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ABSTRACT: We introduce a model for the calculation of diffusion coefficients using
dissipative particle dynamics coarse-grained molecular simulations. We validate the model
on experimental diffusion data of small organics and drug-like molecules in water. The
new model relies on our automated-fragmentation-parametrization protocol for cutting
molecules into fragments, which are calibrated using the COSMO-RS thermodynamic
model (J. Chem. Inf. Model. 2016, 56 (12), 2361−2377, DOI: 10.1021/acs.jcim.6b00003).
By simulations over the entire CULGI database of more than 11000 molecules, we
recover the decades-old empirical Wilke−Chang correlation between diffusion coefficient
and molar volume. We believe this is the first demonstration of the correlation by
simulation or theory. From a comparison of simulated and experimental diffusion
coefficients, we find that one full time unit of coarse-grained simulation equals 64 ± 13 ps
real time.

1. INTRODUCTION

Coarse-grained simulations could be a great aid in the design
and analysis of complex soft materials, whether of synthetic or
of biological origin. Much effort has gone into the modeling of
force fields. The returning question has been, to what extent
can coarse-grained interactions mimic the thermodynamics of
real systems? In a recent work, we introduced the automated-
fragmentation-parametrization protocol (AFP),1 which aims to
automate the cumbersome process of finding proper coarse-
grained interaction parameters for a given set of arbitrary
(organic) molecules. In short, AFP combines two steps: (i) the
rule-based cutting of molecules into smaller pieces (referred to
as fragments or beads) and (ii) the subsequent calibration of
interactions through comparison with thermodynamic data.
Both the rule-based cutting and calibration are nontrivial
methods that both also require parametrization on a meta-level.
The AFP contribution has an extensive appendix with all
technical details, which we assume here as background material.
Also, the AFP work has a more complete list of references and
discussion of coarse-grained force fields that we refer to without
repeating here.
So far, the attention of coarse-grained simulation on

thermodynamics has left the diffusion coefficients untouched.
The recent review on systematic coarse-graining from van der
Vegt2 does not discuss the time scale at all. Transport
coefficients have been modeled in the closely related field of
atomistically detailed simulations (molecular dynamics
(MD)).3−6 Especially the diffusion coefficient calculations of
Wang and Hou6 using molecular dynamics (AMBER/GAFF)
are illustrative, with useful references to earlier molecular

simulations. Wang and Hou point out that simulations of solute
diffusion coefficients are rare because of required extensive
sampling times (as opposed to slightly more common solvent
self-diffusion coefficient simulations). For coarse-grained
simulations, the number of studies is even smaller. In fact, for
dissipative particle dynamics (DPD),7−9 the simulation method
of our choice here, there are no works that we know of,
although there are a few studies on transport coefficients
(viscosity) of simplified systems (Lennard-Jones atoms) on a
theoretical level10,11 through a bottom-up approach. The lack of
comparison is somewhat surprising since DPD was meant to
reproduce hydrodynamic interactions more accurately than
competing methods. DPD is very efficient in generating
complex structures, such as all kinds of self-assembly systems
in so-called soft matter (polymers, micelles, and bilayers, etc.).
We surmise that a next step should be the actual calculation of
diffusion coefficients, with the great advantage being that the
coefficients could be obtained for sluggish complex inhomoge-
neous materials, where very few if any simulation methods are
available.
From the coarse-grained molecular dynamics community,

there are no systematic contributions on this same topic of
solutes diffusion, as far as we know. There are some works in
the biomolecular area, for example discussing rate constants in
protein ligand binding. Rate calculations are closely related to
the current study, in the sense that one needs an accurate time
scale to calibrate the simulations. One such example is from

Received: October 29, 2017
Published: December 22, 2017

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2018, 14, 479−485

© 2017 American Chemical Society 479 DOI: 10.1021/acs.jctc.7b01093
J. Chem. Theory Comput. 2018, 14, 479−485

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

http://dx.doi.org/10.1021/acs.jcim.6b00003
pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.7b01093
http://dx.doi.org/10.1021/acs.jctc.7b01093
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html


Negami et al.12 using the Martini force field in regular
molecular dynamics. In the Martini model, one takes the
approach to identify the time scale in coarse-grained molecular
dynamics as “the speed up factor in the diffusional dynamics of
CG water compared to real water”13 (see also the Martini
perspective work and references therein of ref 14). We find that
such an approach, although practical, is potentially inadequate,
since it does not readily justify extension to other systems.
Apart from the comments in the original Martini work,13 the
Martini time-scale factor has been discussed but very briefly in
the perspectives work14 and a thesis.15 A more theoretical study
is clearly needed.
In the spirit of AFP, we calibrate the simulation method in

top-down database fashion, over a set of wide chemical
diversity, given essentially semiempirical laws based on
phenomenological consideration. In other words, we do not
attempt to model diffusion coefficients by some mapping of
molecular dynamics trajectories10,11 (that would anyway almost
be impossible given the large data set we are exploring) but
instead follow a more practical engineering approach for the
thermodynamics interactions.
The actual diffusion simulation for a given molecule takes a

few minutes using a single core on an Intel Xeon E5-2670
processor. While quantitative structure−property relations
(QSPR) are still much faster, timings of a few minutes per
molecule could bring coarse-grained simulations to practical
chemical problems.
An important result is that by comparing experimental and

simulated diffusion coefficients, we find a time scaling for the
DPD coarse-grained simulations of about 64±13 ps real time
per DPD unit of time. We refer to this scale as the dissipative
time scale. The time scaling is dependent on the level of coarse-
graining and the value of the solvent prefactor for the friction.
Despite the fact that the mass enters into the kinetic time scale,
the mass is irrelevant for calibration on diffusion.
A second result is that, by predictive simulations of all

molecules in the CULGI database (more than 11000
molecules), we recover the decades-old empirical Wilke−
Chang16 correlation D ∝ V−0.6 between diffusion coefficient and
molar volume V. The original Wilke−Chang publication is from
1955 and has been cited more than 3000 times since then
(according to Web of Science). The correlation has found its
way in many engineering transport models, but as far as we
know, there never has been a satisfactory explanation from
theory or simulation. We present here the first demonstration
of the correlation by simulation, which is not only relevant for
the transport modeling community but also suggests our
methodology is correct.
While the proposed method is novel on a fundamental level,

on a practical level one could ask what the benefit is of a
simulation method (atomistic or coarse-grained) for diffusion
coefficients when statistical regression methods such as Wilke−
Chang seem to work fine. The answer is the same as we have
given before in the AFP work: it is especially the extension to
(inhomogeneous) systems where correlative data are difficult to
obtain, or not publicly available, where coarse-grained
simulations could be useful. The advantage of DPD with the
AFP protocol is that the method is in principle, without
adjustment, applicable to (much) more complex problems in
biology or materials science. We cannot hope to address the
much more complex inhomogeneous system if the method
cannot reproduce behaviors of more simple homogeneous
systems, hence the current study.

This work is organized as follows. In Theory, we briefly
discuss the parametrization strategy. In Results, we discuss a
comparison of experimental and theoretical diffusion coef-
ficients in water and the predictive calculation of the diffusion
coefficients of molecules extracted from the CULGI database.
All simulation algorithms are presented in Methods.

2. THEORY

It is illustrative to assess briefly the pros and cons of the
different particle simulation technologies,17 to understand what
type of simulation is best suited for the study of dynamics.
Obviously, the qualifier “best” is a trade-off between practical
results and fundamental rigor, and to a certain extent arbitrary.
One notices that in molecular dynamics, whether atomistic or
coarse-grained, there is no friction and noise term. In principle,
the reference velocity is determined by the masses and
temperature through the equipartition theorem. In this case,
one must rely on the quality of the force field that must both
get diffusion and thermodynamics correct, which is not trivial
to say the least. In Brownian dynamics, one has an additional
parameter: the friction, with dissipation determined by the
temperature through the fluctuation−dissipation theorem. The
additional parameter is helpful, since then one has an additional
handle to set the scale, with the understanding that the
additional parameter makes the simulations less “ab initio”, and
one does need experimental calibration. The disadvantage of
Brownian dynamics is that it is not Galilean invariant and,
therefore, does not include hydrodynamic interactions (unless
added ad hoc through an additional friction tensor model). In
DPD, the friction is determined by hydrodynamic flow
generated by the simulation itself (as opposed to Brownian
dynamics), and noise is again by fluctuation dissipation
theorem (same as in Brownian dynamics). Thus, within the
framework of DPD one has the unique (or best) possibility of
both including hydrodynamic interactions automatically and
having an additional parameter space, the friction coefficients,
to calibrate the time scale.
The documentation on the DPD simulation technique is

extensive. An excellent recent review is available that we refer to
for all details.9 We briefly recall the essentials in the Supporting
Information.
DPD coarse-grained simulations have three sets of

parameters: the masses of the beads, the parameters in the
conservative forces, and the friction coefficients in the
dissipative forces. We focus in the simulations exclusively on
results in the dissipative regime. We set all masses of all beads
to the same value (arbitrarily chosen as unity). The approach is
customary in DPD, but potentially confusing for the molecular
modeling community. In our case, we will demonstrate that the
mass is, in fact, an irrelevant parameter, at best to be interpreted
as a numerical setting. The simplication on mass leaves two sets
of parameters: one set for the calculation of the conservative
force and a second set for the calculation of the friction
coefficients. The two sets are to a considerable extent (but not
completely) orthogonal. Each set separately can be matched to
experiments, thermodynamics, and transport coefficients,
respectively. In this work, we make the further simplification
to keep all friction coefficients the same.

3. METHODS

Simulation. We used the CULGI software for all
calculations, installed on a Dell Precision T7610 PC equipped
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with an Intel Xeon E5-2670 dual processor. The DPD time step
was set to 0.01, the friction coefficient (see Supporting
Information) to γ = 5, and the number of steps in the diffusion
calculation to 105, with box size Lx = Ly = Lz = 5 (DPD units;
cell size, rc = 7.65 Å).
We calculated the diffusion coefficient using the standard

mean-squared displacement (MSD) method through the
Einstein relation ⟨r2⟩ = 6Dτ.18 Details are in the Supporting
Information.
Since the usual interest in diffusion coefficient predicition is

an estimate for the expected relative error, we use a scoring
function that minimizes the error in Dexp/Dsim. The scoring
function is conveniently expressed in naural logarithms as

=

=

⎛
⎝⎜

⎞
⎠⎟S

D

D

D SD

RMSD( ) ln2 exp

sim

sim DPD (1)

where RMSD is the root-mean-squared deviation, DDPD the
unscaled diffusion coefficient from the simulations, S the scale
factor, and Dexp the experimental value. The overbar indicates
the average over all molecules. Minimization of the given
RMSD function is trivially equivalent to minimizing the
difference in logarithms. The relative error ΔS/S in the estimate
of the optimal scaling is calculated from the RMSD through

Δ = −S
S

e 1RMSD
(2)

The minimization with respect to the scale can be carried out
analytically and leads to the optimal scale value:

=
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For a given molecule, a complete diffusion calculation consists
of three or four steps. First, we do a quantum calculation of the
COSMO charge envelope. Most molecules in the diffusion data
set are quite common and already included in the CULGI
database (see below). For 28 molecules (mostly steroids and
nucleobases), the COSMO information was missing, and we
did a full quantum calculation first, using the same settings as in
the CULGI database quantum calculations. The second step is
then the decomposition in fragments (a few seconds calculation
time at most), followed by the thermodynamics calibration
through COSMO-RS (less than a minute) and the actual
diffusion calculation (a few minutes).
The molar volume was calculated from finite difference

calculation of the volume between two systems differing in one
molecule only while keeping the pressure constant Vm  (∂V/
∂n) P,T ≃ V(n+1,p,T) − V(n,p,T).
AFP Method. The AFP method is extensively documented.1

Molecules are fragmented according to a scoring function,
through a simulated annealing function that cuts through
bonds. The optimal bond scission pattern is preserved, and the
fragments are stored. The scoring function is

= −
⎛
⎝⎜

⎞
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V
V

fragment score 1
0

2

(4)

with V being the volume of the fragment and V0 = 67.7 Å3 the
reference volume. The reference volume is the volume of a
cluster of three water molecules. As we have discussed before,

we use the molecule-unique fragmentation in order to preserve
as much as possible the properties of the mother molecule. This
means that the fragments are not database-unique, as is
customary in coarse-grained simulations, but specific to a given
molecule. The thermodynamic calibration is through a
semiempirical rule for the DPD a parameter, which we use
here without any modification:

α α β= + Δ

≡

a vv vv G

v
V
V

ij i j i j ij

i
i

EV res res,

0 (5)

with β = 1/kBT and ΔGres,ij the excess Gibbs energy of mixing
of two fragments i and j. The parameters αEV and αres are global
parameters, determined by optimization on thermodynamics.
We use αEV = 50.0 commensurate with a background pressure
P0 = 128.3 and dimensionless density of water ρ = 5. For the
residual interaction, we used the same value as in the AFP work,
αres = 6.1. As before, we calculate the Gibbs energy of mixing
through COSMO-RS calculations,19,20 using the σ profile of the
fragments.

Database. We use diffusion coefficients from the
compilation by Hills et al.,21 and data from Song et al.22 and
Seki et al.23 All reported values are at 25 °C. The list of
molecules including experimental and simulated diffusion
coefficients is copied in the Supporting Information. By
comparison to the Hills data set we have excluded molecules
with COSMO volume smaller than 40 Å3, since coarse-graining
does not make much sense for very small molecules. The data
set mostly deals with quite common chemicals (industrial
solvents, for example) but also includes a few tens of steroids
(from the Seki data set) and a few nucleobases (from Song).
The σ profiles were calculated from accurate density functional
quantum-chemical calculations (NWChem24), from geometry-
optimized molecules in a vacuum, using the def2-TZVPD basis
set and BP86 exchange functional. In all of the diffusion
coefficient calculations, by far most of the time is taken by the
expensive σ-profile calculation, which can easily go into a few
days of CPU time for even modestly sized drug-like molecules,
such as the steroids in the data set. In contrast, as we have
mentioned above, the coarse-grained simulation itself takes only
a few minutes.

4. RESULTS

Diffusion Coefficients. The calculated diffusion coeffi-
cients are reported in Figure 1. To convert the dimensionless
DPD values to dimensioned values (in units 10−5 cm2 s−1), we
used the optimal scale value found by fitting S ± ΔS = 9.2 ±
1.9. A few things are noteworthy.
First, the number of data points n = 164 is rather small, while

the recent Hills data set itself is already a collection of older
sources. Although there could be quite some scattered isolated
data that we did not find, and therefore did not include, as far as
we know we did not miss a large collection somewhere.
Compared to thermodynamic data, the tininess of the diffusion
data set is apparent. For example, to calibrate log P predictions,
the cornerstone of many a QSPR model, one could have access
to tens of thousands of data points, if not more. The relative
scarcity of diffusion data has an important implication: QSPR
models for diffusion with even a few descriptors are difficult to
assess, or simply not trustworthy at all, because of the small size
of the training set. Our approach through coarse-grained
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simulation, which needs only one additional time-unit
parameter (the scale factor) over the original thermodynamic
calibration, could be quite helpful.
A second observation is that the spread in values is not large.

The range from smallest to largest value on a natural
logarithmic scale runs from −1 to +1. The small range
corresponds to a factor of 7.3; i.e., the relative difference
between the largest and smallest diffusion coefficient is less than
an order of magnitude.
A third noteworthy observation is that the difference

between simulation and experiment is also minor. We find
RMSD = 0.19, which corresponds to a relative error in diffusion
coefficient prediction of 21%. While this is amazingly accurate
compared to the typical accuracy in thermodynamics property
prediction (where one could already be happy with an accuracy
of one 10 log unit), such a high accuracy is also typical for
quantitative structure−activity correlations (see the summary of
models in the Hills et al. work). The reason for the accurate
prediction is relatively simple: by far the dominant factor that
determines the diffusion coefficient is the volume of the
molecule since the dissipation is controlled by the hydro-
dynamic interactions all around the molecule. Thermodynamics
has an important, but a secondary, influence. In the molecular
dynamics study of Wang and Hou,6 one finds a relative error of
12.6%, which is smaller than what we find, but then the Wang
study involved only five solutes (acetic acid, expt 1.290/calc
0.963; acetonitrile, 1.260/1.333; cyclohexane, 0.840/0.903;
diethylamine, 0.970/0.913; phenol, 0.89/1.054). Of course, in
the case of molecular dynamics, the prediction is absolute,
whereas we need a scale factor.
In our calculation of the relative error in the estimate of the

optimal scaling, ΔS/S, we assume implicitly that all errors are
due to the model, and not due to experiments. The logic is that
if the experiments are exact, and one attributes all errors to
incorrect theory, then one would have an optimal simulation
scaling per molecular system S1...Sn, as opposed to one scale for
all molecules, and hence in such case the difference between
average and molecular-specific scale is an indication of the
overall spread in scale values. Unfortunately, without additional

sources, it is impossible to judge whether and to what extent
the reported experimental values are correct. Overall the
difference in behavior between the different experimental data
sets is minor. It does seem as if the performance of the model
over the Seki data is less good than those of Hills and Song. We
double-checked a few noticeable outliers, such as anthracene
and benzanthracene (see the Supporting Information)these
were also reported as outliers by Hills et al. We notice that the
experiments are not trivial, especially in the case of badly
soluble polycyclic aromatics. The source of the Hills data for
the polycyclics is Gustafson and Dickhut,25 but while the
present analysis deals with infinite dilution, the experiments are
(for the anthracenes) at 50% saturation. One could easily
imagine that a small amount of aggregation leads to a lower
apparent diffusion coefficient. The data sets unfortunately also
contained typographical errors. Hills et al. report a value for
dioxin in their table, but this should have been dioxane, a very
different molecule.
The optimal scale immediately leads to an assessment of the

time scale t/τ in the DPD simulations. From matching the
diffusion between real time and dimensionless time, we find the
time scale

τ
= ⟨ ⟩

⟨ ⟩
= ⟨ ⟩

⟨ ⟩
t r

r
D
D

r
r S

12

DPD
2

DPD

exp

2

DPD
2

(6)

and with the length scale r/rDPD = 7.65 Å; this leads to

τ
=

± ×
= ±t 7.65

(9.2 1.9) 10
s 64 13 ps

2

11
(7)

In other words, to get the time scaling of diffusion correct, we
need that one full time unit of coarse-grained simulation equals
64 ps real time. A typical DPD simulation time step of 0.01
corresponds to 640 fs. This can be compared to molecular
dynamics in two ways.
First, a typical atomistically detailed molecular dynamics time

step is 1 fs.17 Hence, DPD is roughly 600 times as time efficient.
We notice that the computational efficiency is yet much higher,
since per time step one needs to evaluate fewer forces in DPD
than in MD. The simulation is in total over 105 steps. With a
time step of 0.01 this corresponds to 1000 DPD time units.
Using the optimized time scaling of 64 ps per time unit, the
total simulation time is therefore 64 ns. Notice this is achieved
in just a few minutes calculation time on a single CPU core.
Second, in molecular dynamics the time scale is locked by the

mass and temperature through the equipartition theorem (mvT
2

= 3kT where vT is the thermal velocity; see the table of units in
the Supporting Information). But here, we did we did not use
the mass at all. Instead, we found the scaling by matching the
dissipation to experiment. It is, in fact, the other way around, in
that we can estimate a f ictitious or numerical mass of the beads
by imposing that the kinematic time, denoted as τK,
corresponds to the dissipative time, τD, calculated by the fitting
of diffusion (at 300 K):

τ τ
τ

≡ = = → = ≜ ×
⎛
⎝⎜

⎞
⎠⎟

r
v

m kT
r

64 ps 3 52 10 DaK
c

T
D

D

c

2
3

(8)

One expects a mass of O(50) dalton for the physical mass of a
bead consisting of three united atoms. Remarkably, to match
the kinetic and dissipative time scale, we need the fictitious
mass to be O(103) larger than that. We note therefore that in
these DPD simulations mass, perhaps contrary to expectations,

Figure 1. Calculated diffusion coefficients versus experimental values.
Sources of data indicated: Seki,23 Song,22 and Hills.21
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is not determined by the physical system. Rather, mass should
be considered as a numerical parameter. It is for this reason that
we need not worry about fragment-specific mass values, and
one nonspecific value for the entire system suffices. The
significant difference between fictitious and physical mass
makes one wonder why one would need such a parameter at all.
In fact, it could be possible to reduce the DPD simulation
system further, by removing the inertial forces altogether from
the set of equations and render the model in the overdamped
limit. There could be a potential for a further speed-up. But
here, we merely point to such a reduction and leave further
discussion to following publications.
A second refinement could be to include fragment-specific

friction coefficient. One could imagine that a polar fragment
which is hydrogen-bonded to water molecules, experiences a
larger friction than an inert apolar fragment, simply because
such a hydrogen-bonded fragment would be more closely
coupled to a sluggish fluctuation network of interactions. Given
the discussion on the experimental accuracy above, one could
equally wonder if the remaining deviation from experiment is
just due to experimental noise, in which case any additional
model would, of course, be overkill. In Hills et al.,21 there is an
ample discussion of adapting the Abraham descriptors to
correlating with diffusion. The discussion points to the
relevance of volume, as expected, and the Abraham hydro-
gen-bonding parameters (basicity and acidity). While there is
some correlation with the Abraham descriptors, in our case the
thermodynamics (including hydrogen-bonding propensity) is
already included in the model for the DPD α parameters, and
apparently, such an effect is already enough to capture almost
all of the relevant molecular properties.
Wilke−Chang Scaling. Next, we turn to the prediction of

diffusion coefficients over the entire CULGI data set. The
prediction includes more than 11000 molecules. Except for
those molecules that are also present in the experimental data
sets discussed above, the prediction is purely speculative. The
properties of the CULGI database are extensively discussed in
the AFP work. While on average the molecules are smaller than
that of a typical drug bank, we believe the data set is a
reasonable representation of an arbitrary molecular distribution.
The diffusion coefficients were calculated, using the established
optimal time scale as discussed above. No further fitting or
adjustment of parameters was used. The results are in Figure 2.
We have also included the scaling according to the Wilke−

Chang empirical law D = 20.15V−0.6. The law was trivially
adjusted from the original to the current dimension system,
with diffusion measured in 10−5 cm2 s−1 and molar volume in
Å3 per molecule. Compared to the original Wilke−Chang
correlation we made one minor modification. The original
Wilke−Chang law uses the molar volume at boiling point,
whereas we use the molar volume at room temperature as
obtained from the AFP DPD simulations. Apart from that, no
further modifications were made. For details see the Supporting
Information. We did not make any adjustments in the coarse-
grained simulations, given the optimal time-scaling value
obtained from the calibration on the experimental data. We
find that the agreement between prediction and Wilke−Chang
correlation is almost perfect. The Wilke−Chang correlation was
discovered more than 60 years ago (published in 1955),16 by
analyzing diffusion and viscosity data of a range of organic
liquids, and has been the cornerstone of engineering transport
models since then. Since that date, more than 3000 papers have
cited the Wilke−Chang work, but, as far as we know, there has

never been a theoretical explanation nor a demonstration by
simulation of the scaling behavior.
The details of the simulations offer a clue to the background

of the Wilke−Chang correlation. If one picks a random
distribution of molecules, some will be more elongated, some
more spherical, some others more flexible, yet others more rigid
and compact, each such a shape with its volume-scaling law.
The net scaling over all molecules is then an average over all
those differently shaped objects. In other words, if our CULGI
database were to consist exclusively of spherical molecules, the
scaling would have resembled the Stokes law with D ∝ V−1/3; if
by chance all the molecules would be more elongated, the
scaling would be more like Rouse (with independent and
additive contributions from all fragments), D ∝ V−1. From the
diffusion theory of oblate objects,26 one can calculate that the
scaling law for thin disk-like molecules would be D ∝ V−0.45. In
our case, the database is a random collection of real molecules,
with arbitrary shape and volume, and on top of that, none of
the coarse-grained molecules is rigid. All molecules are flexible
(to a certain degree set by the bonds) and can fluctuate in the
solvent, depending on the thermodynamic interactions. It is
possible to find the scaling by hydrodynamic simulation on a
diverse data set, as we have shown here. But there can, in
principle, never be a simple fundamental theory for Wilke−
Chang, since the scaling is all determined by the distribution in
the sample, as opposed to scaling derived from a geometrical or
homologous series of chemicals. Apparently the CULGI
database is sufficiently universal to warrant a realistic
distribution of arbitrary chemicals.
Our conclusion here is that the fact that we find Wilke−

Chang back in a highly abstract coarse-grained DPD simulation
model demonstrates, foremost, that DPD simulations are
capable of capturing hydrodynamic flow patterns around
complex molecular structures, of whatever shape and flexibility.
There have been many attempts, since the original Wilke−
Chang findings, of improving the correlation by adding other

Figure 2. Prediction of diffusion coefficients for all molecules in
CULGI database. Regression (dotted) and Wilke−Chang correlation
indicated. Since the plot has very many points, we overlaid the scatter
diagram with a color scheme akin to a heat map, to indicate the local
density (red, high overlap; blue, isolated points).
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descriptors to the volume, from the shape or some interaction
model (see the textbook26 and Hills et al.21), but no such
model has been derived from hydrodynamics.
Figure 2 also shows a few tens of outliers. While they

represent only a minor fraction of the total data set of more
than 11000 molecules, they could be highly relevant for further
improving the AFP scheme. We have found that some modified
triazoles and diazoles are exceptionally difficult to model with
the current version of AFP. One outlier is hydroflumethiazide
(Figure 3), with ln Dregression/Dsim = 1.4 (this is the biggest

outlier in Figure 2). Or, in other words, the simulated value is
only 25% of what the regression would predict. The explanation
is in the strong interactions between some very polar groups
and water, which the DPD soft repulsion model cannot handle
well. These outliers are very helpful in pointing to an
improvement of the AFP scheme, for example by incorporating
hydration layers.
On the other extreme are molecules that do very well. The

molecule with the lowest diffusion coefficient is tetracontane
(Figure 4), which is almost on top with the Wilke−Chang
curve. The molecule is obviously apolar and flexible, and one
expects that in dilute aqueous solution the molecule is folded
into a compact but fluctuating object. We have included a
snapshot from the coarse-grained molecule in solution, taken
from the diffusion trajectory simulation that clearly shows the
expected compaction. Correspondingly, the diffusion of
tetracontane is not that of Rouse (small flexible polymer in
good solvent, D ∝ V−1), neither that of a rigid sphere D ∝ V−1/3

but something in between.
In the simulations, we keep the fragmentation pattern

constant. While this is an implicit assumption in the AFP
method, such approximation seems an absolute necessity to
make coarse-grained simulations at all possible. For the
calculation of the way each molecule is cut into pieces, we
use only one conformationthe conformation as it is in the
CULGI database (which is in the end obtained through
PubChem). The fragmentation pattern relies on the molecular
COSMO volume and is therefore in principle dependent on the
original conformation, but we have found that the dependency
of the fragmentation pattern on conformation is only very mild.
Even though the fragmentation pattern is a constant, the
coarse-grained simulations themselves include all conforma-

tions. As we have demonstrated, when the coarse-grained
molecule is flexible (as a hydrocarbon) it folds completely on
itself into a compact fluctuating object. The more rigid
molecules (as drug-like molecules, for example) do not
fluctuate extensively, not even on coarse-grained level, as
expected. But the method makes no presupposition about any
of that given the fragmentation; all conformations are sampled
as in agreement with statistical thermodynamics. The calculated
diffusion coefficient is always an average over conformations,
just as the experimental diffusion coefficient is from an average.

5. CONCLUSION
We have shown that coarse-grained DPD simulations based on
using the automated-fragmentation-parametrization scheme can
capture the diffusion of a variety of organic molecules, with high
accuracy. A major result is the recovery of the classical Wilke−
Chang statistical correlation between diffusion coefficient and
molar volume, on a database of more than 11000 molecules.
Since the simulations do not assume a solute or solution
structure, we suggest one could extend the protocol to more
complex systems from biology and materials science. From a
comparison of simulated and experimental diffusion coeffi-
cients, we find that one full time unit of coarse-grained
simulation equals 64 ± 13 ps real time. The coarse-graining and
simulation together take only a few minutes of calculation time
on a single CPU core. In all of the diffusion coefficient
calculation, by far most of the time is taken by the expensive σ-

Figure 3. Hydroflumethiazide. The COSMO charge distribution is
indicated.

Figure 4. Tetracontane. Right: molecular structure in CULGI
Database, overlaid with bead structure. Left: a collapsed state in
solution. The molecule is coarse-grained to 13 fragments.
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profile calculation. We point to several possible refinements of
the proposed simulations: (i) by reduction of the simulations to
the overdamped limit, (ii) by introduction of fragment-specific
friction parameters, (iii) by simplification of the σ-profile
calculations, and (iv) by adjusting the AFP scheme to very
polar molecular groups by the inclusion of hydration layers.
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