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Abstract

Motivation: In RNA-seq differential expression analysis, investigators aim to detect those genes

with changes in expression level across conditions, despite technical and biological variability in

the observations. A common task is to accurately estimate the effect size, often in terms of a loga-

rithmic fold change (LFC).

Results: When the read counts are low or highly variable, the maximum likelihood estimates for

the LFCs has high variance, leading to large estimates not representative of true differences, and

poor ranking of genes by effect size. One approach is to introduce filtering thresholds and pseudo-

counts to exclude or moderate estimated LFCs. Filtering may result in a loss of genes from the ana-

lysis with true differences in expression, while pseudocounts provide a limited solution that must

be adapted per dataset. Here, we propose the use of a heavy-tailed Cauchy prior distribution for ef-

fect sizes, which avoids the use of filter thresholds or pseudocounts. The proposed method,

Approximate Posterior Estimation for generalized linear model, apeglm, has lower bias than previ-

ously proposed shrinkage estimators, while still reducing variance for those genes with little infor-

mation for statistical inference.

Availability and implementation: The apeglm package is available as an R/Bioconductor package

at https://bioconductor.org/packages/apeglm, and the methods can be called from within the

DESeq2 software.

Contact: michaelisaiahlove@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA sequencing (RNA-seq) is a widely used assay for measuring

the expression of transcripts from the genome. One common goal is

to identify which genes are differentially expressed (DE) between ex-

perimental conditions, and to estimate the strength of the difference.

The difference is usually defined in terms of the logarithmic fold

change (LFC) between average expression levels of different condi-

tions. The expression level of a gene in an RNA-Seq experiment is

proportional across samples to a scaled count, representing the num-

ber of observed single- or paired-end reads that could be assigned to

a given gene at a given library size. Scaling for the library size of the

experiment is necessary, and other scaling factors can be included as

well (Leek, 2014; Risso et al., 2014; Soneson et al., 2015). Many

variations on the standard RNA-seq protocol exist, as well as other

sequencing-based assays such as chromatin immunoprecipitation

followed by sequencing (ChIP-seq), and to the degree that these

other experiments assess differences in scaled counts using estimated

LFCs, the methods described here are generally applicable to these

other assays as well.

Many statistical methods have been developed for DE analysis of

RNA-seq (Anders and Huber, 2010; Hardcastle and Kelly, 2010;

Law et al., 2014; Leng et al., 2013; Li and Tibshirani, 2013; Love
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et al., 2014; McCarthy et al., 2012; Robinson et al., 2010; Trapnell

et al., 2012; van de Wiel et al., 2013). Their common approach in

detecting DE genes is to find sets of genes such that the null hypoth-

esis of no difference in expression between conditions can be

rejected, usually targeting the false discovery rate (FDR) for the set.

However, a gene can be found significantly different, and the null

rejected, even if the size of difference is very small (Love et al.,

2014). For further research interests, rather than only considering

the order of genes according to adjusted or unadjusted P-values, it is

also of interest to order genes by the estimated effect size itself (the

LFC).

It is challenging to accurately estimate the LFCs for genes with

low expression levels, or genes with a high coefficient of variation.

Due to experimental costs and time, RNA-seq experiments designed

for hypothesis generation typically have a small number of biologic-

al replicates (n of 3–5) for each condition group (McCarthy et al.,

2012). When the counts of sequenced reads are small or have a high

coefficient of variation in one or a subset of the conditions, the esti-

mated LFCs will have high variance, leading to some large estimated

LFCs, which do not represent true large differences in expression.

One approach that reduces the problem of these noisy LFC estimates

is to filter out low count genes. Filtering also has the benefit of

removing genes that may not have enough power for detecting DE,

and so reducing the multiple test correction burden. Setting the

threshold requires careful consideration of which genes may be lost.

The authors of edgeR (McCarthy et al., 2012) and limma-voom

(Law et al., 2014) suggest using a filtering rule that removes genes

with low scaled counts before statistical analysis (Chen et al., 2016).

Other methods take a Bayesian modeling approach, including

ShrinkBayes (van de Wiel et al., 2013) and DESeq2 (Love et al.,

2014). DESeq2 applies an adaptive Normally distributed prior, to

produce a shrinkage estimator for the LFC for each gene. However,

in our analysis, we found that filtering or application of Normal pri-

ors each can have drawbacks, either leading to loss of genes with

sufficient signal, or overly aggressive shrinkage of true, large LFCs.

In this article, we present an empirical Bayes procedure that sta-

bilizes the estimator of LFCs, without overly shrinking large LFCs,

and uses the posterior distribution for point estimates and posterior

probabilities, such as the aggregated s-value (Stephens, 2017) and

the false-sign-or-smaller (FSOS) rate. We extend the basic frame-

work of DESeq2, a Negative Binomial (NB) generalized linear

model (GLM) (McCullagh and Nelder, 1989) with moderated dis-

persion parameter, by exchanging the Normal distribution as a prior

on LFCs with a heavy-tailed Cauchy distribution (a t distribution

with 1 degree of freedom). We use various approximation techni-

ques to provide Approximate Posterior Estimation for the GLM

(apeglm). We compare apeglm to four existing methods on two

benchmarking RNA-seq datasets. We demonstrate the advantages

of apeglm’s shrunken estimates in reducing variance while preserv-

ing the true large effect sizes. We also show that apeglm shrunken

estimates improve gene rankings by LFCs, relative to methods which

do not apply Bayesian shrinkage on the LFCs. apeglm is available as

an open-source R package on Bioconductor, and can be easily called

from within the DESeq2 software.

2 Materials and methods

2.1 NB model for RNA-seq counts
We start with summarized measures of gene expression for the ex-

periment, represented by a matrix of read or fragment counts. The

rows of the matrix represents genes, ðg ¼ 1; . . . ;GÞ, and columns

represent samples, ði ¼ 1; . . . ;mÞ. Let Ygi denote the count of RNA-

seq fragments assigned to gene g in sample i. We assume that Ygi fol-

lows a NB distribution with mean lgi and dispersion ag, such that

VarðYgiÞ ¼ lgi þ agl2
gi. The mean lgi is a product of a scaling factor

sgi and a quantity qgi that is proportional to the expression level of

the gene g. We follow the methods of Love et al. (2014) to estimate

ag and sgi sharing information across G genes, and consider esti-

mates as fixed for the following. We fit a GLM to the count Ygi for

gene g and sample i,

Ygi � NBðlgi; agÞ

lgi ¼ sgiqgi

log qgi ¼ Xi;�bg

(1)

where X is the standard design matrix and bg is the vector of regres-

sion coefficients specific to gene g. Usually X has one intercept col-

umn, and columns for covariates, e.g. indicators of the experimental

conditions other than the reference condition, continuous covari-

ates, or interaction terms. We consider design matrices where the

first element of bg is the intercept. For clarity, we partition the bg

into bg ¼ ðbg0;bg1; . . . ;bgKÞ, where bg0 is the intercept and bgk, k ¼
1; . . . ;K is for kth covariate. The scaling factor sgi accounts for the

differences in library sizes, gene length (Soneson et al., 2015) or

sample-specific experimental biases (Patro et al., 2017) between

samples, and is used as an offset in our model.

In the GLM, we use the logarithmic link function. In the apeglm

software, the estimated coefficients and corresponding SD estimates

are reported on the same natural log scale. The apeglm method can

be easily called from DESeq2’s lfcShrink function, which provides

LFC estimates on the log 2 scale. The apeglm method and software is

generic for GLMs and can be used with other likelihoods. For ex-

ample, it can be used for the Beta Binomial or zero-inflated NB model,

as long as estimates for the additional parameters, e.g. dispersion or

the zero component parameters, are provided. An example of apeglm

applied to Beta Binomial counts, as could be used to detect differential

allele-specific expression, is provided in the software package vignette.

2.2 Adaptive shrinkage estimator for bgk

We shrink coefficients representing differences between groups, con-

tinuous covariates, or interaction terms, but not the intercept. We

propose a Cauchy distribution as the prior for the coefficients that

the user wants to shrink. Therefore bgk in the model (1) has the prior

bgk � Cauchyð0; SkÞ (2)

where the first parameter of the Cauchy gives the location and the

second parameter is the scale, Sk. For simplicity, as apeglm shrinks

only a single coefficient at a time, we will write S in place Sk. A simi-

lar default prior for coefficients associated with non-intercept cova-

riates has been proposed by Gelman et al. (2008) in the bayesglm R

package, which uses a zero-centered Cauchy distribution with a

scale of 2.5. The proposed prior distribution assumes that the distri-

bution of LFCs across genes is unimodal and symmetric. We

assessed robustness to violations of this assumption and found

apeglm still performed well (detailed in a later section). However, if

most of the genes are differentially expressed in the same direction,

the global normalization method used by all methods discussed here

would break down, thus affecting any effect size estimation. This

situation can be detected by histogram, MA-plot or more rigorously

with quantro (Hicks and Irizarry, 2015).

For setting the scale of the prior S, we use the maximum likelihood

estimates (MLEs) b̂gk and their standard errors egk. When making use
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of the set of MLEs for a coefficient, we shrink only a single coefficient

at a time, and adapt the scale of the prior to the MLE by solving the

following equation for S2 ¼ A (Efron and Morris, 1975).

A ¼
XG

g¼1
ðb̂2

gk � e2
gkÞIgðAÞ=

XG

g¼1
IgðAÞ (3)

IgðaÞ � 1=½2ðaþ e2
gkÞ

2� (4)

This equation is motivated by assuming that the MLE b̂gk follows

a Normal distribution around the true value bgk with variance e2
gk,

and that the bgk themselves follow a Normal distribution with mean

zero. A is an empirical Bayes estimate of the variance of the generating

Normal distribution, and S ¼
ffiffiffiffi
A
p

gives the scale. Although we use a

Cauchy prior in apeglm in order to accommodate large effect sizes

from potentially only a few genes, we found that setting the scale of

the prior by assuming the bgk follow a zero-centered Normal distribu-

tion performed well in practice. The equations above for estimating A

are given by Efron and Morris (1975), as a generalization of empirical

Bayes estimators for the situation of many parameters each distributed

with unequal variances. Equation (3) is solved for A using Brent’s line

search implemented in R (Brent, 1972).

Although the method above for estimating A proposed by Efron

and Morris (1975) requires that the egk be known, here we have in-

stead substituted an estimated quantity, the standard errors. We

assessed the practical consequence of this substitution when the

standard errors are unstable because the counts were very low. We

found that the resulting estimate of A is only slightly biased, even

when counts are very low (Supplementary Fig. S1).

If the MLEs of the coefficients are not supplied, we use a scale

S ¼ 1 for all non-intercept coefficients. The unscaled posterior for

bgk is the product of the prior density and the NB likelihood. We use

the posterior mode, or maximum a posteriori (MAP), as the shrink-

age estimator for the coefficient. The posterior mode is found using

the L-BFGS algorithm (Nocedal, 1980) implemented in Cþþ using

the RcppNumerical and L-BFGSþþ libraries. Running apeglm is ef-

ficient: for the simulation dataset modeled on the Pickrell data

(10 000 genes and 5 versus 5 samples), running DESeq2 to obtain

dispersion estimates and MLE coefficients takes 4.7 s on a laptop

with one core, running LFC shrinkage with the DESeq2 Normal

prior takes 2.9 s, and running LFC shrinkage with the apeglm

Cauchy prior takes 4.1 s. Running apeglm to only produce the MAP

estimates (without calculating the posterior SD) takes 0.5 s.

We derive the posterior distribution for bgk using the Laplace ap-

proximation: we estimate the covariance of the posterior distribution as

the negative inverse of the Hessian matrix obtained from numeric opti-

mization of the log posterior. We also attempted an alternate method

for approximating the posterior by integrating the un-normalized pos-

terior over a fine grid, but we found the Laplace approximation was

consistently more accurate. Using the approximate posterior, we com-

pute local false sign rate (FSR) and credible intervals. Following

Stephens (2017), the local FSR is defined as the posterior probability

that the posterior mode (MAP) is of the false sign, that is for gene g,

lfsrg ¼
pðbgk < 0Þ MAP of bgk � 0
pðbgk � 0Þ MAP of bgk < 0:

�

We also provide the local FSOS rate, relative to a given h > 0

representing a biologically significant effect size,

lfsosrh
g ¼

pðbgk < hÞ MAP of bgk � 0
pðbgk > �hÞ MAP of bgk < 0:

�

Analogous to the q-value (Storey, 2003), the s-value (Stephens,

2017) provides a statistic for thresholding, in order to produce a

gene list satisfying a certain bound in expectation. The s-value can

be computed as

sg ¼
1

jCj
X

j2Clfsrj; C ¼ j : lfsrj � lfsrg

� �
;

and likewise for the local FSOS rate. Other methods that have sug-

gested using the cumulative average or the cumulative maximum of

posterior probabilities for defining the set of interesting features in

high-throughput experiments include Choi et al. (2008), Kall et al.

(2008) and Leng et al. (2013).

3 Results

3.1 Strong filtering thresholds may result in loss of

DE genes
It is difficult to accurately estimate the LFCs for genes with low read

count; MLEs of LFCs for genes with low read count have high vari-

ance due to the dominance of sampling variance over any detectable

biological differences. The MLEs of LFCs for these genes may not

reflect the true biological difference of gene expression between con-

ditions, and thus are not reliable for plotting or ranking genes by ef-

fect size (Love et al., 2014). Chen et al. (2016) suggested to remove

from analysis the genes that have low scaled counts across samples.

They define a scaled quantity, the counts per million (CPM), which

is the counts Ygi divided by a robust estimator for the library size,

multiplied by one million. The filtering rule is to keep only those

genes with n or more samples with CPM greater than the CPM value

for a raw count of 10 for the least sequenced sample. The suggested

value for n is the sample size of the smallest group. CPM filtering

occurs prior to any statistical analysis. Other data-independent

thresholds, such as requiring a CPM of 0.5 or 1 from n or more sam-

ples can be even more aggressive at removing genes with potential

signal when the sequencing depth is high.

We illustrate how filtering can lead to loss of DE genes using the

dataset by Bottomly et al. (2011), which contains 10 and 11 samples

of RNA-seq data for mouses from two strains, C57BL/6J(B6) and

DBA/2J(D2), respectively. We repeatedly randomly picked three

samples from each strain, balancing across the three experimental

batches. We then applied a CPM filtering rule to each random sub-

set, repeating the process 100 times. For all genes in the full dataset,

we used DESeq2 (Love et al., 2014) to test for DE across strains

controlling for batch, defining a set of genes with a nominal FDR

threshold of 5%. Supplementary Figure S2 shows four example

genes that were removed >50% of the time across random subsets,

but were reported as differentially expressed by DESeq2 on the full

dataset. There were 207 such genes, which are shown in

Supplementary Figure S3. These genes did have information to con-

tribute: for example, they had on average the same sign of estimated

LFCs 99% of the time when comparing to the LFCs from the full

dataset. These genes, despite having low gene expression, may still

be biologically relevant, so we considered statistical methods that

produce LFC estimates with low variance for relatively low count

genes as well. To be clear, we do not argue against any filtering,

only against strong filtering for the purposes of obtaining precise

LFCs which may discard genes with a relevant signal.

Besides filtering, an additional approach to produce precise effect

sizes is to use scaled pseudocounts, or prior counts, to obtain shrink-

age estimates of LFCs. The prior count approach is employed by

edgeR and limma-voom. However, setting a prior count does not

make use of the statistical information contained in the data for esti-

mating the LFCs, such that the optimal prior count needs to be
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adapted per dataset. For example, as the sample size increases, the op-

timal prior count should go to zero, and so a fixed prior count may be

sub-optimal. Furthermore, the prior count approach, while helping

with high LFC variance from genes with low counts, helps less for

high variance genes. Finally, we note that the prior count approach

does not provide a posterior distribution for effect sizes, which may

be useful for certain analyses discussed below.

3.2 Overview of the apeglm method
Following the basic framework of GLMs, we propose an adaptive

Bayesian shrinkage estimator (Fig. 1). We employed a heavy-tailed

prior distribution on the effect sizes, where the shape of the prior dis-

tribution is fixed, and the scale is adapted to the distribution of

observed MLE of effect size for all genes (see Section 2). For each

gene, the method uses a Laplace approximation to provide the mode

of the posterior distribution as a shrinkage estimate, the posterior SD

as a measure of uncertainty, and posterior probabilities of interest

described below. Our method obviates the need for filtering rules or

prior counts, and takes advantage of the statistical information in the

data for estimating the effect size. The method is general for various

likelihoods, but here we apply it to RNA-seq using a NB GLM, where

the effect size is a particular LFC (log fold change between groups or

an interaction term in a complex design). For genes that have low

counts or high variance, this method shrinks the LFCs towards zero

thus alleviating the problem of unreliably large LFC estimates.

The local FSR (Stephens, 2017) is defined as the posterior prob-

ability for a gene that the sign of the estimated effect size is wrong.

Similar to the FSR, we also make use of a local FSOS rate: the pos-

terior probability of having mis-estimated the sign of an effect size,

or the effect size being smaller than a pre-specified value. For the

FSR and FSOS rates, apeglm provides an aggregate quantity, the s-

value proposed by Stephens (2017), which can be used for generat-

ing lists of genes. The s-value for a gene is defined as the average of

local FSR over the set of genes that have smaller local FSR than this

one (likewise for FSOS, see Section 2).

3.3 An adaptive prior controls the FSR
We performed an initial assessment of our approach on simulated

data, to confirm that the adaptive prior would control the aggregate

FSR, when thresholding on s-values, for datasets with varying

spread of true LFCs. Using a fixed, non-adaptive prior scale leads to

loss of control of FSR when the true LFCs were drawn from a

Normal distribution with small variance; matching the scale of the

prior to the scale of the true distribution of LFCs regained control of

FSR (Supplementary Fig. S4). Although a prior smaller in scale than

the true distribution of LFCs also controlled the FSR, it lead to an

increase in the relative error of point estimates (Supplementary Figs

S5 and S6). Therefore we chose to set the scale of the prior to the

estimated scale of the true LFCs using the MLEs and their standard

error (Section 2).

3.4 Evaluation on highly replicated yeast dataset
To investigate the precision of various estimates of LFCs, we used a

highly replicated RNA-seq dataset designed for benchmarking

(Schurch et al., 2016). This dataset consists of RNA-seq data of

Saccharomyces cerevisiae from two experimental conditions: 42 rep-

licates in wild-type and 44 replicates in a Dsnf2 mutant. We ran-

domly picked three samples from each experimental condition to

form a test dataset, and applied differential gene expression methods

to estimate the LFCs. We compared the LFCs estimates against the

log 2 ratio of mean scaled counts in the full dataset, which was taken

as ‘gold standard’ LFCs. We repeated the random sampling 100

times. We also performed this same experiment using a sample size

of 5 versus 5. For this evaluation and all others, we minimized the

influence of genes with no signal for estimating the LFCs, by only

evaluating the methods over genes with an average of more than one

scaled count per sample. This minimal filtering does not advantage

apeglm.

We compared the performance of apeglm with four other meth-

ods for estimation of effect size in RNA-seq, DESeq2, edgeR,

limma-voom, as well as ashr (Stephens, 2017). In comparing to

DESeq2, we compared apeglm to the LFC shrinkage estimator pro-

duced using a Normal prior, as described in Love et al. (2014). ashr

provides generic methods for adaptive shrinkage estimation, taking

as input a vector of estimated bg i.e. b̂g, and the corresponding esti-

mates of standard errors. For the Bayesian shrinkage estimation

methods that we compared, the unimodal assumption of the true

LFCs was checked for all the examples we considered below, and

the assumption was met in all the examples (Supplementary Fig. S7).

We also found that the Bayesian methods were robust to some de-

gree of violation of the unimodal assumption, discussed in a later

section. For ashr, we input b̂g and corresponding standard error

using the MLE from DESeq2 (‘ashr DESeq2 input’), and the esti-

mated coefficient from limma-voom, plus a standard error calcu-

lated using the moderated variance estimate (‘ashr limma input’).

We also included edgeR with a prior count of 5, which helps to

moderate the variance of the estimated LFCs from genes with low

counts, (edgeR-PC5).

Stratifying genes by the absolute value of true LFCs allows us to

see where the different methods excel and fall short systematically,

across 100 iterations of sub-sampling (Fig. 2a and c). limma and

edgeR had the lowest mean absolute error (MAE) for both sample

sizes. DESeq2 had the highest error for the largest bin of true LFCs,

meaning that DESeq2’s Normal prior could not accommodate the

top 0.5% of effect sizes for this dataset and resulted in too much

shrinkage. The other shrinkage estimators apeglm and ashr (with ei-

ther input) maintained a middle range of MAE. edgeR-PC5 had low

error for the small true LFCs, but then increased to higher error for

the largest bin of true LFCs, especially when the sample size

increased to 5 versus 5, where the bias approaches that of DESeq2.

Fig. 1. An overview of the method. apeglm takes the MLE estimates and cor-

responding standard errors of a GLM model as input. In apeglm we provide a

heavy-tailed prior distribution on the coefficients, and compute the shrinkage

estimators and corresponding SDs. Users can also define a likelihood func-

tion that describes the data and feed to apeglm. apeglm also provides the

local FSRs and s-values (Stephens, 2017) as part of the output
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Ranking genes by estimated LFCs can assist with further investi-

gation into the genes most affected in their expression by changes in

condition. We compared the concordance of the top ranked genes

by absolute LFC estimates (Fig. 2b and d). We examined, for the top

w genes ranked by absolute value of estimated LFCs, the proportion

which were among the top w genes by absolute value of reference

LFCs (w 2 f100; 150; 200; . . . ; 400g). Although limma and edgeR

had lowest MAE when binning by quantile of the true LFC, they

meanwhile had the lowest concordance when ranking genes by LFC,

while the shrinkage estimators tended to perform better (always the

case past w ¼ 250 genes). apeglm, ashr (with either input), and

edgeR-PC5 had the highest concordance of top ranked genes by ab-

solute LFC overall, for 3 versus 3. apeglm and ashr (with either in-

put) had the highest concordance for the 5 versus 5 sub-sampling

experiment. DESeq2 had relatively low concordance among the

shrinkage estimators for the smallest w, due to over-shrinkage of the

very largest effect size genes.

In one iteration of random sampling, much of the behavior that

was seen systematically over all iterations can be observed

(Supplementary Fig. S8). apeglm, ashr with DESeq2 or limma input,

and edgeR-PC5 did well in estimating LFCs, with LFC estimates

close to reference LFCs for most of the genes. DESeq2 and edgeR-

PC5 had similar performance to apeglm, but were too aggressive in

shrinking LFC for genes with large reference LFCs, for example

log 2 fold change near 4. We show the counts of such example genes

in Supplementary Figure S9, where DESeq2 or edgeR-PC5 give

small LFC estimates to genes with large reference LFC, while the

apeglm method allows for large estimated LFCs. edgeR and limma

returned large estimated LFCs for some genes with reference LFCs

around zero, which is problematic for ranking genes by effect size

without first applying some form of count filtering.

In summary, considering both aggregate error (Fig. 2a and c)

and concordance in ranking of genes by effect size (Fig. 2b and d),

apeglm, ashr and edgeR-PC5 were top performers for the 3 versus 3

experiment, and apeglm and ashr were top performers for the 5 ver-

sus 5 experiment. limma and edgeR were low performers for rank-

ing genes by effect size, and DESeq2 and edgeR-PC5 had high error

for the top effect size genes (DESeq2 for both experiments, while

edgeR-PC5 only for the 5 versus 5 experiment). We therefore con-

clude that shrinkage estimation is useful for ranking genes by effect

size, and does not necessarily come at the expense of much bias, de-

pending on the design of the shrinkage method. Among the methods

using shrinkage estimation, an advantage of apeglm is that it pre-

serves true, large differences across conditions in the estimated

LFCs. To demonstrate this, we calculated the average estimated

LFCs for the methods that perform shrinkage (apeglm, DESeq2,

ashr and edgeR-PC5), averaging over the 100 iterations. Comparing

the average estimated LFCs to the reference LFCs demonstrates the

extent of bias of the estimators, where it is expected that shrinkage

estimators would have bias toward zero. We then constructed an

MA plot, as typically used to visualize DE gene expression results,

but where overshrinkage across many iterations i.e. biased estima-

tion, is highlighted (Supplementary Fig. S10). All of the methods

exhibited shrinkage of LFCs more than 0.5 for many genes with

mean scaled counts <10, but apeglm preserved the most large LFCs

for genes with larger mean scaled counts. DESeq2 and ashr with

limma input tended to shrink the LFCs by >0.5 for genes with mean

expression levels >10, including genes with absolute value of refer-

ence LFCs >2, thus representing large differences across condition.

3.5 Rank comparison with P-values
Many RNA-seq workflows use adjusted P-values from a statistical

test of the null hypothesis of no difference in expression in order to

rank the genes by importance. limma by default ranks by log odds

of DE. However, adjusted P-values or log odds do not capture the

magnitude of LFCs, unless the standard null of LFC ¼ 0 is replaced

by a threshold test (Love et al., 2014; McCarthy and Smyth, 2009),

wherein a positive threshold of biological importance is specified by

the analyst. Using Bayesian methods, we can directly rank genes by

their effect size, as unreliable LFCs from genes with low counts or

high variability are moderated toward zero. We assessed whether

our ranking by apeglm effect size provided substantially different

output than a typical ranking of genes by P-values or Independent

Hypothesis Weighting (IHW) adjusted P-values (Ignatiadis et al.,

2016). We compared against the ranking of genes by the reference

LFC—while making an important caveat that P-values are not

designed to provide reliably rankings by effect size (Fig. 3).

Comparing the percentage of concordance at top with the rank by

reference LFCs, the ranking from apeglm estimated LFCs had over

80% concordance, while the ranking from DESeq2 P-values and

IHW adjusted P-values had about 60% concordance. Furthermore,

some of the genes with low rank (top of the gene list) from IHW

adjusted P-values had high rank by apeglm, potentially indicating

that the effect size was significantly different than zero but neverthe-

less small. This comparison revealed that apeglm does in fact give

substantially different output in terms of gene lists, and the previous

analysis reveals that the apeglm output is accurate on a highly repli-

cated RNA-seq dataset.

3.6 Evaluation on simulation modeled on experimental

data
We also checked whether apeglm provides accurate estimates of

LFCs in simulated data modeled on experimental datasets. We gen-

erated the ‘true’ LFCs from a mixture of zero-centered Normal

Fig. 2. (a) MAE of estimates for 3 versus 3 samples, defined as the mean of

the absolute value of the differences between the estimated and reference

LFCs, stratified by absolute value of reference LFCs. The mean of MAE over

100 iterations is plotted for each method. The x-axis label gives the upper

bound of the bin on absolute value of LFCs. (b) Concordance At the Top (CAT)

plot (Irizarry et al., 2005) comparing ranked gene lists from each method

against the reference ranked gene list for 3 versus 3 samples. Number of top

genes ranked by the absolute value of the LFCs is on the x-axis, and the pro-

portion of concordance between the two rankings is on the y-axis. For ex-

ample, if the ranked gene list from apeglm estimated and reference LFCs

share 85 of top 100 genes, then the apeglm point would fall at (100, 0.85).

(c) MAE plot of estimates for 5 versus 5 samples. (d) CAT plot for 5 versus

5 samples
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distributions. The mean counts and NB dispersion estimates were

drawn from the joint distribution of the estimated parameters over

the Bottomly et al. (2011) and Pickrell et al. (2010) datasets, as was

performed in Love et al. (2014). We simulated 10 000 genes with a

sample size of 5 versus 5, and repeated the whole simulation 10

times per experimental dataset. We also doubled the sample size to

10 versus 10 to see if the methods provided consistent relative per-

formance at higher sample size. For the Pickrell dataset, which has

higher within-group variation, we used a mixture of Normal distri-

butions with SDs of 1, 2, 3 (with mixing proportions 90, 5 and 5%,

respectively). The Bottomly dataset has lower within-group vari-

ation, and so to make the simulation equally challenging, we used

SDs of 0.25, 0.5 and 1 (90, 5 and 5%). We constructed the simula-

tion such that the expected count for all simulated samples was al-

ways >10, to avoid overemphasizing the smallest count genes (this

simulation choice does not advantage apeglm).

The simulation results for the Pickrell dataset (Fig. 4) and the

Bottomly dataset (Supplementary Fig. S11) were mostly consistent

with the previous result on the highly replicated yeast dataset.

limma, edgeR, edgeR-PC5 and apeglm tended to have the lowest

error when stratifying by true LFCs, although limma and edgeR had

the lowest concordance when ranking genes by LFCs. The methods

which do not shrink tended to produce large estimates for genes

where the true LFCs are near 0 (Supplementary Figs S12 and S13).

With one iteration of random sampling, we showed two genes that

had true LFCs near zero for Pickrell dataset, for which edgeR and

limma greatly overestimated the LFCs, but apeglm provided LFCs

near 0 (Supplementary Fig. S14). As in the yeast dataset, as the sam-

ple size increased, apeglm had lower error compared with edgeR-

PC5 for the largest LFCs. DESeq2 had the highest error for the

largest LFCs, as was expected. Unlike the results from the highly

replicated yeast dataset, here ashr with both inputs had higher error

for the middle range of LFCs. With one iteration of random sam-

pling, we showed two genes with middle range of LFCs for the

Bottomly dataset, for which ashr estimated LFCs were much smaller

than the true LFCs, while apeglm gave more accurate, large LFCs

(Supplementary Fig. S15). We note that we simulated NB counts,

and so the methods apeglm, DESeq2 and edgeR which assume the

NB likelihood, are potentially at an advantage. apeglm was a top

performer in the simulation for small and larger sample sizes, having

consistently low error and also high concordance.

The shrinkage estimators apeglm, DESeq2 and ashr tended to

have low MAE across the range of counts (Supplementary Fig. S16).

limma and edgeR had high MAE for low counts, as expected. The

MAE for edgeR-PC5 when binning genes by counts was low for the

sample size of 5 versus 5, but higher when the sample size was

increased to 10 versus 10.

Finally, we considered whether the methods which produce

s-values (ashr and apeglm) were able to achieve their FSR bounds.

We also generated s-values for DESeq2 using the DESeq2 posterior

mode estimate and the associated uncertainty. We generated plots

using the iCOBRA package (Soneson and Robinson, 2016), show-

ing the number of genes at various achieved FSR values

(Supplementary Fig. S17). This analysis indicated that apeglm and

ashr with DESeq2 input tended to hit the target of 1% and 5% FSR,

while DESeq2 and ashr with limma input were just slightly above

their nominal FSR. The iCOBRA data objects for four iterations of

the simulation can be accessed at https://github.com/mikelove/

apeglmPaper, and explored interactively using the iCOBRA Shiny

app.

3.7 Evaluation of robustness, extensibility and

consistency
To examine the robustness of apeglm and other Bayesian shrinkage

methods to violations of the unimodal assumption, we modified the

simulation such that the true LFCs no longer are generated from a

unimodal distribution, but instead a mixture of a zero-centered and

a non-zero-centered distribution. We first assessed how the addition

of a non-zero-centered component affected the estimation of the

scale of the prior in apeglm. We found that the estimated scale of

the prior tracked with the variance of the mixture of distribution

and not with the zero-centered component alone, as was expected

(Supplementary Fig. S18). To assess performance of apeglm relative

to other methods in LFC estimation, we simulated a mixture of

Nð0; 0:5Þ and N(3, 2) for the Pickrell dataset and a mixture of

Nð0; 0:125Þ and Nð0:75; 0:5Þ for the Bottomly dataset, thus produc-

ing a bimodal distribution when the non-zero component was

included at a high enough proportion. We considered the proportion

Fig. 3. (a) CAT plot comparing ranked gene lists from apeglm estimated LFCs,

DESeq2 p values and IHW adjusted P values for 3 versus 3 samples. (b) CAT

plot comparing ranked gene lists from apeglm estimated LFCs, DESeq2 P val-

ues and IHW adjusted P values for 5 versus 5 samples. (c) Rank plot compar-

ing the ranks of genes from apeglm estimated LFCs and IHW adjusted P

values for 3 versus 3 samples. (d) Rank plot comparing the ranks of genes

from apeglm estimated LFCs and IHW adjusted p values for 5 versus 5

samples

Fig. 4. Simulation dataset (top row, 5 versus 5, and bottom row, 10 versus 10)

modeled on estimated parameters from the Pickrell et al. (2010) dataset. Each

point represents the average over 10 repeated simulations
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of genes coming from the non-zero-centered component to be in the

range {5, 10 and 20%}. apeglm was the top performing method, tak-

ing into account accuracy and concordance of ranking genes by ef-

fect size for the 5% case (Supplementary Figs S19 and S20 for

Pickrell and Bottomly datasets, respectively). The differences were

more moderate for a 10% non-zero component for the Pickrell data-

set (Supplementary Fig. S21), where apeglm performed similarly to

limma and edgeR which had decent concordance at ranking genes.

However, apeglm outperformed those two methods in terms of

ranking genes on the Bottomly dataset with 10% of genes from the

non-zero component (Supplementary Fig. S22). Finally, the differen-

ces were more moderate at the extreme of 20% of genes coming

from a non-zero, large positive LFC component (Supplementary

Figs S23 and S24). Overall, we showed that apeglm still performed

well with violation of the unimodal distribution assumption, with

mean error close to limma and edgeR while having high concord-

ance in ranking genes by effect size.

apeglm was developed in a general manner such that it can be

extended to generic likelihoods, in addition to the NB likelihood

that has been used so far. We considered using apeglm with Zero

Inflated NB (ZINB) generated data and likelihood. We used the

splatter Bioconductor package (Zappia et al., 2017) to simulate

datasets with additional zeros beyond what would be expected with

a NB distribution. We simulated 100 cells in the following parti-

tions: (20, 20, 60), (30, 30, 40) or (50, 50). We focused the evalu-

ation on the comparison of the first two groups which have the

same sample size. We considered the proportions of genes that are

differentially expressed across all three groups in the range 1, 5 or

10%. The estimation of the zero component was performed up-

stream of apeglm using the methods described in Van den Berge

et al. (2018) and the zinbwave Bioconductor package (Risso et al.,

2018), and was either used to define zero weights or as input to a

ZINB likelihood. The zero weights can be used to isolate the contri-

bution to the counts from the NB component; and therefore, poten-

tially remove bias due to ‘technical zeros’. We compared

performance of the following approaches: the simple ratio of aver-

age scaled count after adding a pseudocount of 0.1, a ratio of

weighted average scaled counts after adding a pseudocount of 0.1,

the MLE from DESeq2 taking into account the zero weights, usage

of the Normal prior in DESeq2 with a weighted NB likelihood,

apeglm with weighted NB likelihood, and apeglm with a ZINB like-

lihood. We assessed the Pearson correlation of estimates to truth,

the MAE for the top 30 genes as ranked by the method, and the

MAE for all genes (Supplementary Figs S25–S33). apeglm with both

weighted NB likelihood function and ZINB likelihood function con-

sistently had the smallest MAE (whether total or for the top 30

genes ranked by the method) across all the combinations of differen-

tially expressed proportions and sample sizes. The two variations

were equivalent, while the weighted NB likelihood approach was

much faster, taking advantage of optimized Cþþ code for the NB

likelihood in apeglm. The two apeglm variations outperformed the

use of a Normal prior in DESeq2 in terms of MAE of the top 30

genes, when the percent of DE genes was 1 or 5%. The improvement

in MAE from using Bayesian shrinkage was greatest for sample size

20 versus 20, moderate for 30 versus 30, and apeglm was compar-

able to weighted pseudocount and MLE approaches at 50 versus 50.

We finally assessed the consistency of the apeglm estimator, by

considering bulk RNA-seq simulated datasets with large sample

sizes (30 versus 30 and 50 versus 50). Here we expect that the rela-

tive advantage of Bayesian shrinkage for ranking genes will be

reduced, as the posterior estimators converge to the MLE. We again

produced simulated bulk RNA-seq data modeled on the Pickrell

dataset (Fig. 5) and the Bottomly dataset (Supplementary Fig. S34).

Across all methods, the MAE becomes much lower, and the con-

cordance of gene ranks much higher. As seen previously, apeglm is

one of the top performing methods, although the advantage over

non-shrinkage based methods, limma and edgeR is reduced. This

convergence is expected, and the large sample size analysis is mostly

useful for assessment that the apeglm estimator is consistent—that it

converges to the true, simulated value as the sample size increases.

edgeR-PC5 performs worst in these large sample size cases than pre-

viously, as the large prior count is no longer necessary to stabilize

the non-shrinkage estimators. Supplementary Figure S35 provides

the MAE over the mean of counts for the large sample size

simulations.

The simulations in this article allowed an exploration of per-

formance of various LFC estimators across sample size and for the

case of relatively large dispersion values (Pickrell dataset) and rela-

tively small dispersion values (Bottomly dataset). Across all simu-

lated datasets, apeglm was the top performing method in balancing

low MAE with high concordance when ranking genes by their true,

simulated effect size. By process of elimination, DESeq2 and ashr in

some cases had high error for medium to large effect sizes, limma

and edgeR had low concordance in ranking genes, and edgeR-PC5

had high error for the large sample size cases, while apeglm demon-

strated reliable estimation of LFCs throughout.

3.8 Evaluation on cell line mixture experiment
We additionally evaluated the relative performance of apeglm using

a cell line mixture RNA-seq dataset designed for benchmarking

(Holik et al., 2017). In this study, the investigators chose two cell

lines from the same type of lung cancer, and grew the cell lines

(NCI-H1975 and HCC827) as three biological replicates, then

mixed the RNA concentrations from each of these replicates at five

pre-specified proportions (100:0, 75:25, 50:50, 25:75, 0:100%).

Following the notation of their paper, we use 100, 075, 050, 025

and 000 to represent the proportions. We used for evaluation the 15

normally processed samples prepared with Illumina’s TruSeq poly-A

mRNA kit. We compared two groups of mixtures, each with three

independent replicates: 075 versus 025 and 050 versus 025. We

found the 100 versus 000 and 000 versus 100 mixtures were highly

Fig. 5. MAE plot over LFCs (left) and CAT plots (right) of simulation dataset

(top row, 30 versus 30 and bottom row, 50 versus 50) modeled on estimated

parameters from the Pickrell et al. (2010) dataset. Each point represents the

average over 10 repeated simulations
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influenced by the 100 and 000 samples, which would be used both

for estimation and for evaluation. We computed the estimation error

as in Holik et al. (2017) as the difference between the LFCs esti-

mated by each method using two groups of samples and the LFCs

predicted by a non-linear model fit to all 15 samples, using the fit-

mixture function in the limma package.

The distribution of true LFCs for the 075 versus 025 and 050

versus 025 are bounded by ½ log 2ð1=3Þ; log 2ð3Þ� and

½ log 2ð2=3Þ; log 2ð2Þ�, respectively, and so instead of considering the

top ranked genes, we considered two plots to assess the accuracy of

LFC estimation: once binning by true LFCs and once binning by esti-

mated LFCs (Fig. 6). ashr with DESeq2 input and apeglm had higher

MAE when binning by true LFCs, but had the lowest MAE when

binning by estimated LFCs, which reveals that shrinkage did induce

a bias, but protected against outputting large and unreliable LFCs.

limma and edgeR had the opposite performance: low MAE when

binning by true LFCs, but high MAE when binning by estimated

LFCs. DESeq2 and ashr with limma input had mixed performance.

In this experiment, edgeR-PC5 tended to have consistently low

MAE, though we note that the sample size for the cell line mixture

experiment was three per group, and we found that the relative bias

of the prior count approach increased with sample size (Fig. 5).

4 Discussion

Here we compared various shrinkage estimators for LFCs in DE

analysis of RNA-seq counts. RNA-seq experiments often have lim-

ited number of biological replicates in each condition group, typical-

ly in the range of 3–5. It is particularly difficult to estimate LFCs for

genes with low counts or high coefficient of variation with such a

small number of replicates. We examined methods for mitigating

this problem of LFC estimation, and find that common filtering

rules may lead to loss of DE genes. On the other hand, we found

that existing methods for shrinking LFC estimates, such as DESeq2,

may overly shrink those genes with very large LFCs, although the

ranking was not greatly impaired. To reduce the shrinkage of large

effect sizes that occurred using a Normal prior, we substituted an

adaptive Cauchy prior, which has sufficient probability density in

the tails of the distribution to allow for very large effects. The result-

ing estimator both reduced the variance associated with LFC esti-

mates across the range from low to high counts, and also preserved

true large LFCs.

We have shown the utility in an adaptive, heavy-tailed prior for

high-throughput experiments in which an effect size is estimated

over tens of thousands of features. The results presented here have

focused on the task of estimating the LFCs in RNA-seq experiments,

using an NB likelihood, but the software and methods are written in

a general way, and in general, the use of the adaptive Cauchy prior

may be adapted to other likelihoods and settings. The apeglm

method accepts arbitrary likelihoods, as long as additional parame-

ters are pre-specified, such as the dispersion. apeglm can therefore

also be extended for use on other types of data, as long as it can be

modeled by a GLM. For example, our method can be applied to

allele-specific expression count data using a beta-binomial likeli-

hood, as shown in the apeglm package vignette.

Providing low variance posterior mode effect sizes and their pos-

terior SD allows for various downstream uses, for example, plotting

LFC estimates from two experiments against each other in a scatter

plot, without having to make arbitrary filtering decisions that would

have to apply to both datasets. In another context, the effect sizes of

genetic variants across many different traits can be systematically

correlated to one another to suggest potential relationships between

the traits (Pickrell et al., 2016). Such an analysis could benefit from

shrunken estimates of effect size, to avoid hard filtering rules and to

not have the correlations overly influenced by imprecise estimates.

The computation of the approximate posterior provides useful

aggregate statistics, such as the FSR and s-value proposed by

Stephens (2017), and the FSOS rate, which allows the user to define

a range of effect sizes of biological significance. We note that, while

the use of specific prior counts works well for providing point esti-

mates of effect size for certain sample sizes and mean-variance rela-

tionships, it is difficult to choose a value that will work well for all

datasets. For example, if one considers unique molecular identifiers

(Kivioja et al., 2012) and the counts produced following de-

duplication in such an experiment, the information content of a low

count can be much higher than in standard RNA-seq experiments

without de-duplication, and so filtering rules and prior counts

would need to be re-considered and manually adjusted for such a

dataset. A Bayesian procedure for shrinkage of effect sizes, which

takes statistical information into account, is desirable across differ-

ent types of high-throughput datasets.

5 Availability

apeglm is implemented as an R package and is available as part of the

Bioconductor project (Huber et al., 2015), at the following address:

http://bioconductor.org/packages/apeglm. A single function apeglm is

used to estimate the LFCs in the package, which takes a data matrix, a

design matrix and a user-defined likelihood function as input. The func-

tion will return a list of estimated LFCs and corresponding posterior

Fig. 6. (a) The distribution of the true LFCs for comparison 050 versus 025,

where the true LFCs is predicted with the fitted non-linear model. (b) Scatter

plot of estimated LFCs from apeglm over true LFCs for comparison 050 versus

025. The vertical and horizontal lines indicate the two type of bins that were

used for stratifying estimation error. (c and d) MAE plot binned by true LFCs

and by estimated LFCs for comparison 075 versus 025 (e and f) MAE plot

binned by true LFCs and by estimated LFCs for comparison 050 versus 025
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SDs, interval estimates, and arbitrary tail areas of the posterior. The

apeglm package comes with a detailed vignette that demonstrates the

functions in the package on a real RNA-seq dataset. The apeglm shrink-

age estimator for RNA-seq can also be easily accessed from the DESeq2

package, using the lfcShrink function. The R code used in this paper for

evaluating methods is available at the following repository: https://

github.com/mikelove/apeglmPaper

6 Software versions

The following versions of software were used: REBayes 1.3, DESeq2

1.20.0, edgeR 3.22.3, limma 3.36.1, ashr 2.2-7 and apeglm 1.2.1.

7 Accession numbers

The datasets analyzed during this study are available in the ENA,

GEO, or SRA repositories: Schurch et al. (2016) https://www.ebi.ac.

uk/ena/data/view/PRJEB5348, Holik et al. (2017) https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi? acc¼GSE86337, Pickrell et al.

(2010) https://trace.ncbi.nlm.nih.gov/Traces/sra/? study¼SRP001540,

Bottomly et al. (2011) https://trace.ncbi.nlm.nih.gov/Traces/sra/?

study¼SRP004777.
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