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Deletion of Mitochondrial Translocator Protein (TSPO) Gene
Decreases Oxidative Retinal Pigment Epithelial Cell Death via
Modulation of TRPM2 Channel
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Simple Summary: 18 kDa mitochondrial translocator protein (TSPO) is a mitochondria protein
of the cellular outer membrane in the mitochondria of several cells, including ARPE19 is TSPO.
Accumulating evince indicates that the presence of TSPO participated the modulations of Ca2+

homeostasis and mitochondrial free reactive oxygen species (fROS) generation. The deletion of
TSPO gene provides to study the action of TSPO on the levels of apoptosis, ADP-ribose (ADPR),
mitochondria-fROS (Mito-fROS), and apoptosis via the stimulation of Ca2+ permeable channels in
the models of cell culture. The stimulations of oxidative stress and ADPR induce the activation
of TRPM2 in the ARPE19. For clarifying the involvement of TSPO in retinal human diseases, we
used the ARPE19 human cell culture model. The current results demonstrated that the deletion of
TSPO induces the regulation of TRPM2 in the TSPO gene knockout ARPE19 (ARPE19-KO) In fact,
the present results show that the presence of TSPO increased the upregulations of apoptosis and
mitochondria oxidative cytotoxicity values via stimulation of TRPM2 in the ARPE19. Nevertheless,
the blockages of PARP-1 (PJ34 and DPQ) and TRPM2 (2APB and ACA) downregulated the values of
cell death and oxidative cytotoxicity in the ARPE19. In summary, present results clearly demonstrate
that the deletion of TSPO decreases mitochondrial oxidative cytotoxicity-mediated cell death via the
modulation of TRPM2 in the ARPE19.

Abstract: The current results indicated the possible protective actions of 18 kDa mitochondrial
translocator protein (TSPO) deletion on TRPM2 stimulation, mitochondrial free ROS (Mito-fROS)
and apoptotic harmful actions in the cells of adult retinal pigment epithelial19 (ARPE19). There
was a direct relationship between TSPO and the disease of age-related macular degeneration. The
nature of TSPO implicates upregulation of Mito-fROS and apoptosis via the activation of Ca2+

channels in ARPE19, although deletion of TSPO gene downregulates the activation. The decrease of
oxidative cytotoxicity and apoptosis might induce in TSPO gene deleted cells by the inhibition of
Mito-fROS and PARP-1 activation-induced TRPM2 cation channel activation. The ARPE19 cells were
divided into two main groups as TSPO expressing (ARPE19) and non-expressing cells (ARPE19-KO).
The levels of caspase -3 (Casp -3), caspase -9 (Casp -9), apoptosis, Mito-fROS, TRPM2 current and
intracellular free Ca2+ were upregulated in the ARPE19 by the stimulations of H2O2 and ADP-ribose,
although their levels were downregulated in the cells by the modulators of PARP-1 (DPQ and PJ34),
TRPM2 (ACA and 2APB) and glutathione. However, the H2O2 and ADP-ribose-mediated increases
were not observed in the ARPE19-KO. The expression levels of Bax, Casp -3, Casp -9 and PARP-1
were higher in the ARPE19 group as compared to the ARPE19-KO group. In summary, current
results confirmed that TRPM2-mediated cell death and oxidative cytotoxicity in the ARPE19 cells
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were occurred by the presence of TSPO. The deletion of TSPO may be considered as a therapeutic
way to TRPM2 activation-mediated retinal oxidative injury.

Keywords: ARPE19 cells; cell death; mitochondrial translocator protein; mitochondrial oxidative
cytotoxicity; TRPM2 channel

1. Introduction

Age-related macular degeneration (AMD) disease causes blindness in old people [1].
The incidences of AMD with eleven million patients are high in the USA [2]. The incidence
of AMD in Turkish patients is also high (15.3%) [3]. Drusen are the accumulation of yellow
deposits in the subretinal pigment epithelial and they are associated with the etiology of
AMD [4,5]. The drusen contain high concentration of the lipids [6]. The unsaturated fatty
acid contents in the lipids are the main targets of free reactive oxygen species (fROS) in
several cells, including retinal cells [7–9]. The dry AMD isn’t totally treated by the current
drugs. However, accumulation data indicate that inhibition of excessive fROS generation
in the membranes of retinal mitochondria is a reasonable way for the treatment of dry
AMD disease [1,10,11].

The outer membrane of mitochondria allows the influx of calcium ion (Ca2+) [10]. The
high expression level of 18 kDa mitochondrial translocator protein (TSPO) was indicated
in the outer membrane of mitochondria [10]. TSPO has a function on the translocation
of cholesterol into the mitochondrial matrix, and its name is coming from function [12].
In a previous study, a high amount of TSPO expression levels in the cells of adult retinal
pigment epithelial-19 (ARPE19) was reported [13] and it participated in the modulation
of Ca2+ influx from the primary microglia cells of human [12]. The involvement of TSPO
was shown in the regulation of various cellular and mitochondrial functions [12,14]. Accu-
mulating evidence indicates that TSPO has a multifunctional nature on the arrangements
of mitochondrial oxidative phosphorylation, the production of fROS, inflammation and
overload Ca2+ influx in several cells [12,15]. Moreover, the modulator action of TSPO was
also reported on the functions of cell viability and apoptosis in the retina cells [14,16,17].

In mammalian, the superfamily of transient receptor potential (TRP) cation channel
has 28 members within 7 subgroups [18,19]. A member of the TRP superfamily is TRPM2
cation channels and it is activated in the several cells such as ARPE19 and dorsal rood
ganglion (DRGs) by several stimuli including the fROS, nitric oxide, NADPH-oxidase and
ADP-ribose (ADPR) [20–22]. In ARPE19 cells, the activation of TRPM2 is responsible from
the upregulation of intracellular free Ca2+ concentration ([Ca2+]c), apoptosis, mitochondrial
membrane depolarization (mMDP) and fROS [21,23]. There is also a direct relationship
between the generation of mitochondrial fROS and the activation of TRPM2 in the ARPE19.
Similarly, accumulating data indicate that there is a direct relationship between the presence
of TSPO activity and the activity of voltage-dependent cation channel (VDCC) for the
regulation of [Ca2+]c [14]. The TSPO gene deletion-mediated decrease on the expression
levels of VDCC in the human microglia was recently reported [12]. The deletion of TSPO
modulated [Ca2+]c and oxidative cell injury by decreasing [Ca2+]c via the modulation of
VDCC [14]. In addition, the TSPO induced apoptotic action via the activation of NADPH-
oxidase in the microglia and eye cells of mice by producing fROS, although the action was
not observed in the microglia and eye cells of TSPO knock out mice [24,25]. Hence, TSPO
may induce the upregulation of mitochondrial fROS, apoptosis, and [Ca2+]c via activation
of TRPM2 channel in ARPE19 cells, although the upregulation of apoptotic and oxidant
values may be modulated by the deletion of TSPO.

Our research, therefore, concentrated on investigating the possible protective actions
of the TSPO gene deletion in the TRPM2-mediated harmful effects such as apoptosis and
oxidative toxicity in the ARPE19. The ARPE19 cell was originated by the differentiation
of the human retinal pigment epithelium. Hence, the cell has similar physiologic and
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morphologic properties of human retinal pigment epithelium such as tight junctions and
Bruch’s membranes [26]. The cells of ARPE19 were used as a model of h-RPE in the
previous observations [21,23,27]. For the reason, we preferred the cells in the present study.

2. Material and Methods
2.1. Cell Culture

The ARPE19 and ARPE19 TSPO knock-out (ARPE19-KO) cells were obtained from a
co-author (Dr. Xinhua Shu). There were limited reports on the naturel presence of TRPM2
protein in the ARPE19 [20,21], although the naturel presence of TRPM2 in the SH-SY5Y
neuroblastoma cell was confirmed by the several observations [28–31]. For the reason,
we further confirmed the naturel presence of TRPM2 via the analyses of Western blot in
the ARPE19 by using the positive control cells (SH-SY5Y). The cell culture medium mix-
ture (45%/45%) was prepared by using DMEM-LPX and HAM-12-A (Capricorn Scientific
GmbH, Ebsdorfergrund, Germany). The medium mixture was additionally contained FBS
(10%) and antibiotics (1%) nutrient medium mixture as described in a previous observa-
tion [32]. The T25 and T75 cell culture flasks with filter caps (INTERLAB, Istanbul, Turkey)
and 35-mm dishes with bottom glasses (Mattek Corporation, Istanbul, Turkey) were incu-
bated in a NB-203QS incubator (Bucheon, Gyeonggi-do, South Korea). The cells in the T75
flasks and 35-mm dish were used for the Western blot/antioxidant (spectrophotometer)
analyses and laser confocal microscope, respectively, although cells in the T25 flask were
used for the analyses of automatic plate reader (Infinite 200 PRO, Tecan Life Sci Austria
GmbH, Groedig, Austria) and patch-clamp analyses.

2.2. Experimental Design

After inducing two main groups (ARPE19 and ARPE19-KO), the cells in the both
groups were divided into three subgroups as follows

Control group: The control cells were cultured in the incubator (5% CO2 and 37 ◦C) with-
out the treatment of 2-aminoethoxydiphenyl borate (2APB), H2O2 and N-(p-amylcinnamoyl)
anthranilic acid (ACA) for 1 h.

Stimulation group: The cells in the group were stimulated by extracellular H2O2 (1 mM)
for 5 min or intracellular ADPR [20,21,30,31].

Treatment group: The cells in treatment (H2O2 + 2APB or H2O2 + ACA) groups were
incubated with ACA (25 µM) or 2APB (100 µM) for 5 min after or before the H2O2 stim-
ulation. The ACA and 2APB were dissolved in the DMSO before the incubation in the
extracellular buffer with Ca2+ [20,21,30,31].

2.3. Obtaining TSPO Knockout (ARPE19-KO) Cells

The details of TSPO gene preparations in the ARPE19 cell were indicated in a previous
study [33]. Briefly, the procedure of clustered regularly interspaced short palindromic
repeats (CRISPR) was applied for inducing ARPE19-KO cells. After designing the CRISP
primers, the Oligos of CRISP were ligated into linearized gRNA vector by generating a
CRISP TSPO-gRNA. The TSPO knockout colonies were confirmed by using the analyses of
Western blotting and immunocytochemistry (Data were shown in the [33]).

2.4. The Determination of Intracellular Free Ca2+ Concentration ([Ca2+]c)

We assayed TSPO deletion-induced changes of [Ca2+]c via imaging the florescence
intensity of Fluo-3AM (1 µM for 60 min) (#F-1242, Thermo Fisher Scientific GmbH, Dreieich,
Germany) in the ARPE19 previously described [30,31]. For the stimulation of the Fluo-3AM
in the cells, argon laser at 488 nm in the LSM 800 confocal microscope setup (Zeiss, Ankara,
Turkey) with 40 × 1.3 oil objective was used. Before the H2O2 stimulation, Fluo-3AM from
the cells was removed by washing with extracellular buffer. The fluorescence intensity
changes in the cells were analyzed in a computer by using the ZEN program (Zeiss).
Arbitrary unit (a.u.) was used for the expression of the Fluo-3 results.
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2.5. Patch-Clamp Electrophysiology Analyses

The USB 10 amplifier and Patch-master software were purchased from the HEKA
GmbH (Lamprecht, Germany), and it was used in the current study for recording the
patch-clamp electrophysiology currents. Before recording the currents, the patch pipettes
of the borosilicated capillary tubes were prepared in the puller (P-97 model, Sutter Inc.,
USA). The ADPR (1 mM) was solved in the intracellular buffer, and the pipettes were filled
with the intracellular buffer. After clamping the holding potential at −60 mV, the whole cell
configuration of TRPM2 was obtained in the USB 10 by using the patch pipette with high
intracellular [Ca2+]c [34]. The contents of standard intracellular and extracellular buffers
were shown in previous studies [18,23]. The TRPM2 antagonist (ACA and 25 µM in the
patch chamber) was used for blocking the TRPM2 currents. The unit of pA/pF was used
for the expression of the current density result.

2.6. The Assay of Cell Viability and Apoptosis

The cells (1 × 106) were incubated in the 96-well black plates. After washing the cells
with 1xPBS, the MTT (200 µL) from stock solution (0.5 mg/mL) was added to each black
well. The plates were kept for 3–4 h in the NB-203QS incubator. The optic density changes
of MTT were recorded at 490 nm in the infinite 200 PRO. The protein contents of the cells
were manually measured by using Bradford’s reagent.

The concentration of apoptosis in the cells were spectrophotometrically (Cary 60 UV-
Vis, Agilent Inc., Izmir, Turkey) assayed at 550 nm by using an APOPercentage commercial
kit (Biocolor Ltd., Northern Ireland). After calculating the results as optic density/mg
protein, the concentrations of apoptosis and MTT are shown as % of control.

2.7. The Assays of Caspase -3 (Casp -3) and -9 (Casp -3)

The Ac-DEVD-AMC and Ac-LEHD-AFC are two fluorogenic substrates of passive
Casp -3 and Casp -9 and they can be specifically cleaved by the active Casp -3 and Casp -9.
The caspase substrates were purchased form Bachem AG (Bubendorf, Switzerland). The
activities of Casp -3 and Casp -9 were quantified in the Infinite 200 PRO by using the
fluorescent detection of free AMC and AFC. The AMC was excited at 360 nm and emitted
at 460 nm, although the AFC was excited at 400 nm and emitted at 505 nm [30,31]. After
normalization to total protein concentration, the fluorescence levels of free AMC and AFC
were expressed as % of control.

2.8. The Analyses of Mitochondrial fROS Generations

The non-fluorescent version of MitoTracker Red (#M-7512, ThermoFisher, Istanbul,
Turkey) stain is MitoTracker Red CM-H2XRos (Mito-fROS) and it is converted to fluores-
cent form under upon oxidation and laser stimulation. The fluorescent dye stains fROS
in the mitochondria of live cells. Before the analyses of Mito-fROS, the cells were incu-
bated with MitoTracker Red CM-H2Xros (1 µM for 30 min). After washing the dye with
1× PBS, the generation of fROS in the mitochondria was imaged in the LSM 800 confocal
microscope [30,31]. The fluorescence intensities of MitoTracker Red CM-H2Xros were mea-
sured in 15 mm2 of each cell for calibration of the intensities. The images were evaluated in
a computer by using the ZEN program. The results (n = 25–30) were expressed as a.u.

2.9. The Assay of the Mitochondrial Membrane Depolarization (mMDP)

For the assay of mMDP, the cells in the cell culture dishes were stained with 5 µM
JC-1 (Cayman Inc., Istanbul, Turkey) and they were kept in the incubator at dark for
30 min [30,31]. The JC-1 was excited at 595 nm in the LSM 800, although it was emitted
at 535 nm. The fluorescence intensities of JC-1 were measured in 15 mm2 of each cell for
calibration of the intensities. The images were evaluated in a computer by using the ZEN
program. The results of mMDP (n = 25–30) were expressed as a.u.
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2.10. The Analyses of Western Blot

The analyses of Western blot (n = 3) were performed by using the standard Western
blotting methods. After washing the ARPE19 and ARPE19-KO with ice cold 1× PBS,
the protein concentration was measured by using the Bradford’s solution. The details of
Western blot procedure were indicated in the Refs [30,31]. The primary and secondary
antibodies of human TRPM2, PARP-1, Bax, Bcl-2, Casp -3 and Casp -9 were purchased form
Cell Signaling Technology (EKA Biolab Teknoloji, Ankara, Turkey). The Gel Imagination
System (G:Box, Syngene Inc., Cambridge, UK) was used for imaging the bands. The
β-actin antibody was used as an internal control. The band intensities of Bax, Bcl-2,
Casp -3, Casp -9, TRPM2 and PARP-1 in the ARPE19-KO were normalized relative to
ARPE19 values.

2.11. The Analysis of Reduced Glutathione (rGSH), Glutathione Peroxidase (GSHPx) and Lipid
Peroxidation (Malondialdehyde, MDA)

The levels of rGSH and GSHPx in the ARPE19 and ARPE19-KO cells were analyzed
at 412 nm by using a spectrophotometer (Cary 60 UV-Vis, Agilent), although the level
of MDA was analyzed at 532 nm as described in the previous studies [23,30]. The data
of rGSH and MDA were expressed as µg/g protein in the cells, although the activity of
GSHPx was expressed as IU/g protein.

2.12. Statistical Analysis

The current data were expressed as mean ± standard deviation (SD). First, we checked
whether the presence of statistical significance in the current data by one-way ANOVA
test of the SPSS program. Then, the p (≤0.05) values of the individual significances were
analyzed by using the Student’s t-test.

3. Results
3.1. The Presence of Nature TRPM2 in the ARPE19 Cells Was Confirmed by Using the Positive
Control Cells (SH-SY5Y)

There are two reports on the presence of nature TRPM2 in the ARPE19 [20,21], al-
though the presence of nature TRPM2 in the SH-SY5Y cells was reported by the results of
several studies [28–31]. In addition, the TRPM2 channel expression levels may be affected
in the cells of ARPE19 by the deletion of TSPO. Hence, we tested TRPM2 channel expression
levels in the cells of ARPE19, ARPE19-KO and SH-SY5Y. The expression level of TRPM2
in the SH-SY5Y cell was used as a positive control in the present study. We confirmed the
presence of nature TRPM2 channel in the SH-SY5Y, ARPE19 and ARPE19-KO (Figure 1a,b
and Supplementary Figure S1). The expression concentration of TRPM2 was higher in the
ARPE19 as compared to the SH-SY5Y (p ≤ 0.05). However, the expression level of TRPM2
was downregulated in the ARPE19-KO cells by the deletion of TSPO. The expression
concentration of TRPM2 was lower in the ARPE19-KO than in the ARPE19 cells (p ≤ 0.05).

3.2. The TRPM2 Was Activated in the ARPE19 by the Stimulation of H2O2

The modulator action of TSPO gene deletion on the VDCC and chemical-gated Ca2+

channels in several cells was recently reported reviewed in ref. [17], although there is
limited report on the upregulation of [Ca2+]c via the oxidative stress (H2O2)-mediated
TRPM2 activation in the ARPE19 [21,23]. Hence, we checked whether the involvement of
TSPO gene deletion on the upregulation of H2O2-mediated TRPM2 activation and [Ca2+]c
changes in the ARPE19.

The green images of Ca2+ (Fluo-3AM) in the groups of control, H2O2 and H2O2+ACA
of the ARPE19 were indicated in the Figure 2a. The [Ca2+]c in H2O2 group was upregulated
in the ARPE19 (Figure 2b,c) by the stimulation of H2O2 (1 mM) (p ≤ 0.05). However,
the [Ca2+]c was downregulated in the groups of H2O2 + ACA by the treatment of ACA
(Figure 2b,c) (p ≤ 0.05). Hence, the H2O2 stimulation-mediated TRPM2 activation was
observed in the ARPE19.
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as Mean ± SD. 1:500. (* p ≤ 0.05 vs. SH-SY5Y cells. ** p ≤ 0.05 vs. ARPE19 cells). 
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Figure 1. The expression level of TRPM2 protein. (Mean ± SD and n = 3). For the expression levels
of TRPM2 protein in the cells of SH-SY5Y, ARPE19 and ARPE19-KO, we used standard Western blot
analyses. The protein bands of β-actin were used as control. (a) The protein bands of β-actin and
TRPM2. (b) The mean levels of the band proteins in the column figure were expressed as Mean ± SD.
1:500. (* p ≤ 0.05 vs. SH-SY5Y cells. ** p ≤ 0.05 vs. ARPE19 cells).

3.3. The H2O2-Mediated Upregulation of [Ca2+]c in the ARPE19 Was Diminished by the
Treatments of PARP-1 Inhibitors (PJ34 and DPQ), TRPM2 Blocker (2APB) and GSH

The current data indicate that the DNA-injury induced ADPR is produced in the
nucleus of cells by the activation of PARP-1 enzyme [9]. The presence of ADPR pyrophos-
phatase enzyme in the C terminal NUDT9 homology domain of the TRPM2 was reported
in the kidney cells (HEK293) [35,36] and ARPE19 cells [21,23]. The ADPR is intracellularly
produced in the nucleus of cells by the enzymatic activity of PARP-1 [9]. However, the
production of ADPR is reduced by the down-regulation of PARP-1 enzyme. The PJ34
and DPQ are well-known PARP-1 inhibitors [37] and their treatment induced the TRPM2
modulator action in the ARPE19 [21,23]. Importance of thiol redox system members such
as glutathione (GSH) and selenium were reported on the TRPM2 activation in several
cells, including ARPE19 [18,21,23], although effects of GSH on the TSPO-mediated TRPM2
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activation in the ARPE19 cells has not been reported yet. Hence, we tested the protective
actions of PJ34, DPQ, 2APB and GSH on the H2O2-mediated upregulations of TRPM2
and Ca2+ fluorescence intensity in the ARPE19 cells. The applications of extracellular
H2O2 to the ARPE19 induced the upregulation of Ca2+ influx (the fluorescence intensity of
Fluo-3AM) (Figure 3a,b) (p ≤ 0.05). However, the H2O2-mediated increase of Ca2+ influx
was not observed in the cells by the preincubations of PJ34, DPQ, 2APB and GSH. The ap-
plications of extracellular H2O2 to the ARPE19-KO did not induce the upregulation of Ca2+

influx (the fluorescence intensity of Fluo-3AM) (Figure 4a–c), suggesting the involvement
of TRPM2 in H2O2-induced Ca2+ influx in the ARPE19 cells.
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ARPE19. (n = 25–30). After incubating the ARPE19 cells with Fluo-3AM (1 µM for 60 min), the TRPM2 stimulator (H2O2 and
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the ARPE19 after the treatments of H2O2 and ACA. (* p ≤ 0.05 vs. control. x p ≤ 0.05 vs. H2O2 group).
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Figure 3. There is no H2O2-mediated florescence change via TRPM2 activation in the presence of
GSH, PARP-1, and TRPM2 blockers. (Mean ± SD). The ARPE19 cells in the dishes were incubated
with Fluo-3AM (1 µM for 60 min.). After pre-incubation of cells with the inhibitors of PARP-1 (1 µM
PJ34 and 30 µM DPQ), TRPM2 (100 µM 2APB for 30 min) and GSH (10 mM for 2 h), the cells were
stimulated by H2O2 (1 mM for 6 min). The symbolic images (a) and the mean intensity values (b) of
the [Ca2+]c from the groups of control (Cntr), 2APB, PJ34, DPQ and GSH groups were obtained. The
images were captured in the LSM 800 laser confocal microscope with 40 × 1.3 oil objective and the
results of Fluo-3AM florescence intensity were indicated as arbitrary unit (a.u.). The scale bar: 5 µm.
One symbolic image from each group was selected from 25–30 cells of 6 independent investigations.
(* p ≤ 0.05 vs. Cntr (− H2O2) group. x p ≤ 0.05 vs. vs. Cntr (+ H2O2) group).
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Figure 4. The stimulation of H2O2 did not induce changes on the [Ca2+]c and TRPM2 activation in the cells of ARPE19-
KO. (Mean ± SD). After incubating the cells of ARPE19-KO with Fluo-3AM (1 µM for 60 min), the TRPM2 stimulator
(H2O2 and 1 mM) and blocker (ACA and 25 µM for 6 min) applied to the cells within three groups (control, H2O2 and
H2O2 + ACA). The images of ARPE19-KO were captured in the LSM 800 with 40 × 1.3 oil objective. The scale bar was
kept as 5 µm. The captured representative images (Figure 4a) and the mean Fluo-3AM intensity values (Figure 4b,c) in the
groups of control (Cntr), H2O2 and H2O2 + ACA are shown in the Figure 4. One symbolic image from each group was
selected from 25–30 cells of 6 independent investigations.

3.4. The Treatment of ADPR Induced TRPM2 Activation in the ARPE19, But Not in the
ARPE19-KO

TRPM2 was not gated in the absence of cytosolic ADPR, and there was no activation
current of TRPM2 in the absence of ADPR in the patch pipette (Figure 5a). In the presence
of ADPR in the patch-pipette, the increase of TRPM2 activation current was observed up
to 0.78 nA in the ARPE19 + ADPR group. However, the increase of TRPM2 current was
diminished to the control levels by the treatment of TRPM2 antagonist (ACA) (Figure 5b).
The densities of TRPM2 currents were significantly (p ≤ 0.05) higher in the groups of
ARPE19 + ADPR (107.52 pA/pF) than in the ARPE19 (4.31 pA/pF), although they were
lower in the ARPE19 + ADPR + ACA group (15.16 pA/pF) than in the ARPE19 + ADPR
group (107.52 pA/pF) (Figure 5d). In the ARPE19-KO cells (Figure 5c), the TRPM2 was
not activated by the stimulation of cytosolic ADPR. The current densities of TRPM2 were
markedly lower in the ARPE19-KO (8.84 pA/pF) as compared to the ARPE19 + ADPR
group (107.52 pA/pF) (p ≤ 0.05) (Figure 3f). The cytosolic ADPR is specific agonist of
TRPM2 and the absence of currents in the ARPE19-KO obviously evidenced the involve-
ment of TPSO on TRPM2 activation in the ARPE19.
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Figure 5. The stimulation of ADPR induced the activation of TRPM2 in the cells of ARPE19, but
not in the cells of ARPE19-KO. (Mean ± SD and n = 6). The whole cell (W.C.) configuration current
records of TRPM2 were taken in voltage-clamp (at −60 mV) (a) The cells of ARPE19 without cytosolic
ADPR (1 mM). (b) ARPE19 + ADPR group. The cytosolic ADPR (1 mM)-mediated TRPM2 currents
were inhibited by ACA (25 µM). (b)-I/V. Time points ADPR and ACA were indicated 1 and 2,
respectively. (c) ARPE19-KO + ADPR group. There is no cytosolic ADPR (1 mM)-mediated TRPM2
current. (d) The mean current densities from the cells of ARPE19 and ARPE19-KO. (a p ≤ 0.05 vs.
ARPE19). b p ≤ 0.05 vs. ARPE19 + ADPR).
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3.5. The Levels of Apoptosis, Casp -3, Casp -9 and Cell Viability Were Affected in the ARPE19 But
Not in the ARPE19-KO Cells by the H2O2 Stimulation: Modulator Role of ACA

Inactive forms of Casp -3 and Casp -9 locate in cytoplasm of cells, including
ARPE19 [38,39]. In the pathways of apoptosis, Casp -3 and Casp -9 proteins have key
roles. Overload Ca2+ influx via activation of many TRP channel subtype, including TRPM2
causes the upregulation of mMDP in several cells such as ARPE19 and SH-SY5Y [21,23]. In
turn, the upregulation of mMDP induces apoptosis via the activations of Casp -3 and Casp
-9. However, the ACA treatment-mediated TRPM2 inhibition caused to downregulation
of Casp -3, Casp -9 and apoptosis, in many cells, including ARPE19 [19,21,23,28]. After
finding the upregulation of [Ca2+]c and TRPM2 currents in the ARPE19, we predicted the
changes of apoptosis, Casp -3, Casp -9 and cell viability in the ARPE19.

The levels of apoptosis (Figure 6b), Casp -3 (Figure 6c) and Casp -9 (Figure 6d) were
upregulated in the groups of ARPE19+H2O2, although the levels of cell viability were
downregulated in the groups of ARPE19+H2O2 by the stimulation of H2O2 (p ≤ 0.05)
(Figure 6a). However, the changes of Casp -3, Casp -9, cell viability and apoptosis in the
groups of ARPE19 + H2O2 + ACA were modulated by the incubation of ACA (p ≤ 0.05).
However, the changes were not observed in the ARPE19-KO by the stimulation of H2O2 or
the inhibition of ACA (p ≥ 0.05).
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Figure 6. The values of apoptosis, caspase -3 (Casp -3), and -9 (Casp -9) were upregulated, al-
though the values of cell viability were downregulated in the cells of ARPE19 (but not in the
cells of ARPE19-KO) by the stimulation of H2O2. (Mean ± SD and n = 6). For analyzing cell
viability, the test of MTT was used (a), whereas the value of apoptosis (b) was analyzed by using
the ApoPercantage kit. The fluorogenic substrates of Ac-DEVD-AMC and Ac-LEHD-AFC were used
for the assays of Casp -3 (c) and Casp -9 (d), respectively. (* p ≤ 0.05 vs. ARPE19. x p ≤ 0.05 vs.
ARPE19 + H2O2).
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3.6. H2O2-Induced Increase of mMDP and Mito-fROS Levels Were Diminished in the ARPE19
Cells by the Treatment of 2APB

The involvement of TRPM2-mediated fROS generation on apoptosis in the several
cells except ARPE19 was recently reported [19,23,25]. After observing the increase of
apoptosis levels in the ARPE19, we predicted the increase of mMDP and Mito-fROS via
the upregulation of TRPM2.

The levels of JC-1 (Figure 7a,b) and Mito-fROS (Figure 7c,d) were upregulated in the
groups of ARPE19 + H2O2 as compared to the groups of ARPE19 (p ≤ 0.05). However,
the treatments of 2APB downregulated the action of H2O2 on the JC-1 and Mito-fROS in
the ARPE19 + H2O2 + 2APB group (p ≤ 0.05). The changes of the JC-1 and Mito-fROS
values in the ARPE19-KO were not observed after the H2O2 and 2APB treatments. Hence,
there were no changes on the values in the ARPE19-KO (p ≥ 0.05). The values of JC-1
and Mito-fROS were higher in the ARPE19 + H2O2 as compared to ARPE19-KO + H2O2.
Therefore, the results of JC-1 and Mito-fROS further confirmed the action of TSPO on
[Ca2+]c and Mito-fROS-mediated apoptosis in the ARPE19.
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Figure 7. The levels of Mito-Dep (JC-1) and mitochondrial fROS (Mito-fROS) were upregu-
lated in the ARPE19, but not in the ARPE19-KO by the stimulation of H2O2. (N = 25–30 and
mean ± SD). After staining the cells with JC-1 (5 µM) and MitoTracker Red CM-H2ros (1 µM) dyes,
the images of JC-1 and Mito-fROS were captured in the LSM 800 with the 40 × 1.3 oil objective.
(a) The images of JC-1. (b) The mean fluorescence intensities of the JC-1 as arbitrary unit (a.u). (c) The
images of MitoTracker Red CM-H2ros. (d) The mean fluorescence intensities of the Mito-fROS.
(* p ≤ 0.05 vs. ARPE19 group. ** p ≤ 0.05 vs. ARPE19 + H2O2 group).
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3.7. The Levels of rGSH, GSHPx and MDA Were Modulated in the ARPE19 by the Deletion
of TSPO

After observing the increase of oxidative stress values, we suspected the decrease of
antioxidant levels, namely rGSH and GSHPx. Hence, we analyzed the rGSH (Figure 8a),
GSHPx (Figure 8b) and MDA (Figure 8c) levels in the ARPE19 and ARPE19-KO cells. The
levels of rGSH and GSHPx were lower in the ARPE19 cells as compared to the ARPE19-KO
cells, although the level of MDA was higher in the ARPE19 cells than in the ARPE-KO cells
(p ≤ 0.05).
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mean ± SD). The levels of rGSH (a), GSHPx (b) and MDA (c) were spectrophotometrically analyzed
in the cells. (* p ≤ 0.05 vs. ARPE19).

3.8. The Expression Levels of PARP-1, Bax, Bcl-2, Casp -3, and Casp -9 Were Modulated in the
ARPE19 by the Deletion of TSPO

An interaction between the increase of TRPM2 expression and [Ca2+]c was reported
in ARPE19 [21,23]. It was reported that the generation of ADPR in cells was induced
by the upregulation of PARP-1 activation [9]. In turn, ADPR-mediated stimulation of
TRPM2 causes the upregulation of Bax, Casp -3 and Casp -9 expression levels, although its
activation decreases Bcl-2 expression level in the ARPE19 [21,23]. However, data are not
available on the expression values of Bax, Bcl-2, Casp -3, Casp -9 and PARP-1 in the ARPE19
after the deletion of TSPO gene. In the current data, the protein expression values of PARP-1
(Figure 9a,b and Supplementary Figure S2), Casp -3 (Figure 9c), Casp -9 (Figure 9d) and
Bax (Figure 9e) were higher in the group of ARPE19 in comparison with the groups of
ARPE19-KO (p ≤ 0.05). However, the protein expression level of Bcl-2 was upregulated in
the ARPE19-KO group by the deletion of TSPO (p ≤ 0.05) (Figure 9f).Biology 2021, 10, x FOR PEER REVIEW 14 of 19 
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Figure 9. The regulator role of TSPO deletion on the protein expressions of PARP-1, caspase-3
(Casp -3), caspase -9 (Casp -9), Bcl-2, and Bax. (Mean ± SD and n = 3). The band expressions of
PARP-1, Casp -3, Casp -9, Bcl-2 and Bax were determined by standard method of Western blot. The
proteins of β-actin were used as control. (a) Western blot bands. The mean values of PARP-1 (b),
Casp -3 (c), Casp -9 (d), Bcl-2 (e) and Bax (f) were indicated in the Figure 8 by columns. (* p ≤ 0.05
vs. ARPE19).
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4. Discussion

A mitochondria protein of the cellular outer membrane in the mitochondria of sev-
eral cells, including ARPE19 is TSPO. Accumulating evince indicates that the presence
of TSPO participated the modulations of Ca2+ homeostasis and mitochondrial fROS
generation [10,11]. The deletion of TSPO gene provides to study the action of TSPO on the
levels of apoptosis, ADPR, Mito-fROS and apoptosis via the stimulation of Ca2+ permeable
channels in the models of cell culture [40–43]. The stimulations of oxidative stress and
ADPR induce the activation of TRPM2 in the ARPE19 [21,23]. For clarifying the involve-
ment of TSPO in retinal human diseases, we used the ARPE19 cell culture model [13]. The
TSPO knockout ARPE19 lines were generated by means of CRISP TSPO-gRNA [33]. The
current results demonstrated that the deletion of TSPO induces the regulation of TRPM2 in
the ARPE19-KO, and it may present via the activations of anti-apoptotic and antioxidant
pathways to inhibit the oxidant and apoptotic adverse actions of TSPO activation. In
fact, the present results show that the presence of TSPO increased the upregulations of
apoptosis and mitochondria oxidative cytotoxicity values via stimulation of TRPM2 in the
ARPE19. Nevertheless, the blockages of PARP-1 (PJ34 and DPQ) and TRPM2 (2APB and
ACA) downregulated the values of cell death and oxidative cytotoxicity in the ARPE19.
Correspondingly, the decreases of cell death and oxidative cytotoxicity in the ARPE19-KO
were decreased by the deletion of TSPO gene. In summary, present results clearly demon-
strate that the deletion of TSPO decreases mitochondrial oxidative cytotoxicity-mediated
cell death via the modulation of TRPM2 in the ARPE19.

Present literature data indicated that the existence of TSPO induces the upregulation
of mitochondrial redox signaling and PARP-1 activation, resulting in upregulated values of
intracellular [Ca2+]c, causing to stimulation of the Ca2+-mediated NADPH oxidase, thereby
upregulating fROS values [24,25]. The TRPM2 channel is stimulated by NADPH oxidase-
induced fROS and PARP-1 activation-induced ADPR generations [22,35,36], although
the channel is inhibited in several cells by the inhibitors of NADPH oxidase (apocynin),
PARP-1 (DPQ and PJ34) and stimulation of GSH [21,22,31,37]. Similarly, the regulator role
of TSPO deletion on the NADPH oxidase and PARP-1 activation in mice microglia was
reported [24,25]. The modulator role of antioxidant GSH was reported on the TRPM2
activation in the ARPE19 [18,21,23]. In the present results, we remarked oxidative stress
and ADPR-dependent TRPM2 activation in the ARPE19, while the TRPM2 stimulation
was regulated by the GSH, PARP-1 blocker and TRPM2 antagonists. In addition, the
stimulation was not remarked in the TSPO gene deleted cells (ARPE19-KO). The results
clearly presented the interaction between the presence of TSPO and the TRPM2 stimulation
in the ARPE19.

The increases of apoptosis and cell death are induced by the excessive Ca2+ accumula-
tion into mitochondria [44]. Even though the role of excessive Ca2+ influx-mediated pro-
grammed cell death in neuronal injury has been discussed in several studies [21,23,30,31],
TRPM2 activation-mediated apoptosis has not been explained in the ARPE19 yet. In the
presence of excessive Ca2+ influx into cytosol of retinal pigment epithelium, the pore of
mitochondrial permeability transition (mPTP) has been shown to open in response to
the mitochondrial Ca2+ overload and ATP depletion [45]. Opening the mPTP via TRPM2-
induced overload Ca2+ influx leads to the increase of mMDP. In turn, it induces the increases
of Bax, programmed cell death, Casp -3 and Casp -9 in the ARPE19, although it induces the
decrease of cell viability and Bcl-2 in the cells [21,23]. It was reported that PARP-1 activation
causes oxidative damage via opening the mPTP in the mitochondria [46,47], although its
inhibition via PJ34 and DPQ regulates mitochondrial oxidative damage [9,18,19]. One
of the MPTP components is TSPO. The opening of the mPTP is arranged by the TSPO
gene [48,49]. TRPM2 activator, ADPR, is produced in the nucleus of several cells by the
stimulation of PARP-1 [9]. TRPM2 is regulated by the inhibition of PARP-1 [37]. Therefore,
we hypothesized that the inhibitions of PARP-1 and TRPM2 regulate the TSPO-induced
upregulation of apoptosis, Bax, Casp -3 and Casp -9 in the TSPO deleted ARPE19. In this
study, the decreases of Bax, programmed cell death, Casp -3 and Casp -9 were found in
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ARPE19 after TSPO deletion. Moreover, the deletion of TSPO gene and the treatments
of TRPM2 antagonists prevented the oxidative stress-induced programmed cell death,
Casp -3 and Casp -9 in ARPE19. Thus, the effects of TSPO on oxidative stress-induced
programmed cell death, Casp -3 and Casp -9 were dependent of the activations of PARP-1
and TRPM2 in the ARPE19.

The rate of oxygen consumption is high in the retina [1]. A large amount of fROS
generation in the ARPE19 cells from a variety of cellular sources, including mitochondria [1].
The activation of TRPM2 induces overload Ca2+ influx-mediated oxidative stress by the
gating mPTP and injuring mMDP [9,18,19]. The influxes of Ca2+ also action as a direct
stimulus to cause TRPM2 stimulation-induced fROS in the ARPE19 [21,23]. The deletions
of TSPO regulate mPTP activity via the inhibition of VDCC activation by decreasing
the mitochondrial fROS generation, Ca2+ influx and mitochondrial Ca2+ accumulation
in several cells [14,40]. PARP-1 can be overstimulated by fROS and PARP-1. In turn, it
also stimulates the activations of TRPM2 and oxidant redox system [9]. In accordance
with the PARP-1 and fROS reports, we observed that the inhibition of TRPM2 was able to
downregulate the generations of fROS after TSPO deletion. Moreover, the upregulation of
mitochondrial fROS was downregulated when the cells were pre-treated with ACA and
2APB. Thus, fROS is possibly a downregulation signal, which TRPM2 modulates mMDP.
The present results confirm recent results, which show that the TSPO gene deletions in
the microglia of human and mouse led to the downregulation of mMDP, intracellular Ca2+

homeostasis and mitochondrial respiratory homeostasis [12]. The activations of phagocytic
cells and microglia cause to the excessive generation of fROS for killing bacteria and
viruses, although the excessive generation of fROS induces adverse action in the normal
tissues, including retina [1,8]. Klee et al. [50] investigated the involvement of TSPO gene
deletion on the microglia and macrophage activation-induced retinal degeneration in mice
and human. Contrary to the present results, they were not able to found the relationship
between the deletion of TSPO and the changes of retina in mice and human.

The fROS is scavenged by several antioxidants. The GSHPx as an antioxidant enzyme
scavenges the hydrogen peroxide and hydroxyl radicals by using GSH as substrate [9,21].
The increase of fROS and oxidative stress causes the decrease of antioxidant levels, namely
rGSH and GSHPx in the ARPE19 cells, although the treatment of GSH increases antioxidant
levels via the decrease of MDA level and TRPM2 activity in several cells [18,21,23]. In the
current data, the levels of rGSH and GSHPx were increased in the ARPE19-KO cells by
the deletion of TSPO, although the level of MDA was decreased in the cells. The results
of rGSH, GSHPx and MDA confirmed presence of a relationship between the GSH redox
system and TSPO-mediated oxidative stress in the ARPE19 cells.

5. Conclusions

In summary, the deletion of TSPO protects ARPE19 from mitochondrial oxidative
stress-mediated programmed cell death via the block of TRPM2-mediated fROS generation
in the mitochondria and to the inhibitions of Casp -3 and Casp -9. The action of TSPO on
the oxidant and programmed cell death pathways in the ARPE19 were performed by the
upregulation of the molecular TRPM2-mediated excessive Ca2+ influx pathways (Graphical
Abstract). According to the present data, we concluded that the deletion of TSPO caused
the inhibition of TRPM2. Hence, inhibiting the TRPM2 may defend the ARPE19 against
mitochondrial oxidative injury and programmed cell death. Therefore, the deletion of
TSPO may be considered as a beneficial strategy against oxidative injury-mediated ARPE19
cell death.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology10050382/s1, Figure S1: The row data of TRPM2 protein expression level in the
SH-SY5Y, ARPE19, and ARPLE19-KO cells, Figure S2: The row data of PARP-1, caspase-3 (Casp -3),
caspase -9 (Casp -9), Bcl-2, and Bax in the ARPE19 and ARPE19-KO cells.
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AMD age-related macular degeneration
ARPE19 adult retinal pigment epithelial 19
Casp -3 caspase -3
Casp -9 caspase -9
Ca2+ calcium ion
CRISPR clustered regularly interspaced short palindromic repeats
fROS free reactive oxygen species
GSH glutathione
GSHPx glutathione peroxidase
h-RPE human retinal pigment epithelium
MDA malondialdehyde
mMDP mitochondrial membrane depolarization
mPTP mitochondrial permeability transition pore
rGSH reduced glutathione
TRP transient receptor potential
TRPM2 transient receptor potential melastatin 2
TSPO 18 kDa mitochondrial translocator protein
VDCC anion protein of voltage-dependent channel
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