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Abstract

While the geographic range of a species is a fundamental unit of macroecology and a leading predictor of extinction risk,
the evolutionary dynamics of species’ ranges remain poorly understood. Based on statistical associations between range
size and species age, many studies have claimed support for general models of range evolution in which the area occupied
by a species varies predictably over the course of its life. Such claims have been made using both paleontological data and
molecular estimates of the age of extant species. However, using a stochastic model, we show that the appearance of
trends in range size with species’ age can arise even when range sizes have evolved at random through time. This occurs
because the samples of species used in existing studies are likely to be biased with respect to range size: for example, only
those species that happened to have large or expanding ranges are likely to survive to the present, while extinct species will
tend to be those whose ranges, by chance, declined through time. We compared the relationship between the age and
range size of species arising under our stochastic model to those observed across 1,269 species of extant birds and
mammals and 140 species of extinct Cenozoic marine mollusks. We find that the stochastic model is able to generate the
full spectrum of empirical age–area relationships, implying that such trends cannot be simply interpreted as evidence for
models of directional range size evolution. Our results therefore challenge the theory that species undergo predictable
phases of geographic expansion and contraction through time.
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Introduction

The geographic area occupied by a species is known to vary

through time [1,2], but whether these dynamics follow any regular

trends or are instead largely idiosyncratic remains controversial

[3–6]. A number of recent studies, however, have revealed a

remarkable pattern whereby the relative range size of a species

does appear to vary predictably with its evolutionary age [7–15].

The results of these studies are intriguing because they suggest that

species have a geographical ontogeny, akin to the life cycle of an

individual organism [14]. Similar ideas have been proposed many

times before [1,2,4,16–19]. For example, in Willis’s [1] theory of

‘‘age and area’’, the geographic range of a species continues to

expand over the course of its life, while in the ‘‘taxon cycle’’, newly

formed species rapidly expand their distributions before undergo-

ing a protracted decline that ends either in extinction or the

initiation of a new wave of the cycle [4,17].

In the fossil record, where the trajectories of individual lineages

can be traced through time, the predominant trend appears to be

for newly formed species to gradually expand their ranges, only to

later undergo a gradual decline to extinction. This pattern of ‘‘rise

and fall’’ has been reported from a taxonomically broad set of

groups including mammals [10,20], plankton [8,9], and marine

mollusks [7]. Molecular phylogenies have also been used to infer

the mode of range evolution within lineages by comparing the

range sizes of extant species of varying age, where age is estimated

as the time since divergence from the closest extant relative [11]

(for an alternative method of inferring range evolution see

[21,22]). Such ‘‘age–area’’ correlations have been tested in a wide

variety of groups including birds [11,14], mammals [12], plants

[13], frogs [15], aquatic beetles [23], and reef fish [24]. A pattern

emerging from these studies is that no single model of range

evolution appears to apply across groups [3]: while in some cases

range size is independent of species age, in others there is evidence

for increasing, decreasing, or cyclical range size trends.

The assumption underlying all these previous studies is that, in

the absence of any tendency for ranges to either expand or

contract, range size and species age should be independent

[7,8,11]. Evidence for directional trends in range evolution is

therefore provided when the slope of the relationship between age

and area departs significantly from zero. However this assumption

may be violated under a model of stochastic range evolution,

speciation, and extinction. This is because, in phylogenies

containing only extant species, range sizes may increase with age

simply because species with small or declining ranges are less likely

to have survived to the present [25,26]. Further biases may also be
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expected because of the interactions between geographic range

size and the process of speciation [22,27]. Even in the fossil record,

the appearance of regular trends in range size could arise if studies

restrict their analysis to those species that go extinct before the

present [7–9] or if species with small geographic ranges are less

likely to be sampled [28–30].

To examine the extent to which these processes could account

for the patterns observed between range size and species age, we

developed a stochastic model of range evolution that incorporates

the effects of speciation and extinction on geographic range size

[27,31–33]. We then compared the age–area correlations arising

from this model to those observed across the tips of 39 avian and

mammalian molecular phylogenies containing 1,269 species from

across 64 genera and 17 orders. These groups provide an ideal

case study because there are abundant data on their phylogenetic

relationships and geographic distributions [34–36], and as a result

they have also featured prominently in previous studies reporting

trends between range size and evolutionary age (e.g., [12,14,37]).

Finally, we tested the extent to which the null model can account

for the patterns observed in the fossil record using the occupancy

trajectories of 140 species of extinct marine mollusks [7]. This

dataset was previously presented as evidence that species exhibit

regular patterns of range size evolution [7], but a departure from a

stochastic model has not yet been tested. We demonstrate that

under a stochastic model, range size and species age are not

expected to be independent and that correlations between age and

area observed in phylogenies and the fossil record therefore need

not imply a deterministic trend in range size evolution within

lineages.

Results

Age–Area Relationships Expected under a Stochastic
Model of Range Size Evolution

We modelled a process of range evolution and species

diversification in which range sizes within lineages evolved

according to a random walk through time (see Materials and

Methods for details). Within the simulation, we considered two

models of speciation rate (either independent or positively

correlated with range size) and varied both the rate of change in

range size and the asymmetry of range division amongst the

daughter lineages during speciation (see Materials and Methods

for details). Extinction occurs when the range size of a species

walks to or below zero. For each combination of speciation model,

rate of range evolution, and range inheritance asymmetry, we ran

500–5,000 replicates of clade diversification and range evolution.

Pooling the results from across replicate clades shows that range

size may show strong correlations with species age even under a

random model of range size evolution (Figure 1). Range size is

positively correlated with evolutionary age across much of the

parameter space, and it is evident that high rates of range

evolution give rise to stronger positive correlations (Figure 1,

unfilled circles), resulting from increased extinction of small-

ranged species. In rare circumstances, our stochastic model

predicts negative age–area correlations (Figure 1, filled circles).

This requires slow rates of range evolution, an increase in the

probability of speciation with range size, and high asymmetry in

range splitting (Figure 1A). Under this scenario, which resembles a

peripatric speciation model [38], small-ranged species are less

likely to speciate than large-ranged species but are also unlikely to

go extinct. They will therefore tend to occur on the end of longer

terminal branches than large-ranged species [27,39]. In contrast,

when speciation rate is independent of range size (Figure 1B),

positive age–area correlations are expected even when extinction is

negligible. This occurs because range sizes decrease at speciation,

and so species with the largest ranges will tend to be those that

have not recently undergone speciation.

Although these correlations reveal the overall expected

relationship under different scenarios, individual simulations

exhibit considerable variation in the correlation between age

and area, and pooling smaller sets of simulations shows the extent

of this variation (Figure 1C). Therefore, we also calculated the

relative frequencies with which individual simulations fall into five

broad categories of age–area relationships. To do this, we fitted

range size as a quadratic function of species age for each clade in

our simulated dataset, using F-tests of the significance of terms to

simplify to a linear regression or a null model where appropriate.

We aggregated the results of these models into five broad classes:

no relationship, increasing relationship, decreasing relationship,

intermediate peaks, and intermediate troughs (see Materials and

Methods for details) (Figure S1). Our results were qualitatively

similar when using more detailed curve classifications (Figures S1

and S4; Table S1).

Observed Age–Area Correlations among Extant Species
We assessed the age–area relationships of individual genera of

birds and mammals using the same curve classification procedure

as for our simulated clades. Observed clades exhibit a variety of

relationships, including positive linear and intermediate troughs,

but in only a minority of cases are these age–area relationships

significant (9.4%; Tables 1, S1, and S2). In accordance with the

effects of sample size on statistical power revealed by our

simulations (Figure 1C), grouping species into orders (median

richness = 29 species) rather than genera (median richness = 12

species) increases the proportion of clades exhibiting significant

age–area correlations to 23.5% (Table 1).

Observed versus Simulated Age–Area Correlations in
Extant Species

Different combinations of parameter values in the null model

give rise to differences in the relationship expected between range

size and evolutionary age (Figures 1, 2A, and 2B). One

explanation for the variety of age–area correlations observed in

the empirical data is therefore that rates of range evolution or the

geographic mode of speciation have differed amongst clades.

However, when clade sizes are relatively small, as is typical of

empirical datasets, we expect to see substantial variation in age–

area correlations simply because of chance. To explore this effect,

for each point in parameter space, we compared the proportion of

observed and simulated clades exhibiting a particular age–area

Author Summary

The changing distribution of species over the surface of
the Earth, likened by Darwin to ‘‘a grand game of chess
with the World for a board’’, is a central theme in the
evolution of life. Studies of the fossil record and molecular
estimates of species ages appear to show that species
follow a predictable trend of expansion and contraction of
their geographic range over evolutionary time. However,
using computer simulations we show that the observed
correlation between the age of a species and the extent of
its range is expected even if changes in range area have
occurred randomly through time. Our results cast doubt
on the evidence for directional trends in the long-term
evolution of species ranges and suggest that the general
rules governing this grand game may need to be re-
evaluated.

Models of Range Size Evolution
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correlation. Because of the strong effect of clade richness on the

patterns (Figure 1C), we randomly aggregated our simulated

clades until average species richness was similar to that of our

empirical dataset. The results for a representative sample of

parameter space show that the full spectrum of observed age–area

correlations can often arise because of stochastic sampling of the

overall null expectation (Figure 2A and 2B). However, the precise

frequency of the different age–area curves across avian and

mammalian clades cannot generally be explained by any single

combination of parameters (Figure 2A and 2B). Overall the results

suggest that while substantial variation in age–area correlations

observed across clades may be due to chance, differences in the

rates of range evolution or modes of geographic speciation across

clades may also be required.

Range Size Trajectories of Extinct Species in the Fossil
Record and the Stochastic Model

To investigate whether the stochastic model can account for the

patterns observed in the fossil record, we extracted the extinct

lineages from our simulations and assigned each one of these to a

range size trajectory. To ensure that the definition of species age in

our simulations was consistent with the empirical data, we measured

absolute species ages under a model of ancestral persistence: upon

each speciation event the lineage with the larger range size retained

the ancestral species name, with the smaller ranged lineage

designated as a new species. Species ages thus represent the time

between the first and last occurrence of a species and are not

affected by the speciation or extinction of other lineages [40].

The empirical dataset consists of the occupancy trajectories of

extinct marine mollusks provided by Foote et al. [7]. Because

many (44%) of the species occurred in only three statigraphic

stages we did not attempt to fit curves to these and instead assigned

each species to one of three possible range trajectories, depending

on whether its peak mean range size was reached in the first,

second, or third tercile of its life (see Materials and Methods for

details). If range size is independent of evolutionary age, then a

similar proportion of species should reach their maximum extent

across each of the three sampling intervals. We used exactly the

same procedure for assigning range size trajectories in our

simulated dataset.

We found that approximately 57% of mollusk species reached

their peak range size in the middle of their lives, with the number

of peaks in the first and final third relatively evenly split (Figure 2C

and 2D; Table S3). Our analysis therefore supports the pattern of

‘‘rise and fall’’ previously reported for this group (multinomial

model: p,0.017). However, our stochastic model shows that when

Figure 1. The relationship between the range size and the age
of extant species expected under the stochastic model.
Variation in Spearman’s correlation (r) between species’ age and
geographic range area under different combinations of asymmetry in
range size inheritance and rate of change in range size where
probability of speciation (n) increases with range size (A) or is constant
(B). Filled circles indicate negative correlations, while unfilled circles
indicate positive correlations. Correlations are across all simulated
clades for a particular parameter combination. Using a subsample of
clades within an example combination (marked with an asterisk) shows
that the observed correlation is strongly dependent on clade size (C).
Grey boxes highlight the area of parameter space presented in Figure 2.
doi:10.1371/journal.pbio.1001260.g001

Table 1. Age–area relationships across clades of birds and
mammals.

Age–Area Class Genera Orders

– 90.6 (93.3, 88.2) 76.5 (75, 77.8)

/ 4.7 (6.7, 2.94) 11.8 (0, 22.2)

\ 0 (0, 0) 0 (0, 0)

> 0 (0, 0) 0 (0, 0)

> 4.7 (0, 8.82) 11.8 (25, 0)

N 64 (30, 34) 17 (8, 9)

S 12 (9.5, 12) 29 (59, 24)

The percentage of total taxa falling into each relationship class is given, along
with the percentages of mammal and bird taxa in parentheses. Results are
presented for individual genera and for genera combined into orders, along
with the number of clades (N) and their median species richness (S). See Figure
S1 for classification of age–area relationships and Table S2 for results for
individual clades.
doi:10.1371/journal.pbio.1001260.t001

Models of Range Size Evolution
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geographic ranges have evolved randomly through time, range

size is not expected to be independent of species age (Figure 2C

and 2D). Instead, most species are expected to reach their

maximum geographic extent in either the first or second interval of

their lives, and typically have smaller ranges at the end of their

durations (Figure 2C and 2D). This occurs because extinct species

must have undergone a net decline in range size through time,

and, when ranges evolve according to a random walk, extinction is

likely to be preceded by rarity unless rates of range evolution are

extremely high.

Whether species undergo a continuous decline or exhibit an

intermediate peak depends on the probability of extinction

amongst newly formed species (Figure 2C and 2D). When young

species have a low probability of extinction, either because they

inherit a large range or because ranges are relatively stable, then

the predominant pattern is for range sizes to simply decline

through time (Figure 2C and 2D). In contrast, when species inherit

a small geographic range or when rates of range evolution are

high, then only those species that initially expand their

distributions are likely to persist for a sufficient length of time to

be included in the analysis (i.e., more than two time steps; see

Materials and Methods for details) (Figure 2C and 2D). Under

these conditions the relative frequency of the different range size

trajectories observed across marine mollusks is consistent with that

expected under a stochastic model (Figure 2C and 2D).

Discussion

Directional trends between range size and species age in both

molecular phylogenies and the fossil record have generally been

interpreted as evidence that species undergo a predictable

sequence of geographic expansion and contraction over the course

of their life [7–14,37]. However, using a stochastic model of range

evolution we show that trends in range size with evolutionary age

are expected even if range sizes have evolved randomly through

time. Across the tips of reconstructed phylogenies, significant age–

area correlations arise because of both the process of geographic

speciation and the censoring of small-ranged species that went

extinct before the present (Figure 3A and 3B). For extinct species,

range sizes may appear to vary predictably with evolutionary age

because of the censoring of those species that either survived to the

present or were too rare to be detected (Figure 3). Our results

demonstrate that correlations between range size and species age

cannot be reliably interpreted as evidence for deterministic models

of range evolution that predict directional trends in range size

through time [1–4,17].

Previous studies have interpreted a positive relationship between

range size and evolutionary age as evidence that geographic ranges

tend to expand through time [11,13], apparently vindicating

Willis’s [1] theory of ‘‘age and area’’. Here we show that this same

pattern is also expected under a stochastic model because, when

Figure 2. The relative proportions of observed and expected age–area trajectories across reconstructed phylogenies and extinct
species. The grey bars show the 95% confidence limits of the expected relative proportion of different age–area relationship classes under different
combinations of asymmetry and range size inheritance for extant vertebrates (A and B) and extinct molluscs (C and D). The probability of speciation
(n) increases with range size (A and C) or is constant (B and D). Observed proportions of each class are shown as black bars for vertebrate orders
(Table 1) and mollusk species (Table S3); shorter bars in (A) and (B) show the proportions for bird (left) and mammal (right) orders separately. The nine
panels in each block correspond to the highlighted areas of Figure 1.
doi:10.1371/journal.pbio.1001260.g002

Models of Range Size Evolution
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range size undergoes a random walk through time, only those

species that, by chance, happened to expand their ranges or were

initially widespread are likely to have survived to the present

(Figures 1A, 1B, 3A, and 3B). Given the evidence from the fossil

record for high rates of extinction [41] and the dependence of

these rates on range size [42,43], we suggest that extinction may be

a more parsimonious explanation than any underlying trend for

range expansion per se.

The illusion that geographic ranges tend to expand through

time can also arise from the division of geographic ranges during

speciation (Figure 1B). In this case the patterns are particularly

misleading, for while average range sizes within the clade may be

declining across each speciation event [27], an age–area

correlation would instead suggest that ranges have been expanding

through time.

Negative relationships between range size and evolutionary age

have commonly been interpreted as evidence for a taxon cycle

model [17], in which ranges rapidly expand following speciation

before gradually contracting to extinction [11,12,14]. Our results

show that a negative age–area correlation can also arise in the

absence of any intraspecific range size trends, when newly formed

species are geographically restricted but have a low probability of

either speciating or going extinct (Figure 1A). These conditions

may, in fact, be most likely to occur on island archipelagos, where

taxon cycles have been most commonly invoked (e.g., [4,17,44]).

Here, a species from the mainland gives rise to a number of

daughter species, each endemic to an individual or small number

of islands, and these persist for long periods of time in isolation

[45]. Our results show that a negative relationship between range

size and evolutionary age need not imply taxon cycle dynamics.

We might expect the fossil record to provide a more reliable

signal of range evolution than molecular phylogenies, which rely

on inferring these dynamics from a comparison of present-day

range sizes [46]. Our analysis suggests, however, that interpreting

the patterns in the fossil record is equally challenging because it,

too, is likely to be biased with respect to geographic range size.

First, when newly formed species are geographically restricted, as

expected under a variety of speciation models [47], then only those

species that, by chance, happened to expand their distributions are

likely to be sampled. In contrast, those species that immediately

declined to extinction are unlikely to be detected [28,29] or will be

represented in only one or a few sampling intervals (‘‘singletons’’),

precluding an analysis of their range dynamics [7,8]. As in

molecular phylogenies, this leads to the illusion that geographic

ranges have a tendency to expand post-speciation (Figure 3).

Second, studies examining the fossil record have often excluded

extant species on the basis that their full histories have yet to be

played out [7,8]. By excluding those species that survived to the

present, a subsequent decline of geographic range size becomes

inevitable (Figure 3). Our results suggest that, together, these two

sampling biases can generate the pattern of ‘‘rise and fall’’ so

frequently reported in the fossil record (Figures 2C, 2D, and 3) [7–

10,20].

One of the most surprising aspects of our simulations is the wide

variety of relationships between range size and evolutionary age

that can be generated by varying only a few biological parameters.

For instance, when rates of range size evolution are slow, then—

depending on the asymmetry of range division during speciation—

our model predicts both negative and positive age–area correla-

tions across extant species (Figure 2A) and negative and hump-

shaped relationships amongst extinct species (Figure 2C). Differ-

ences in rates of range evolution or in the geography of speciation

may therefore explain the heterogeneity in empirical age–area

relationships reported both in previous and the current analyses

[11–15,24]. Our results also show, however, that even if all clades

had evolved under the same conditions, substantial heterogeneity

in age–area relationships can arise simply due to chance (Figure 2).

Under some regions of parameter space this stochasticity is able to

capture much of the variation observed across the different

taxonomic groups (e.g., high rates of range size evolution,

asymmetric range division, and when probabilities of speciation

are independent of range size), whereas in other regions the match

Figure 3. The role of censoring bias in generating the apparent
trends in range size evolution. Range size trajectories (arbitrary
units) are shown for (A) 1,000 species undergoing a random walk (m= 0
and s2 = 0.16) for 100 time steps, and for those species that either (B)
survived to the present or (C) went extinct before the end of the
simulation. To highlight the underlying random nature of this process,
in (A) we continue to model the range trajectories of species even after
they have gone extinct. Grey shading shows the extreme range size
values through time, with the black line showing the median trend. The
trajectories of a random selection of all species (grey lines), and of
these, those surviving to the present are highlighted in (A) and (B),
respectively. In (C) only those extinct lineages with a duration
exceeding 20 time steps are included, with their time from birth to
death scaled to between 0 and 1.
doi:10.1371/journal.pbio.1001260.g003

Models of Range Size Evolution
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is extremely poor. For instance, patterns resembling those

observed across extinct marine mollusks can be produced by a

stochastic model only when range inheritance is highly asymmet-

ric, as expected under a peripatric or micro-vicariance model of

speciation. Independently derived estimates of these key param-

eters will therefore be required to assess the extent to which a

single global model, versus a model with varying conditions across

clades, is able explain the observed patterns.

Here we have focused on the range dynamics of individual

species, but it has also been suggested that the areas occupied by

entire clades may undergo regular patterns of expansion and

contraction through time (e.g., [48–51]). Our results raise the

possibility that these higher level dynamics may also not require

deterministic explanations. Testing whether the geographic

distributions of entire clades depart from a null expectation will

require a more complex, spatial version of the model employed

here that can account for both species’ range sizes and their

geographic overlap [27].

That patterns resembling the empirical data can arise from a

random model does not imply that changes in species distributions

occur at random [52]. Rather, the processes regulating geographic

range size may be so complex and subject to historical contingency

that the patterns of range evolution across species appear random

[6]. Alternatively, even if species ranges did vary predictably

through time the diagnostic tests that we have used may not be

sufficiently refined to detect this. One reason for this may be that

definitions of species age do not correspond to a realistic estimate

of the evolutionary time from the birth to the death of a lineage

[53]. For instance, under a peripatric model of speciation, the age

of the parent species in a reconstructed phylogeny is reset to zero

every time a dispersal event gives rise to a new species.

Furthermore, given the sensitivity of the stochastic model to the

underlying biological assumptions, stronger tests of departure from

the null expectation will require constraining the possible

parameter space based on a priori knowledge of the particular

focal group. Regardless of these assumptions, however, our

findings demonstrate that under a biologically realistic null model

of range evolution, range sizes should not be expected to be

independent of species age.

Materials and Methods

Stochastic Model of Range Size Evolution
We used a discrete time simulation of species diversification and

range size evolution, starting from a single species with a range size

drawn from an empirically realistic [54] log-normal distribution

(log mean m= 1, log variance s2 = 1, 95% CI = [0.4, 19.3]). At

each time step of the simulation, changes in range size for each

extant species were drawn from a normal distribution with m= 0,

with extinction occurring if the range size of a species drifted to or

below zero. By modifying the standard deviation of the

distribution, we modelled the effects of differences in the rate of

range size evolution (s2 = 0.0001, 0.01, 0.04, 0.09, and 0.16), and

the extremes of these rates lead, respectively, to extinction of 0%

and .90% of species by the end of the simulation.

At each time step of the simulation, speciation could occur with

a per-lineage probability n. We simulated two speciation models,

both of which have strictly bifurcating speciation. In the first

model, n varied as a set proportion of range size (0.005),

corresponding to a value of n= 0.5 when range size equalled

100 units. Such an increase in the probability of speciation with

range size is expected under certain probabilistic models of range

splitting when range sizes are strongly right skewed [27,55,56]. To

prevent runaway clade growth associated with large range sizes,

we truncated the range size used to calculate n at 100. However,

achieving such range size is rare over the lifetime of the simulation,

even under the greatest degree of range change. In the second

model, n was equal across lineages and constant through time

(n= 0.02), analogous to the birth–death model [57,58]. This latter

value of n was chosen to result in similar rates of speciation as

expected in the range-size-dependent speciation model assuming

the initial log-normal range size distribution. Varying the value of

n (0.014, 0.02, and 0.033) in the range-size-independent model or

the rate at which n increased with range size (0.0025, 0.005, and

0.01) did not qualitatively alter our results (Figures S2 and S3).

Upon speciation the geographic range of the parent was split

amongst the two daughter lineages, with relative range sizes as a

proportion (p) of the parent (p and 12p) drawn from a beta

distribution (a= 1 and b= 1, 5, 10, and 70). Increasing values of b
resulted in more asymmetric splits, allowing us to model a variety

of geographic scenarios from vicariance (b= 1) to peripatry and

micro-vicariance (b= 70, 95% CI of p = [0.0003, 0.05]) [31,32,38,

59].

For each combination of parameter values we generated 500–

5,000 replicate clades contingent on either the survival of at least

six species to the present (the minimum richness in our empirical

dataset of phylogenetic trees; Table S2) or the extinction of at least

one species (the minimum required for comparison to our

empirical fossil dataset). The number of replicates varied across

parameter space because of the variation in computational time

arising from differences in expected clade size and the probability

of obtaining an extinct species. In total we simulated over 1 million

clades. For each clade we obtained the reconstructed phylogeny of

those species extant at the end of the simulation and recorded the

age and area of extant species. In a reconstructed phylogeny, the

age of a species is defined as the tip length: the time from the

present to the most recent node. This estimate of species age is

thus sensitive to the extinction of other lineages and does not

account for the possibility of ancestral persistence during

speciation. However, these limitations are common to both the

observed and simulated phylogenies and so will not bias our

results.

Avian and Mammalian Phylogenies
We constructed trees based on mitochondrial protein coding

genes (cytb, COI, COII, ND2) for genera and families of birds and

mammals according to standard avian [60] and mammalian

taxonomies [61]. Our selection of bird phylogenies largely follows

that of Phillimore and Price [36], but we included additional

sequences and species and an expanded taxonomic coverage

where possible. Sequences were downloaded from GenBank and

aligned by eye in MEGA v4 [62]. Trees were constructed using a

relaxed clock Bayesian method in BEAST v1.5.4 [63]. For each

tree we specified a Yule prior on branching times and that

variation in rates of substitution amongst branches was uncorre-

lated and followed a log-normal distribution. For mammals we

used an HKY model of substitution with four gamma categories

and separate rates for codon positions 1+2 versus 3. Rates of

molecular evolution are known to vary substantially amongst

mammalian lineages [64], and so for each clade, trees were dated

using fossil calibrations obtained from the literature. On all

calibrations we used a log-normal prior on the age of the split with

a mean and standard deviation of one and with the minimum age

set to that used in the original study; usually corresponding to the

first appearance of a group [65]. For birds we used a GTR-c
model of substitution, assuming an average rate of sequence

substitution of 0.01 per site per lineage per million years [66]. We

performed two runs of 5–10 million generations depending on the
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time required for convergence as assessed in Tracer v1.4 [67]. The

first 10% of the generations were discarded as burn-in, and then,

depending on the length of the model run, we sampled every

4,000–8,000 generations to produce a posterior distribution of

trees. The trees were combined from the separate runs and

summarized as the maximum clade credibility tree, from which we

estimated species age as the tip length corresponding to each

extant species. In three avian genera (Cinclodes, Hemispingus, and

Muscisaxicola), runs failed to converge, and so in these cases we used

an HKY model of substitution. Although this simpler model will

tend to overestimate species ages, the frequency of significant age–

area correlations across clades was similar when we re-ran all trees

using the HKY model, showing that our results are robust to

model assumptions. All trees are provided in Dataset S1.

Estimates of species ages from clades with large numbers of

missing extant species will be relatively inflated, and so from our

trees we included only those genera containing at least six species

and where at least 80% of the species had been sampled. These

clades generally corresponded to monophyletic, taxonomically

recognized genera [60,61], but we also included polyphyletic

clades if at least 80% of the species from each constituent genera

had been sampled. In total, we obtained estimates of species ages

for 1,269 species from 64 genera across 17 orders (Table S1). For

each species, we obtained the range size (km2) from previously

published range databases of birds [68] and mammals [34].

Age–Area Correlations
Because range sizes and species ages tend to be positively

skewed within clades, we log-transformed both variables prior to

analysis. For each clade we fit a quadratic model simplifying to a

linear and then null model on the basis of an F-test. We aggregated

the results of these models into five broad classes (Figure S1).

Linear models provide three classes: no relationship (Type 1) and

increasing (Type 2) and decreasing (Type 3) range size with species

age. Within the range of the clade age data, some quadratic

models show marked intermediate peaks (Type 4) or troughs (Type

5). However, where the vertex of the quadratic model is not

central within the clade age data, quadratic models may describe

predominantly increasing (Type 2) and decreasing (Type 3) range

size with species age. We therefore assigned quadratic models to

model Types 2–5 based on the location of the model vertex within

terciles of the clade age data (Figure S1; Table 1). Our results are

qualitatively similar if these classes of quadratic model are kept

separate from linear models (Figures S1 and S4; Table S1).

Fossil Mollusks
Data on the occupancy trajectories of extinct Cenozoic marine

mollusks of New Zealand were obtained from Table S2 in Foote et

al. [7]. The underlying data (from the Fossil Record Electronic

Database; http://www.fred.org.nz) contains species records for

many collection sites dated to geological stages: species range size

was estimated as the proportion of collections within each

geological stage that contained a species. To reduce sampling

biases and to restrict analyses to extinct species, Foote et al. [7]

restricted their dataset to species recorded from at least three

contiguous stages and excluded all species with a Holocene record.

In total, 140 species were used in the Foote et al. [7] analysis, and

we refer the reader to their paper for further details on the

methods.

For each species we split its duration into thirds and calculated

the mean occupancy across the stages occurring within each of

these three time bins. Because occupancy is given in discrete

stages, these cannot always be divided evenly amongst the larger

time bins (e.g., when the species is present in four, five, or seven

time stages). In these cases we sought the most equitable

distribution of bin lengths and randomly assigned these to each

bin. For instance, a species with a duration of four time stages

could have bin lengths of (1,1,2), (1,2,1), or (2,1,1). We repeated

this procedure 1,000 times and calculated the mean percentage of

species whose occupancy peaked in each time bin.

Supporting Information

Dataset S1 Bird and mammal phylogenetic trees.

(ZIP)

Figure S1 Classification of curve shapes from the
regression of log range size on log species age. Of the

quadratic models, curve shapes are classified using the sign of the

quadratic coefficient and the position of the curve vertex in

relation to the observed species age values (grey panels). The

corresponding models under the nine-category classification

scheme used in Table S1 and Figure S4 are shown in brackets.

(TIFF)

Figure S2 The relationship between the range size and
the age of extant species expected under the stochastic
model when rates of speciation (n) are low. Variation in

Spearman’s correlation (r) between species’ age and geographic

range area under different combinations of asymmetry in range

size inheritance and rate of change in range size where probability

of speciation (n) increases with range size (n= range size60.0025)

(A) or is constant (n= 0.014) (B). Correlations are across all

simulated clades for a particular parameter combination. Using a

subsample of clades within an example combination (marked with

an asterisk) shows that the observed correlation is strongly

dependent on sample size (C). Grey boxes highlight the area of

parameter space presented in Figure 2.

(TIFF)

Figure S3 The relationship between the range size and
the age of extant species expected under the stochastic
model when rates of speciation (n) are high. Variation in

Spearman’s correlation (r) between species’ age and geographic

range area under different combinations of asymmetry in range

size inheritance and rate of change in range size where probability

of speciation (n) increases with range size (n= range size60.01) (A)

or is constant (n= 0.033) (B). Correlations are across all simulated

clades for a particular parameter combination. Using a subsample

of clades within an example combination (marked with an asterisk)

shows that the observed correlation is strongly dependent on

sample size (C). Grey boxes highlight the area of parameter space

presented in Figure 2.

(TIFF)

Figure S4 The relative proportions of observed and
expected age–area trajectories across reconstructed
phylogenies and extinct species using nine model types.
The grey bars show the 95% confidence limits of the expected

relative proportion of different age–area relationship classes under

different combinations of asymmetry and range size inheritance

for extant vertebrates (A and B) and extinct molluscs (C and D).

The probability of speciation (n) increases with range size (A and

C) or is constant (B and D). Observed proportions of each class are

shown as black bars for vertebrate orders (Table S1) and mollusk

species (Table S3); shorter bars in (A) and (B) show the proportions

for bird (left) and mammal (right) orders separately. The nine

panels in each block correspond to the highlighted areas of

Figure 1.

(TIFF)
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Table S1 Age–area relationships across clades of birds
and mammals with relationships classified into nine
types.

(DOC)

Table S2 Age–area relationships for individual clades of
birds and mammals.

(DOC)

Table S3 Range trajectories for fossil mollusks.

(DOC)
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