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Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease
caused by the SFTS virus (SFTSV). Predicting the incidence of this disease in advance is
crucial for policymakers to develop prevention and control strategies. In this study, we
utilized historical incidence data of SFTS (2013e2020) in Shandong Province, China to
establish three univariate prediction models based on two time-series forecasting algo-
rithms Autoregressive Integrated Moving Average (ARIMA) and Prophet, as well as a
special type of recurrent neural network Long Short-Term Memory (LSTM) algorithm. We
then evaluated and compared the performance of these models. All three models
demonstrated good predictive capabilities for SFTS cases, with the predicted results closely
aligning with the actual cases. Among the models, the LSTM model exhibited the best
fitting and prediction performance. It achieved the lowest values for mean absolute error
(MAE), mean square error (MSE), and root mean square error (RMSE). The number of SFTS
cases in the subsequent 5 years in this area were also generated using this model. The
LSTM model, being simple and practical, provides valuable information and data for
assessing the potential risk of SFTS in advance. This information is crucial for the devel-
opment of early warning systems and the formulation of effective prevention and control
measures for SFTS.
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1. Introduction

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease, with a mortality of 12%e50% (Li
et al., 2018; Yu et al., 2011). It is caused by the SFTS virus (SFTSV), now known as Dabie bandavirus, and classified in the order
Bunyavirales, family Phenuiviridae, and genus Phlebovirus. The virus is mainly prevalent in Eastern Asia, including China, Japan,
South Korea, etc. (Kato et al., 2016; Shin et al., 2015; Yu et al., 2011). However, a similar virus causing SFTSV-like symptoms has
been isolated in the United States, indicating a potentially wide distribution and public health threat of this virus (McMullan
et al., 2012). Due to the high threat brought by the virus, the World Health Organization (WHO) listed it as one of the nine
most infectious diseases on the priority list in 2017.

Predicting the incidence of this disease can provide important information for prospectively making prevention and
control strategies for policymakers (Dharmarajan et al., 2022). For example, using predicted data, local disease prevention and
control institutions or hospitals can prepare sufficient personnels and medical supplies, such as detection reagents, thera-
peutic drugs, disinfection materials, and insecticides. Additionally, during periods of high predicted incidence of SFTS, gov-
ernment departments can issue early warnings to residents and conduct disease prevention education in advance to reduce
the actual incidence.

Previous studies have mainly focused on multivariate analysis methods to predict the incidence of SFTS. These studies
analyzed various environmental, meteorological, and social factors, among others, to identify incidence-related risk factors
and establish prediction models based on these factors (Cho et al., 2021; Deng et al., 2022; Ding et al., 2014; Sun et al., 2018,
2021; Wu et al., 2020). However, few studies have reported models for prediction of SFTS incidence just based on the his-
torical incidence data, which may be more convenient and practical.

As a tick-borne disease, the incidence of SFTS exhibits strong seasonal regularity, with more cases occurring between May
and October in China. Based on this seasonal distribution, we established three univariate prediction models using Autore-
gressive Integrated Moving Average (ARIMA), Prophet, and Long Short-Term Memory (LSTM) algorithms, respectively. These
models were developed using historical incidence data from Shandong Province, China, and their prediction performancewas
further evaluated and compared. The number of SFTS cases in the subsequent 5 years in this area were also predicted using
the optimal model to give useful information to the local public health agencies.

2. Materials and methods

2.1. Data collection and preprocessing

We collected daily confirmed SFTS cases in Shandong province from January 2013 to December 2020 from the Public
Health Science Data Center (www.phsciencedata.cn/Share/). To ensure optimal training performance for machine learning,
we used the Min-Max normalization method to scale and normalize the data with large variations. For the LSTM model, we
further transformed the normalized data into LSTM-recognizable format using the create_dataset function.

In general, the data from January 2013 to December 2019 (containing data of 84 months) were used as the training set and
those from January to December 2020 (containing data of 12months) were used as the test set for model construction. For the
LSTM model, the data from January 2013 to December 2018 (containing data of 72 months) were used as input, and the data
from January to December 2019 (containing data of 12 months) were used as output for training.

2.2. Model construction

2.2.1. ARIMA model
The ARIMA model is a widely used statistical method for time series data prediction and has demonstrated excellent

performance in various fields since its introduction. The basic equation for ARIMA is as follows:

ð1-BÞdYt ¼ cþ
�
qðBÞ
4ðBÞ

�
εt (1)

Where d is the degree of differencing, Yt is the value of the time series at time t, c is the constant term, εt is the white noise
sequence, B is the backshift operator, q(B) is themoving average operator, and 4(B) is the autoregressive operator. However, in
this study, due to the obvious seasonality of monthly reported SFTS cases, we adopted the seasonal ARIMA (SARIMA) model.
The formula for the SARIMA model is as follows:

ð1� BÞd
�
1� BS

�D
Yt ¼ cþ

0
@qðBÞqS

�
BS
�

4ðBÞ4S

�
BS
�
1
A
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Where D is the number of seasonal differences, 4(B) and q(B) are the seasonal autoregressive and moving average operators,
respectively.
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2.2.2. Prophet model
The Prophet model, developed by Facebook in 2017, is an open-source time-series forecasting algorithm (Taylor et al.,

2018). The basic formula for the Prophet model is as follows:

yt ¼ gðtÞ þ sðtÞ þ hðtÞ þ εt (3)

Where g(t) represents the trend component, which describes the trend of aperiodic changes in the monthly confirmed SFTS
cases time series. s(t) is the periodic component, reflecting the periodic changes in the time series. h(t) represents the impact
of holiday events on the time series, and εt is the white noise sequence.

2.2.3. LSTM model
LSTM is a special type of recurrent neural network (RNN) that excels in processing andmodeling sequence data. Compared

to traditional RNNmodels, LSTM incorporates a gatingmechanism, which includes input gates, forget gates, and output gates,
to address the long-term dependency problem. By combining neurons, gating units, and cell states, LSTM enables the
modeling and memory of long-term dependencies in sequence data.

The LSTMmodel consists of neurons, where each neuron contains a cell state and three gated units: input gate, forget gate,
and output gate. These gated units play a crucial role in controlling the flow and storage of information within the LSTM. The
input gate, forget gate, and output gate are responsible for determining which information should be incorporated, forgotten,
or outputted by the LSTM. The input gate regulates the inclusion of information from the current time step into the cell state
update. If the output of the input gate is close to 1, the corresponding input information is incorporated into the cell state.
Conversely, if the output is close to 0, the input information is ignored. Similarly, the forget gate decides which information
from the previous cell state should be forgotten. It utilizes a Sigmoid activation function and an element-by-element
multiplication operation. If the output of the forget gate is close to 1, the corresponding information is retained.
Conversely, if the output is close to 0, the information is forgotten. The cell state is responsible for storing and transmitting
information throughout the LSTM. It is updated based on the input gate and forget gate outputs, ensuring relevant infor-
mation is retained and irrelevant information is discarded. The LSTM structure diagram, as depicted in Fig. 1, visually rep-
resents the components and connections within the LSTM model.

The forward propagation process of the LSTM model in the hidden layer unit is as follows.

a. Input gate

it ¼sðWxixt þWhiht-1 þbiÞ (4)

bCt ¼ tanhðWxcxt þWhcht�1 þ bcÞ (5)

Where xt is the input of the current time step, ht-1 is the hidden state of the previous time step,Wxi andWhi are the weight of
the input gate, and bi is the offset term.

s, the sigmoid activation function, compresses input to values between 0 and 1, and is commonly used for gate control in
LSTMs.When the output is close to 0, it indicates the gate is almost closed, while an output close to 1 indicates the gate is fully
open.

Tanh, the hyperbolic tangent activation function, compresses input to values between�1 and 1, and is utilized in LSTMs to
generate candidate cell states. These states may be added to the cell state of the next time step based on the activation of the
gates.
Fig. 1. Brief illustration of LSTM structure.
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b. Forget gate

ft ¼ s
�
Wxf xt þWhf ht�1 þ bf

�
(6)

Where xt is the input of the current time step, ht-1 is the hidden state of the previous time step,Wxf andWhf are the weight of
the forget gate, and bf is the offset term.

c. Output gate

Ot ¼ sðWxoxt þWhoht�1 þ boÞ (7)

ht ¼Ot5tanhðCtÞ (8)

Where xt is the input of the current time step, ht-1 is the hidden state of the previous time step,Wxo andWho are the weight of
the output gate, and bo is the offset term.

d. Cell state

The cell state is responsible for storing and transmitting information. The updating of cell state is determined by the
forgetting and input gates. The forgetting gate controls what information from the previous cell state should be forgotten. The
output of the forgetting gate is multiplied with the element-by-element of the previous cell state to decide what information
to retain. The forgetting step is calculated as follows:

C0
t�1 ¼ ft5Ct�1 (9)
The input gate controls how new input information affects the updating of the cell state. The output of the input gate is
multiplied element-by-element with the new candidate value through an activation function to determine the new cell state.
The updated cell state is passed on to the next time step. The calculation formula for the input step is as follows:

Ct ¼C0
t�1 þ it5bCt (10)

With these two gating mechanisms, LSTM is able to effectively retain useful information and forget irrelevant information.

2.3. Model evaluation

To evaluate the established models, several metrics were used, including the mean absolute error (MAE), mean square
error (MSE), and root mean square error (RMSE). Each metric has its advantages, with MAE reflecting the actual prediction
error, MSEmeasuring the average sum of squares of the difference between actual and predicted values, and RMSEmeasuring
the deviation from observed values to true values. Lower values of these metrics indicate better prediction performance. The
calculation formulas of these four evaluation indicators are as follows:

MAE¼ 1
n

Xn
i¼1

jyi-byij (11)

MSE¼ 1
n

Xn
i¼1

ðyi-byiÞ2 (12)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðyi-byiÞ2
vuut (13)
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SMAPE¼100%
n

Xn
i¼1

jyi-byij
ðjyij þ jbyijÞ=2 (14)

Where n is the number of observations, yi is the actual value, ŷ is the predicted value.
2.4. Statistical software

Python 3.7 software was used for all statistical and modeling processes, with the "statsmodels" and "fbprophet" packages
used to build the SARIMA and Prophet models, respectively. The LSTMmodel was based on keras, and the level of significance
was set at P < 0.05.
3. Results

3.1. SFTS cases

From January 2013 to December 2020, a total of 4174 confirmed cases of SFTS were reported in Shandong Province. The
monthly confirmed SFTS cases are shown in Fig. 2. The peak of cases began at the beginning of the second quarter and ended
at the end of the third quarter, with cases mainly concentrated between May and August.
3.2. Prediction models

3.2.1. SARIMA
To determine the appropriate SARIMAmodel, the augmented Dickey-Fuller test was conducted to assess the stationarity of

the original time series. The test results indicated that the time series was not stationary (P¼ 0.313). After applying a round of
differencing, the time series became stationary (P < 0.001). The parameters of p and q in the SARIMA model were prelimi-
narily determined based on the autocorrelation function (ACF) and partial autocorrelation function (PACF) plots (Fig. 3). The
final SARIMA model was selected based on the minimum Akaike information criterion (AIC) value (AIC ¼ 534.757), resulting
in SARIMA (1,1,1), (1,1,1)12. The residual autocorrelation test (Ljung-Box test) indicated that the residuals did not deviate
significantly from a white noise sequence (P ¼ 0.89), confirming the adequacy of the model.

3.2.2. Prophet
The seasonality_mode parameter in the Prophet model determines the modeling approach for the seasonal component

and can be set to additive or multiplicative. Considering the increasing magnitude of the seasonal pattern with the growth of
data, which aligns with the characteristics of a multiplicative model, we selected multiplicative as the parameter for sea-
sonality_mode. Table 1 presents all the parameters used in the constructed Prophet model.
Fig. 2. Trends of the actual number of SFTS cases from January 2013 to December 2020.
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Fig. 3. Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots of the SARIMA (1,1,1), (1,1,1)12 model.

Table 1
Parameter values of the constructed Prophet and LSTM models.

Models Parameters Values

Prophet growth linear
yearly_seasonality True
seasonality_mode multiplicative
seasonality_prior_scale 12
changepoint_prior_scale 0.02

LSTM Number of neurons 23
layers 1
Activation relu
Recurrent activation sigmoid
Dropout 0
Loss mse
Optimizer Adam
Batch size 1
Learning_rate 0.003
Epochs 1000
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3.2.3. LSTM
To prepare the input time series for the LSTMmodel, it was first transformed into the required input-output format for the

supervised learning model. The lengths of both input and output sequences were then defined and normalized for optimal
model training.

The Bayesian optimization method was utilized to automatically search for the optimal learning rate and number of
neurons. An evaluation function was defined to maximize the R-squared value, while the remaining parameters were
adjusted manually. To prevent overfitting and improve the model's ability to generalize to unseen data, the early stopping
technique was introduced. Halting training when the model's performance on the validation set started to deteriorate helped
prevent overfitting. The "patient" parameter was set to 100, meaning that if the validation loss did not improve for 100
consecutive epochs, training would stop, and the model with the best weights based on the validation loss would be saved.
Detailed parameters of the LSTM model are outlined in Table 1.

If the forecast yielded a negative value, it was adjusted to 0 to alignwith the actual scenario using the np.clip function from
the NumPy library, which performed a clipping operation on a numerical array, restricting its elements to a specified range.

As shown in Fig. 4, the training loss and validation loss displayed a decreasing trend in loss values as the number of training
rounds increased. In the initial stage of training, the loss rapidly decreased, indicating that the model was learning quickly. As
the number of training rounds increased, the rate of loss decrease slowed down, and the curve tended to flatten, indicating
that the model was gradually converging. The small difference between training loss and validation loss indicated that the
model had not experienced overfitting or underfitting. Overall, the training process of this LSTM model appeared to be
healthy and the model had good generalization capabilities on both the training and validation datasets. Based on this model,
the number of SFTS cases in the subsequent 5 years in this area were generated (Supplementary file 1).
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Fig. 4. Loss function for the LSTM model.
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3.3. Model comparison

The predicted and actual SFTS cases in 2020 are presented in Table 2 and Fig. 5. All three constructed models performed
well in predicting SFTS cases. The SARIMA model generated the closest number of cases to the actual cases in May and
October, while the Prophet model performed best in January, June, and November. The LSTM model excelled in February,
March, July, August, September, and December. However, the predicted number of cases in April by all the models was
considerably higher than the actual number. To further compare and evaluate these models, various error analysis methods,
including MAE, MAPE, and RMSE, were employed. As shown in Table 3, the LSTM model demonstrated the best fitting and
prediction performance, with the lowest values for MAE, MAPE, and RMSE. It was followed by the Prophet and SARIMA
models, respectively.
4. Discussion

The region of Shandong Province, where this study was conducted, has been identified as one of the areas with a high
incidence of SFTS (Huang et al., 2021; Liu et al., 2015). Previous studies have analyzed the risk factors associated with SFTS
incidence and developed multivariate models in this region (Hou et al., 2023; Jiang et al., 2022; Wang et al., 2022). However,
to our knowledge, this is the first study to focus on building univariate models for predicting SFTS incidence, which is simpler
and more practical.

All three constructed models performed well in predicting SFTS cases and showed similar trends to the actual cases.
However, they did not accurately predict the cases in April. This could be due to the sudden increase in actual cases during this
month, and the models may have difficulty predicting volatile data.

The ARIMA and SARIMAmodels have the advantage of being relatively simple linear models and can capture the dynamic
relationships between historical and predicted data. However, these models have some limitations. They require stable data
and struggle to capture nonlinear relationships in the data. Among the threemodels, SARIMA performed theworst, especially
when predicting cases during months of high prevalence (June to August).

In contrast to ARIMA and SARIMA, the Prophet model does not require the time series data to be stationary before
modeling and offers more adjustable parameters, making it more flexible. Since its introduction, the Prophet model has been
widely used in medical research and other areas, such as COVID-19 (Battineni et al., 2020; Khayyat et al., 2021; Satrio et al.,
2021), hand, foot and mouth disease (Xie et al.), air pollution (Shen et al., 2020), road traffic injuries (Feng et al., 2022), etc.,
and has shown good prediction performance. In this study, the Prophet model performed better when the actual number of
cases was higher or lower (e.g., in January, June, and November).

Traditional RNNs are prone to the problems of vanishing or exploding gradients when dealing with long sequences.
However, LSTM can effectively alleviate these issues by introducing a gating mechanism. LSTM has memory units that store
and read information at different time steps, making it suitable for handling long-term dependencies and processing long
sequences. In this study, LSTM performed the best with the lowest error values, although it did not perform as well as Prophet
in predicting cases in July, when the number of actual cases was the highest.

The incidence data after 2021 were not public for now, and the number of SFTS cases in the subsequent 5 years
(2021e2025) in this area were predicted using the established LSTM model, which can be used as a reference for preparing
medical supplies in advance, formulating targeted prevention and control measures, and providing early warnings of SFTS
prevalence.
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Table 2
Predicted monthly number of SFTS cases in 2020 by three models.

Models SARIMA Prophet LSTM Actual

January 7.7 0.8 0.6 0
February 7.4 3.5 3.5 1
March 7.6 2.6 2.6 1
April 20.8 16.3 15.1 2
May 117.3 136.8 125.7 106
June 113.3 154.2 166.4 169
July 123.0 127.0 117.6 138
August 120.6 146.3 147.0 134
September 68.6 53.1 69.2 74
October 54.6 49.8 71.8 66
November 20.0 5.0 4.4 4
December 8.0 1.9 0.0 0

Fig. 5. Comparison of the actual SFTS cases with the predicted cases by the three models from January 2020 to December 2020.

Table 3
Comparison of three models using mean absolute error (MAE), mean square error (MSE), and root mean square error
(RMSE).

Models SARIMA Prophet LSTM

MAE 14.64 10.67 7.04
MSE 384.30 196.27 101.41
RMSE 19.60 14.01 10.07
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There are some limitations to this study. There may be discrepancies between the forecasted data and the actual data in
certain months. Some studies have shown that combining linear and nonlinear models may yield better predictive perfor-
mance than using a single model, such as SARIMA-Prophet(Luo et al., 2022), Prophet-LSTM (Na et al., 2019), SARIMA-NARX
(Wang et al., 2019), etc. Therefore, further research is needed to enhance the predictive ability. In addition, this study focused
on the cases in Shandong province, and the universality of this model in other epidemic areas still needs further evaluation.

5. Conclusions

In conclusion, this study developed three univariate prediction models based on historical monthly SFTS cases. Among
these models, the LSTM model performed the best in predicting the monthly confirmed SFTS cases in Shandong Province,
China. This simple and practical model can provide valuable information and data for assessing the potential risk of SFTS in
advance, thereby benefiting early warning systems and the formulation of prevention and control measures for SFTS.
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