experiments.

Fluorescence fusion proteins have been used to study the

interaction of p67phox and Rac2 with the phagosome and

the role of gp91phox in these interactions (Van Bruggen

et al. 2004). A fluorescent fusion protein form of p40phox

was used to monitor the association of p40phox with

phagosomes in cultured cells (Suh et al. 2006). The ability

to express fluorescent forms of components of the NADPH

oxidase opens up the possibility of applying advanced

optical techniques for the study of the NADPH oxidase in

living cells.

Other considerations

There is some controversy as to whether intracellular site of

NADPH oxidase activity, not associated with phagosomes

or the plasma membrane, normally exists. This is an

important point in understanding the regulation of the oxi-

dase and generation of ROS. Therefore, it is important to pay

close attention to details of the methodology employed in the

various studies that have addressed this point. It should be

noted that biochemical assays of production of ROS or the

consumption of oxygen in activated neutrophils are typically

done with cells in suspension (e.g., Robinson et al. 1984;

Dahlgren et al. 2007). Additionally, cell fractionation stud-

ies used to track the movement of oxidase components using

biochemical assays have neutrophils in suspension as the

starting material (reviewed in Nauseef 2004). To further

complicate matters, it has been reported that standard cen-

trifugation methods used to isolate neutrophils from blood

led to the surface expression of molecules that were not

detected at the surface of neutrophils in whole blood

(Kuijpers et al. 1991). However, most immunocytochemical

studies as well as live cell microscopy studies where ROS

production is localized occur in cells attached to a substra-

tum (e.g., cover slips, microscope slides, or plastic dishes

that may also be coated with a variety of proteins) (e.g.,

DeLeo et al. 1999; Kindzelskii and Petty 2002). As we have

already noted, it has been shown that attachment of neu-

trophils (and other cells) to surfaces alters their shape; in

addition, attachment can modulate their activity with regard

to ROS production (e.g., Nathan 1987: Suchard and Boxer
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1994; Kheradmand et al. 1998; Kindzelskii and Petty 2002).

Indeed, oscillations in the respiratory burst have been cor-

related with fluctuations in neutrophil cell shape (Wymann

et al. 1989). Petty and colleagues (Petty and Kindzelskii

2000; Kindzelskii and Petty 2002; Petty 2004, 2006) have

advocated the use of high-speed imaging to study metabolic

waves and cellular signaling in living neutrophils. Neutro-

phils were monitored during the process of cell adhesion to a

substratum and it was shown that there were waves of

NAD(P)H autofluorescence and cytosolic pH changes

associated with attachment (Petty and Kindzelskii 2000).

They did not monitor whether ROS production occurred

during attachment in that study. However, in polarized

neutrophils (crawling cells) NAD(P)H waves were associ-

ated with production of ROS (Kindzelskii and Petty 2002).

These authors stated: ‘‘We have previously noted the pres-

ence of longitudinal NAD(P)H waves in elongated

neutrophils (Petty et al. 2000). Thus, cell shape (spherical vs.

elongated) correlates with the dissipative metabolic patterns

observed (circular vs. longitudinal)’’ (Petty and Kindzelskii

2000). These observations emphasize further the need to

compare cells activated in suspension and those activated

attached to a surface and to study the role of cell shape in

neutrophil function.

In cytochemical preparations carried out with neutro-

phils in suspension, intracellular sites of ROS production

have been observed (Kobayashi et al. 1998; Brown et al.

2003). We have shown, as have others, that the intra-

cellular trafficking of membrane-bounded compartments in

activated neutrophils can be very dramatic and complex

(Kobayashi and Robinson, 1991; Robinson et al. 1999).

This point is illustrated further herein (see Fig. 7). There-

fore caution should be used when comparing neutrophils

(and other cells as well) activated in suspension to those

activated when attached to a substratum. Membrane traf-

ficking events occurring with cells in suspension may not

be exactly replicated with attached cells and vice versa. It

would be useful for this issue to be addressed in a formal

manner such that the intracellular trafficking patterns for

membrane compartments of individual neutrophils acti-

vated in suspension or when attached to a substratum could

be determined and compared.

Reactive oxygen species in other cell types

While this review has focused narrowly on phagocytic

leukocytes and neutrophils in particular, it must be men-

tioned that ROS have assumed considerable importance

beyond phagocytes. Indeed, ROS production is wide spread

throughout the animal and plant kingdoms. The literature

on this topic has grown considerably over the past 10 years

or so and illustrates the pervasiveness of ROS production

in biological systems and the importance of ROS in various

biological functions. A review of this area, no matter how

cursory, is well beyond the scope of this paper. However,

there are numerous excellent review articles available on

these topics (e.g., Geiszt and Leto 2004; Lambeth 2004;

Terada 2006; Bedard and Krause 2007; Bedard et al. 2007;

Lambeth 2007; Brandes and Schröder 2008).
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