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SUMMARY
So far, successful de novo formation of testicular tissue followed by complete spermatogenesis in vitro has been achieved only in rodents.

Our findings reveal that primary human testicular cells are able to self-organize into human testicular organoids (TOs), i.e., multi-cellular

tissue surrogates, either with or without support of a biological scaffold. Despite lacking testis-specific topography, these mini-tissues

harbored spermatogonia and their important niche cells, which retained specific functionalities during long-term culture. These obser-

vations indicate the posibility of in vitro re-engineering of a human testicular microenvironment from primary cells. Human TOs might

help in the development of a biomimetic testicular model that would exert a tremendous impact on research and development, clinical

treatment of infertility, and screening in connection with drug discovery and toxicology.
INTRODUCTION

The search for an appropriate in vitro model for the testis

has been ongoing for nearly a century (Martinovitch,

1937; Reda et al., 2016). Inmice, classical organ culture pro-

cedures have been adapted and optimized for testicular tis-

sue, thereby achieving complete spermatogenesis from

spermatogonial stem cells (SSCs) to the formation of fertil-

ization-competent sperm (Sato et al., 2011). However, an

adequate in vitro model for human spermatogenesis has

yet to be developed, despite reports of the differentiation

of meiotic and post-meiotic germ cells into fertilization-

competent gametes (Cremades et al., 2001).

Organoid systems take advantage of the self-organizing

capabilities of cells to create diverse multi-cellular tissue

surrogates that constitute a powerful novel class of biolog-

ical models (Yin et al., 2016). Clearly, formation of a func-

tional testicular organoid (TO) from a single-cell suspen-

sion would be an extremely valuable testicular model.

Such de novo formation of testicular tissue, with seminifer-

ous tubules and an interstitial compartment, has been

achieved in vitro starting from isolated murine testicular

somatic and germ cells without the support of a scaffold.

However, in this system, spermatogenesis was arrested at

the meiotic phase (Yokonishi et al., 2013). More promising

results have been obtained with artificial 3D scaffolds. For

example, cultivation of immature rodent testicular cells

in a collagen, agarose, or methylcellulose matrix was suc-

cessful in generating post-meiotic cells (Lee et al., 2006;

Stukenborg et al., 2009). However, with these approaches,
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specific cell orientation (normally provided by the base-

ment membrane) is lacking, which might be responsible

for its low efficiency. Notably, in a system consisting of

immature rat testicular cells in a 3D agarose matrix, sper-

matogonia without close contact to Sertoli cells stopped

developing (Reda et al., 2014).

This problem might be circumvented by using a scaffold

that mimics the testicular architecture. Indeed, it is already

common in tissue engineering to use scaffolds composed of

biological extracellular matrix (ECM) (Brown and Badylak,

2014). In this context, we previously described the prepara-

tion of human decellularized testicular matrix (DTM) and

its potential use as a scaffold (Baert et al., 2015).

Accordingly, our present goal was to re-engineer the hu-

man testicular microenvironment, including its major

cellular and structural components in TOs by adding iso-

lated suspensions of somatic and germ cells to natural

testicular scaffolds. In parallel, the self-assembling capa-

bility of human testicular cells into TOs was assessed in

the absence of scaffold support.
RESULTS

Formation of Scaffold-Based and Scaffold-Free TOs

To generate scaffold-based TOs, testicular cells from adult

and pubertal individuals were seeded into the apical

compartment of hanging transwell inserts containing 90-

mm-thick DTM (Figure 1A). In a preliminary study, we

determined the thickness of DTM that was optimal for
rs.
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Figure 1. Formation of Scaffold-Based
and Scaffold-Free TOs
(A) Schematic illustration of the culture
system involving inoculation of testicular
cells onto a scaffold to prepare scaffold-
based (SB) TOs. Testicular cells were
cultured in the apical compartment of the
insert without scaffold support to form
scaffold-free (SF) TOs.
(B) A testicular scaffold (red) before (left
panel) and 24 hr after (right panel) cell
seeding. DAPI was used to stain cell nuclei
blue. The inserts show higher magnifica-
tions of a seminiferous tubule (*) and the
interstitial space (#).
(C) Morphological transformation of TOs
viewed through a stereomicroscope. The
dotted lines delineate the re-cellularized
testis scaffold. See also Table S1.
cell growthwith the tubules still being accessible (Figure 1B,

left panel). Following 24 hr of incubation, the adult or

pubertal testicular cells had repopulated the scaffolds by

invading the tubular structures and settling down in the

interstitial compartment (Figure 1B, right panel). More-

over, the cells in the scaffold were connected to the sur-

rounding non-inoculated cells. Interestingly, with time,

the testis scaffold tended to blend into the newly formed

TOs. Under scaffold-free conditions, cells first self-assem-

bled into a multi-layered cell sheet. Generally, regardless

of scaffold presence, longer incubation times were associ-

ated with contraction and condensation of the TOs, finally

resulting in spheroid formation after approximately

3 weeks. These spheroid structures were maintained until

the end of the observation period (Figure 1C).

Spatial-Temporal Behavior of Somatic TesticularNiche

Cells in TOs

In vivo, cells co-expressing the molecular steroidogenic

acute regulatory protein (STAR) and steroidogenic 3b-hy-

droxysteroid dehydrogenase (3bHSD) markers are Leydig

cells located in the interstitium (Figure S1, top-left

panel). Patches containing STAR+/3bHSD+ cells, represent-

ing steroidogenic Leydig cells were observed for as long as

1 month in scaffold-based TOs (Figure 2, top row).

In normal testicular tissue, COL1 is typically present in

the interstitium, vascular wall, and tubular wall, the latter

also harboring ACTA2+ peritubular myoid cells (PTMCs)

(Figure S1,middle-left panel). In thenascent TOs, randomly

distributed round-shapedACTA2+ cellswere attached to the

testicular scaffold,which stainedpositively forCOL1.As ex-

pected, given that PTMCs are the major producers of ECM

in the testis, staining for COL1 was also localized in the
cytoplasm of some ACTA2+ cells. Remarkably, ACTA� cells

were also seen to produce COL1. Later, the testis-specific

pattern of COL1 distribution in TOs was replaced by a

widespread network of COL1 fibers with interspersed elon-

gated ACTA2+ PTMCs (Figure 2, middle row), a remodeling

pattern in line with our observations in stereomicroscopy.

Like Leydig cells, some PTMCs in TOs appear to remain

active, as indicated by this elongation and expression of

ECM. Furthermore, clumps of SOX9+ cells expressing the

tight-junction protein ZO1were also present (Figure 2, bot-

tom row). In normal testis, SOX9+ Sertoli cells actively pro-

duce ZO1 as an important part of the blood-testis barrier

(Figure S1, bottom-left panel). These results have been re-

produced in scaffold-based TOs from pubertal cells (Fig-

ure S1, middle and right column). Intriguingly, similar

staining patternswere also obtained in TOs formedwithout

scaffold support (Figure 2, right column). Immunostaining

for immunoglobulin G (IgG) controls showed no non-spe-

cific signals and are depicted in Figure S1 (fourth row).

Spatial-Temporal Behavior of Spermatogonia in TOs

Staining for each of the spermatogonial markers UCHL1,

UTF1, and FGFR3 was combined with staining for the

germ-cell marker DDX4 to allow unambiguous detection

of early and late spermatogonia. In situ, these cells reside

singly or aligned at the basement membrane of the

seminiferous tubules (Figure S2, left column). Numerous

UCHL1+/DDX4+, UTF1+/DDX4+, and FGFR3+/DDX4+ cells

were present in all types of TO during the 4 weeks of cul-

ture. Spermatogonia appeared as single cells and small clus-

ters, but they also formed larger grape-like aggregates in

adult TOs (Figure 3, first to third row), as well as pubertal

TOs (Figure S2, middle and right column).
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Figure 2. Characterization of Somatic Testicular Niche Cells in the TOs by Immunofluorescent Staining of Whole Mounts
Double staining for STAR/3bHSD (top row), ACTA2/COL1 (middle row), and SOX9/ZO1 (bottom row) applied to scaffold-based (left and
middle columns) and scaffold-free (right column) adult TOs (n = 3 TOs derived from different donors per staining). Representative
photographs of TOs following short-term (left column) and long-term (middle and right columns) culture are shown. Steroidogenic Leydig
cells (white arrows) stained positive for both STAR (green) and 3bHSD (purple), PTMCs (white/red arrows) stained for ACTA2 (green),
scaffold (*) and COL1-producing cells (red arrows) stained for COL1 (purple), COL1-producing PTMCs (white arrow) stained for both ACTA
and COL1, and tight-junction protein-producing Sertoli cells (white arrow) stained for both SOX9 (green) and ZO1 (purple). Cell nuclei were
stained blue with DAPI. The inserts depict several z stacks at low magnification merged with maximum intensity projection to give an
overview. See also Figure S1 and Table S1.
Importantly, mitotically active germ cells were present in

scaffold-based and scaffold-free adult TOs at both early and

late time points, as revealed by expression of the protein
32 Stem Cell Reports j Vol. 8 j 30–38 j January 10, 2017
KI67 by DDX4+ cells (Figure 3, fourth row). Comparable re-

sults were obtained in pubertal TOs (Figure S2, second and

third column). This is a crucial finding, since proliferation



(legend on next page)
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is an essential functional characteristic of spermatogonia.

Cells staining positive for DDX4, but not for a spermatogo-

nial marker might be other germ-cell types that originated

from the pubertal or adult donor tissue. No background

stainingwas observedwith normal rabbit ormouse IgG iso-

types (Figure S1, fourth row).
Profile of Hormone and Cytokine Secretion

The maintenance of steroidogenic Leydig cells and active

Sertoli cells in adult TOs was demonstrated by the detec-

tion of testosterone (T) and inhibin B (InhB), respectively,

throughout the 4 weeks of culture, with comparable levels

in scaffold-based and scaffold-free conditions (Figures 4A

and 4B). The level of hormones produced by pubertal

TOs had a tendency to increase gradually with time (Fig-

ure S3A). Strikingly, stimulation by gonadotrophins ex-

erted no lasting effect on hormone release by Leydig and

Sertoli cells in the TOs (Figures 4A, 4B, and S3A).

At 1 and 4 weeks of culture, the levels of 19 and 21 cyto-

kines, respectively, were above threshold in the medium

from at least two adult scaffold-based TOs. Scaffold-free

TOs produced totals of 18 and 28 cytokines after short-

and long-term culture, respectively. The majority of these

cytokines were shared with scaffold-based TOs (Figures

4C and 4D). Short-term cultured scaffold-free TOs pro-

duced 14 cytokines at equal levels, while interleukin-6

(IL-6) was produced in lower amounts compared with scaf-

fold-based TOs (p = 0.0004) (Figure 4C). After long-term

culture, scaffold-free TOs produced GROa (p = 0.0349)

and IL-6 (p < 0.0001) at higher levels and 17 other cyto-

kines at similar levels compared with scaffold-based TOs

(Figure 4D). The cytokines restricted to scaffold-free or

scaffold-based TOs are presented in Figures 4C and 4D. In

addition, Figure S3B shows the cytokine secretion profiles

associated with short- and long-term cultured pubertal

TOs. A complete list of the cytokines assayed, including

their full names is provided in Table S2 and a representative

cytokine antibody array is shown in Figure S3C.
DISCUSSION

In this study, natural testis scaffolds fabricated from DTM

were re-cellularized with adult and pubertal testicular cells.
Figure 3. Characterization of Spermatogonia in the TOs by Immu
Immunostaining for UCHL1/DDX4 (first row), UTF1/DDX4 (second row)
(n = 3 TOs derived from different donors per staining) derived with (le
following 24 hr (left column) and 4 weeks (middle and right column) o
UCHL1, UTF1, or FGFR3 (green), and DDX4 (purple), which are unmist
represent a different germ-cell type (red arrow). The DDX4+ (purple) c
Cell nuclei are stained blue by DAPI. The inserts depict low-magnifi
projection of z stacks. See also Figure S2 and Table S1.
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Despite the fact that cells entered both the tubular and

interstitial compartments, the TOs did not display typical

testicular cytoarchitecture and the scaffold was remodeled

by the testicular cells over time. This latter process might

be initiated by breakdown of the scaffold by enzymes pro-

duced by the cells, with subsequent production of ECM

proteins that re-organize the tissue.

In the light of their nature, PTMCs and Sertoli cells may

have contributed directly to the reshaping of the scaffold.

We show here that a number of in vivo testicular processes

related to ECM (including the blood-testis barrier) remodel-

ing were recapitulated in TOs derived from both young and

adult cells (Dı́ez-Torre et al., 2011; Mruk and Cheng, 2004;

Siu and Cheng, 2004). First, tumor necrosis factor alpha,

tissue inhibitor of metalloproteinase 1, IL-6, andmonocyte

chemotactic protein 1 were produced, as detected by way

of membrane antibody arrays. Second, rearrangement of

COL1 fibers from a testis-specific pattern to a widespread

interconnecting network occurred with time. Third, func-

tionally differentiated PTMCs producing ECM were de-

tected, first as round and later as elongated ACTA2+ cells

containing COL1 in their cytoplasm and interspersed be-

tween the COL1 fibers. Fourth, co-localization of SOX9, a

marker of Sertoli cells, and the tight-junction protein ZO1

in certain cells in the TOs indicated production of protein

components of the blood-testis barrier by Sertoli cells.

Finally, cells other than PTMCs, possibly Sertoli cells (the

othermain source of testicular ECM), were found to express

COL1. In addition,macrophagesmay have played a central

role as well, especially since these cells participate in the

degradation of ECM scaffolds (Valentin et al., 2009). Mac-

rophages would be expected to be present in TOs formed

from suspensions containing testicular cells, given that im-

mune cells reside naturally in the testicular interstitium

(DeFalco et al., 2015). Thus, remodeling of the scaffold

might have involved interactions between PTMCs, Sertoli

cells, and macrophages. This phenomenon may be rele-

vant to the observation that degradation products of

ECM components, so-called cryptic peptides, regulate tis-

sue functions (Brown and Badylak, 2014). Nevertheless,

the necessity of the natural testicular scaffold in TO forma-

tion is debatable, given that the spatial-temporal behavior

and hormone and cytokine secretion profiles of testicular

cells in scaffold-free TOs were comparable.
nofluorescent Staining of Whole Mounts
, FGFR3/DDX4 (third row), and KI67/DDX4 (fourth row) in adult TOs
ft and middle column) and without (right column) scaffold support
f culture. Representative images show cells that stained positive for
akably spermatogonia (white arrow). Cells positive for DDX4 alone
ells staining for KI67 (green) are dividing germ cells (white arrow).
cation overviews of the TOs generated using maximum intensity



Figure 4. Secretory Profile of Hormones and Cytokines of
Testicular Cells in the TOs
The levels of (A) T and (B) InhB in the medium were measured
after 24 and 72 hr, and 1, 2, 3, and 4 weeks of culturing scaffold-
based and scaffold-free TOs under different hormonal conditions
(�/�; rFSH/�; �/hCG; rFSH/hCG). Cytokine profiles were
obtained by incubating array membranes with medium from
scaffold-based and scaffold-free TOs after (C) 1 week and (D)
4 weeks of culture. The data are presented as means ± SDs (n = 3
TOs derived from different donors per condition). For an expla-
nation of the protein abbreviations, see Table S2. hCG, human
chorionic gonadotrophin; MPD, mean pixel density; rFSH, re-
combinant follicle-stimulating hormone; SB, scaffold based; SF,
scaffold free. See also Figure S3 for the hormone and cytokine
secretion profiles of pubertal TOs and a representative cytokine
antibody array.
The spheroid shape of both scaffold-based and scaffold-

free TOs might be explained by contraction of ACTA2 pro-

teins in PTMCs in response to androgens, as this occurs

in vivo (Schlatt et al., 1993). Importantly, we found indica-

tions of Leydig cells effecting steroidogenesis in the TOs.

The presence of cells expressing STAR and 3bHSD, which

are critically involved in T biosynthesis, and, in particular,

the detection of T in the medium suggest Leydig cell func-

tionality throughout the entire culture period. Interest-

ingly, physiological concentrations of gonadotrophins

did not stimulate T production, nor did they influence

the production of InhB, an indicator of Sertoli cell func-

tionality. A possible explanation for this lack of effect could

be that these cells became unresponsive to stimulation due

to the age of the adult testicular cells used in this study

(Haider et al., 2007). Alternatively, maximal stimulation

was induced by gonadotrophin-like factors in the serum

supplement used in the culture medium. Indeed, unre-

sponsiveness of testicular cells to gonadotrophins has

been reported before when serum was added to the culture

medium (Roulet et al., 2006), while a gonadotrophin-

induced increase in hormone production was detected in

serum-free systems (Berensztein et al., 2000). Moreover,

supplementation of themedium formouse testicular organ

culture with serum alone is sufficient to generate sperm,

and, in this setup, lipid-rich albumin plays a critical role

(Sato et al., 2011). Unfortunately, many other components

of this serum replacement remain unknown. The mainte-

nance of Leydig cells with testis-specific activity was further

demonstrated by the production of MCSF, a cytokine

important for germ-cell renewal (Martin and Seandel,

2013).

Using three different unambiguous combinations of

markers, we found that long-term cultures of scaffold-

based and scaffold-free TOs contained early and late sper-

matogonia. Importantly, throughout the culture period, a

proportion of the germ cells stained positive for a marker

of proliferation, this being a highly important feature of

spermatogonia. However, the number of dividing germ

cells appeared to decline with time, which, together with

the profile of cytokine secretion, indicates that there is still

room for improvement. For instance, certain important in-

ducers of germ-cell renewal, e.g., glial cell-line-derived

neurotrophic factor, were not detected by the cytokine

array after long-term culture, and, therefore, should

perhaps be added to the culture medium (Martin and

Seandel, 2013).

The maintenance of the major somatic testicular niche

cells with testis-specific functionalities as well as prolifer-

ating germ cells documented here represents an important

stepping stone for future work on generating haploid cells

in TOs. An in vitro model that performs key testicular pro-

cesses would represent a breakthrough withmany valuable
Stem Cell Reports j Vol. 8 j 30–38 j January 10, 2017 35



applications. Such a model could help unravel the mecha-

nisms involved in both spermatogenesis and underlying

disorders. The 2D models currently available are limited

and the results obtained difficult to extrapolate to a tissue

(Chapin et al., 2013), while the presently available 3D

culture system is suitable only for short-term evaluations

(Jørgensen et al., 2015; Roulet et al., 2006). In the clinic, a

system enabling in vitro spermatogenesis is the missing

link in male fertility preservation and treatment of non-

obstructive azoospermia (Gassei and Orwig, 2016). Going

further, pluripotent stem cells from men who completely

lack germ cells might be combined with TOs to produce

artificial gametes more efficiently than what is currently

possible (Easley et al., 2012). Finally, the majority of men

and women would welcome a male contraceptive to allow

their participation in the control of fertility (Kanakis and

Goulis, 2016). In this context, and also in the field of

reproductive toxicology, an in vitro system for human sper-

matogenesis could be used to screen candidate drugs and

chemicals (Chapin et al., 2013).
EXPERIMENTAL PROCEDURES

See also Supplemental Experimental Procedures.

Donor Testicular Tissue and Formation of TOs
Fragments of DTMwere prepared in the manner we described pre-

viously (Baert et al., 2015). These fragments were then cryosec-

tioned into 90-mm discs to obtain testicular scaffolds. Primary

testicular cells were isolated from human adult or pubertal testic-

ular tissue by way of two-step enzymatic digestion (Stukenborg

et al., 2009). Adult tissue (representing complete spermatogenesis)

was donated by six patients undergoing bilateral orchiectomy at

the Urology Department, Universitair Ziekenhuis (UZ) Brussel

(ethics approval no. 2014/243). All experiments were repeated in

triplicate using TOs derived from three different patients. Pubertal

testicular tissue was obtained from a 15-year-old who was enrolled

in the fertility preservation program at UZ Brussel’s Center for

Reproductive Medicine (ethics approval no. 2015/V9). This tissue

exhibited active spermatogenesis up to meiosis. Because immature

tissue is very scarce, it was employed solely to confirm the results

obtained with adult tissue. Scaffold-based and scaffold-free TOs

were formed by pipetting a drop of medium containing 106 cells

onto the apical side of a transwell insert containing or lacking a

scaffold.

Culture medium (10% [v/v] CTS KnockOut SR XenoFree Me-

dium, 13GlutaMAX and 1% [v/v] penicillin-streptomycin diluted

in KnockOut DMEM; all from Thermo Fisher Scientific) was added

to the basolateral compartment of the well with or without (con-

trols) supplementation with human chorionic gonadotrophin

(hCG; Pregnyl; Organon) as a luteinizing hormone analog and/

or recombinant follicle-stimulating hormone (rFSH; Puregon;

Organon), both at physiological concentrations (5 IU/L) (Chada

et al., 2003). The cells were cultured for 4 weeks at the gas-liquid

interphase at 35�C in a humidified atmosphere containing 5%
36 Stem Cell Reports j Vol. 8 j 30–38 j January 10, 2017
CO2 (Sato et al., 2011), with change of medium every week or

when collecting cultured medium for analysis.

Immunofluorescent Staining of Whole Mounts of TOs
To examine the temporal-spatial patterns of the key testicular

cell types (Leydig cells, PTMCs, Sertoli cells and spermatogonia

[including SSCs]) in TOs, these structures were fixed overnight at

4�C in 4% paraformaldehyde and double immunofluorescent

staining of whole mounts was performed. Details of the primary

antibodies employed and their targets are provided in Table S1.

Profile of Hormone and Cytokine Secretion
To examine the endocrine functionality of Leydig and Sertoli cells

in these TOs, the release of T and InhB, respectively, in response

to full gonadotrophic stimulation (rFSH/hCG), stimulation with

hCG (�/hCG) or rFSH (rFSH/�) alone, or no stimulation (�/�)

was determined at different time points during long-term culture.

Concentrations of T (DRG Diagnostics) and InhB (Beckman

Coulter) were assayed by employing commercial ELISAs in accor-

dance with the manufacturer’s instructions.

Antibody arrays targeting 80 human cytokines (ab133998; Ab-

cam) were used to quantify factors associated with the formation

of TOs and to assess major changes in their secretion during cul-

ture. To this end, medium collected after short-term (1 week) and

long-term (4 weeks) culture was subjected to the antibody array

assay in accordance with the manufacturer’s instructions.

Statistical Analyses
Statistical analyses were performed by employing GraphPad Prism

6 or IBM Statistics 20 (IBM Corporation) software. Levels (means ±

SDs) of hormones and cytokines were compared by way of two-

way ANOVA. These analyses were followed by Bonferroni post

hoc tests for correction of multiple comparisons. A p value of

<0.05 was considered to be statistically significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, three figures, and two tables and can be found with

this article online at http://dx.doi.org/10.1016/j.stemcr.2016.

11.012.
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(2011). Peritubularmyoid cell-derived factors and its potential role

in the progression of testicular germ cell tumours. Int. J. Androl.

34, e252–e265.

Easley, C.A., 4th, Phillips, B.T., McGuire, M.M., Barringer, J.M.,

Valli, H., Hermann, B.P., Simerly, C.R., Rajkovic, A.,Miki, T., Orwig,
K.E., and Schatten, G.P. (2012). Direct differentiation of human

pluripotent stem cells into haploid spermatogenic cells. Cell Rep.

2, 440–446.

Gassei, K., and Orwig, K.E. (2016). Experimental methods to pre-

serve male fertility and treat male factor infertility. Fertil. Steril.

105, 256–266.

Haider, S.G., Servos, G., and Tran, N. (2007). The leydig cell in

health and disease. In Leydig Cell Heal Dis, A.H. Payne and M.P.

Hardy, eds. (Humana Press).

Jørgensen, a., Nielsen, J.E., Perlman, S., Lundvall, L., Mitchell, R.T.,

Juul, A., and Rajpert-DeMeyts, E. (2015). Ex vivo culture of human

fetal gonads: manipulation of meiosis signalling by retinoic acid

treatment disrupts testis development. Hum. Reprod. 30, 2351–

2363.

Kanakis, G.A., and Goulis, D.D. (2016). Male contraception: a clin-

ically-oriented review. Hormones 14, 598–614.

Lee, J.H., Kim, H.J., Kim, H., Lee, S.J., and Gye, M.C. (2006). In vitro

spermatogenesis by three-dimensional culture of rat testicular cells

in collagen gel matrix. Biomaterials 27, 2845–2853.

Martin, L.A., and Seandel, M. (2013). Propagation of adult SSCs:

from mouse to human. Biomed. Res. Int. 2013, 384–734.

Martinovitch, P.N. (1937). Development in vitro of themammalian

gonad. Nature 139, 413.

Mruk, D.D., and Cheng, C.Y. (2004). Sertoli-Sertoli and Sertoli-

germ cell interactions and their significance in germ cell move-

ment in the seminiferous epithelium during spermatogenesis.

Endocr. Rev. 25, 747–806.

Reda, A., Hou,M., Landreh, L., Kjartansdóttir, K.R., Svechnikov, K.,
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