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Abstract

In spite of high rates of complete remission following chimeric antigen receptor (CAR) T cell therapy, the efficacy of this
approach is limited by generation of dysfunctional CAR T cells in vivo, conceivably induced by immunosuppressive tumor
microenvironment (TME) and excessive antigen exposure. Exhaustion and senescence are two critical dysfunctional states
that impose a pivotal hurdle for successful CAR T cell therapies. Recently, modified CAR T cells with an “exhaustion-
resistant” phenotype have shown superior antitumor functions and prolonged lifespan. In addition, several studies have
indicated the feasibility of senescence delay in CAR T cells. Here, we review the latest reports regarding blockade of CAR T
cell exhaustion and senescence with a particular focus on the exhaustion-inducing pathways. Subsequently, we describe what
potential these latest insights offer for boosting the potency of adoptive cell transfer (ACT) therapies involving CAR T cells.
Furthermore, we discuss how induction of costimulation, cytokine exposure, and TME modulation can impact on CAR T cell
efficacy and persistence, while potential safety issues associated with reinvigorated CAR T cells will also be addressed.

Introduction

In a recent decade, genetically modified immune cells, parti-
cularly chimeric antigen receptor (CAR) T cells, have raised
enormous interest in clinical trials [1]. Several generations of
CARs have now been developed that are different in the
number of intracellular domains or CAR activation mode
(Fig. 1). Despite the dramatic clinical benefit of CAR T cell
therapy in a broad spectrum of cancer types, a large fraction of
patients that achieves remission with CAR T cell therapy
displays disease relapse within a few years [2, 3]. Several
important explanations of treatment failure in CAR T cell
therapies exist, such as tumor antigen escape and inefficient
CAR T cell trafficking into the tumor site. However, it is
widely thought that limited CAR T cell expansion and
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persistence in the hostile tumor microenvironment (TME)
represent additional key impediments to efficacious CAR T
cell responses and durable clinical remission following CAR T
cell therapy [4]. The observed reduction in proliferative
capacities and persistence of CAR T cells is associated with a
generalized dysfunctional phenotype that is hallmarked by
impaired proliferative and cytotoxic abilities. Importantly, the
root cause for development of this dysfunctional state in CAR
T cells is the activation of pathways that promote excessive
CAR T cell differentiation, exhaustion, and senescence.
Indeed, less-differentiated and less-exhausted CAR T cells
have been reported to lead to a better outcome [5]. Central
causes for in vivo induction of exhaustion and senescence are
persistent stimulation of CAR T cells by high levels of tumor
antigens in the face of chronic exposure to a suppressive TME
[6]. At the same time, CAR T cell differentiation and
exhaustion may be further accelerated by CAR antigen-
independent tonic signaling [7].

Given the fact that the efficacy of CAR T cells depends
on their capacity to infiltrate the tumor site and directly
interact with tumor antigens, in vivo induction of exhaus-
tion and senescence pathways is an unavoidable event in
CAR T cell therapies. Indeed, once T cells are activated by
the persistent antigen presentation, they subsequently
become dysfunctional due to the elevated and sustained
expression of inhibitory receptors [8]. Therefore, it is more
attractive to focus on approaches to prevent intrinsic
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Fig. 1 Development of CAR generations. CAR structure in CAR
T cells compose of a single-chain variable fragment (scFv), a hinge
and transmembrane (TM) region, costimulatory domain(s) (e.g.,
0X40, CD28, ICOS, 4-1BB), and a CD3( signaling domain. The 1st
generation CARs contained only CD3( as intracellular domain, while

dysfunctional pathways in CAR T cells (e.g., inhibitory
receptors signaling) and generate “exhaustion-resistant”
cells, rather than aiming to modulate their exposure to
tumor antigens in the TME. Through this strategy, the
“exhaustion-resistant” CAR T cells might maintain their
effector functions even during a prolonged exposure to their
cognate antigen. In concordance with this, modified CAR
T cells with disrupted pathways inducing exhaustion or
senescence have shown a significantly higher persistence
and antitumor activity, providing a promising outlook for
reversal or delay of CAR T cell exhaustion and senescence
as a way to harness the full potential of this highly effective
treatment modality [9—11].

Concept of exhaustion and senescence

Although exhausted T cells display some phenotypic mar-
kers that are typically associated with effector and memory
states [12], they show phenotypically and functionally dif-
ferent properties from both effector and memory subsets
[13]. Since exhaustion and senescence share several over-
lapping characteristics such as defective effector functions,
impaired proliferation, and cell cycle arrest, they might be
used interchangeably. However, there are certain character-
istics that can be used to distinguish these states from each
other, including cytokine secretion signatures, and expres-
sion of cell surface receptors and transcription factors [14].

Recently, Wherry and Kurachi proposed a four-cell-stage
model for T cell exhaustion that is initiated from TCF1*
exhausted T progenitors (TexP™2! TexP™#?) and followed
by “intermediate” (Tex™) and “terminally” (Tex™™)
exhausted subsets. They found that these cell subset tran-
sitions are regulated by the transcription factors TCF1, T-
bet, and TOX in a hierarchical developmental pathway [15].
Exhausted T cells become dysfunctional via a progressive
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the 2nd or 3rd generations have one or two costimulatory domains
linked to CD3(, respectively. The 4th generation CARs are known as
“TRUCK” CARs. These CARs are structurally similar to the 2nd
generation CARs, but with an inducible cytokine expression (e.g.,
IL-12) through NFAT-responsive promoter.
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Fig. 2 A scheme for induction of exhaustion and senescence. The
principal feature of exhaustion (left) is upregulation of inhibitory
receptors such as PD-1. Engagement of PD-1 to its ligand (PD-L1)
results in the inhibition of intracellular signaling pathways involved in
the regulation of cell proliferation such as PI3K/AKT pathway. Inac-
tivation of AKT (due to the lack of site-specific phosphorylation
mediated by PI3K, mTORC (on Serine473), and PDK1 (on Threo-
nine308)) in turn lifts the block on FOXO transcription factors and
thereby activates p27, a repressor of cell cycle (G1-S transition).
Senescence (right) can be induced by either AKT inhibitory receptors
(e.g., KLRG-1) or DNA damage response mediators including ATM
and ATR. KLRG-1 prevents AKT phosphorylation (on Serine473)
removing its block on p27, and thereby results in cell cycle arrest. The
DNA damage response components activate pS3, p21, p38, and pl6
which inhibit cell cycle progression by blocking the function of cyclins
and cyclin-dependent kinases (CDKs). The figure adapted from [16].

loss of functionality that is mainly mediated by upregulation
of multiple inhibitory receptors, including for example
PD-1, CTLA-4, TIM-3, which is typically observed in
chronic infections and cancers [8, 16] (Fig. 2). However,
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expression of these inhibitory receptors is not an absolute
indicator of T cell exhaustion, as they can also be induced
on tumor-specific T cells upon activation when encounter-
ing their cognate tumor antigen [17]. Other major features
of T cell exhaustion include modifications in T cell receptor
(TCR) signaling, cytokine profile, pathways regulating
migration, chemokine expression, and metabolic properties
[18].

The molecular mechanisms governing induction of cel-
lular senescence are still under investigation. Thus far,
several types of senescence have been identified including,
(i) replicative senescence or telomere-dependent senes-
cence; (ii) DNA damage-induced senescence; (iii)
oncogene-induced senescence; (iv) oxidative stress-induced
senescence; (v) chemotherapy-induced senescence; (Vi)
mitochondrial dysfunction-associated senescence; (vii) epi-
genetically induced senescence; and (viii) paracrine senes-
cence [19]. Replicative senescence is the most widely
characterized senescence type, in which the cells acquire a
poor proliferation potential after multiple divisions, and
ultimately undergo total growth arrest as a consequence of
telomere shortening [20]. In human T cells, the loss of the
costimulatory molecules CD27 and CD28, and the high
expression of coinhibitory receptors such as KLRG-1,
CD57, and TIM-3 are prominent events in the replicative
senescence [21]. Of particular interest, KLRG-1" or CD57%
T cells are proliferation incompetent cells with decreased
effector cytokine production that are susceptible to apop-
tosis [22, 23]. Cell cycle arrest through p21WAFI/Ciply
p16™K4 pathway is a common feature of senescent cells
which essentially acts as an alarm in response to damaging
stimuli (e.g., DNA damage) or aberrant proliferation [24]
(Fig. 2). It was previously thought that, in contrast to a
quiescence state, a senescence-associated growth arrest is an
irreversible event, but nowadays it is well established that
early senescence and exhaustion stages are reversible [16].
Given this finding, blockade of senescence inducing path-
ways in CAR T cells may reinstate an enhanced pro-
liferative capacity in a similar manner to blockade or
reversal of exhaustion. However, blockade of key mediators
of senescence (e.g., p38) in CAR T cells may still cause
these cells to have a reduced ability to secrete effector
cytokines IFNy and TNF [25].

Collectively, both exhaustion and senescence can be
regulated independently, and could be delayed or reversed
in CAR T cells by targeting the specific pathways that
govern their induction. In addition, drivers or repressors of
exhaustion and senescence might affect various cellular
pathways including, immune checkpoint, gene expression,
signaling pathways, cell cycle progression, telomere main-
tenance, and oxidative stress pathways (Table 1). However,
exhaustion blockade is assumed to be safer, since senes-
cence acts as a tumor suppressor and efficiently safeguards

the cells against damaging stimuli (e.g., DNA damage).
Consequently, interventions to alleviate senescence might
lead to the development of malignancy [16].

Targeting intrinsic regulators of exhaustion
and senescence

PD-1

PD-1 is the most common inhibitory receptor expressed
on the surface of exhausted CD8 T cells, and its disruption
is associated with reversal of T cell exhaustion as well as
increased functionality against tumor cells [26, 27]. Pre-
vious data indicated that co-administration of PD-1
blocking antibody could enhance the therapeutic efficacy
of CAR T cells [28]. However, this strategy might cause
subsequent systemic toxicities. In a safer approach,
Brentjens and colleagues coexpressed a PD-1-blocking
single-chain variable fragment (scFv) in CAR T cells to
boost their function and persistence in the TME. The
blocking scFv markedly reinvigorated CAR T cells and
restricted its effects mainly to the tumor site, thereby
avoiding potential systemic toxicities [9]. In another
proof-of-principle study, cytolytic function and cytokine
secretion could be restored in exhausted CAR T cells by
several approaches disrupting PD-1 interaction with PD-1
ligand (PD-L1), including a PD-1 blocking antibody, PD-
1 silencing by RNA interference and co-transduction of a
PD-1 dominant negative receptor [29]. The feasibility of
cotransducing CAR T cells with a PD-1 decoy receptor
has been also been proven by other researchers. For
example, Huang and colleagues generated a modified B7-
H3 directed CAR T cell coexpressing a PD-1 decoy
receptor consisting of the extracellular PD-1 domain fused
to the intracellular stimulatory domain of either CD28 or
IL-7 receptor. This decoy CAR was able to convert PD-1
inhibitory signal to costimulatory signals [30]. The advent
of CRISPR/Cas9 technology paved the way for additional
ways to modify CAR T cells in the recent years. For
instance, CRISPR/Cas9 technology was used by Lim et al.
to generate PD-1-deficient anti-CD19 CAR T cells that
were highly capable of eradicating tumor cells [31].
However, deletion of PD-1-encoding gene (Pdcdl) may
also produce undesirable effects, since Wherry and col-
leagues reported that it unexpectedly promoted exhaustion
and impaired T cell survival and function [32].

CTLA-4
Like PD-1, inhibition of the PI3K/AKT pathway is the
underlying molecular mechanism by which CTLA-4 indu-

ces T cell exhaustion [8]. A similar scenario can therefore
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Table 1 Genes involved in the regulation of exhaustion and senescence pathways in T cells.

Gene name Pathway Mechanism of action Study in CAR T
PD-1 Exhaustion Immune checkpoint Yes [9, 28-31, 35, 114-116]
CTLA-4 Exhaustion Immune checkpoint Yes [33, 34]
TIM-3 Exhaustion/senescence Immune checkpoint Yes [37]
LAG-3 Exhaustion/senescence Immune checkpoint No

CD160 Exhaustion Immune checkpoint No

VISTA Exhaustion Immune checkpoint No

BTLA Exhaustion Immune checkpoint No
KLRG-1 Senescence Immune checkpoint No

CD57 Senescence Immune checkpoint No

TIGIT Exhaustion/senescence Immune checkpoint Yes [45]
2B4 Exhaustion Immune checkpoint No

CD39 Exhaustion Immune checkpoint No

CD73 Exhaustion Immune checkpoint No

c-JUN Exhaustion Gene expression regulation Yes [11]
c-FOS Exhaustion Gene expression regulation Yes [11]
JunB Exhaustion Gene expression regulation Yes [11]
IRF4 Exhaustion Gene expression regulation No

BATF Exhaustion Gene expression regulation Yes [11]
BATF3 Exhaustion Gene expression regulation Yes [11]
NFAT Exhaustion Gene expression regulation No

Eomes Exhaustion Gene expression regulation Yes [51]
T-bet Exhaustion Gene expression regulation Yes [50]
TOX Exhaustion Gene expression regulation Yes [55]
NR4A Exhaustion Gene expression regulation Yes [10]
BLIMPI Exhaustion Gene expression regulation No

TCF1 Exhaustion Gene expression regulation Yes [104]
DNMT3A Exhaustion Gene expression regulation No

PI3K Exhaustion/senescence Signaling mediator Yes [58, 61]
AKT Exhaustion/senescence Signaling mediator Yes [57]
mTOR Exhaustion/senescence Signaling mediator, cell cycle regulation Yes [5]
FOXO Exhaustion/senescence Signaling mediator, cell cycle regulation Yes [50]
PTPN2 Exhaustion Signaling mediator Yes [68]
PP2A Exhaustion Signaling mediator Yes [69]
LCK Exhaustion Signaling mediator Yes [70]
SHP1/SHP2 Exhaustion Signaling mediator Yes [70]
A2AR Exhaustion Signaling mediator Yes [76, 78]
PKA Exhaustion Signaling mediator Yes [79]
TGFBR1/TGFBR2 Exhaustion Signaling mediator Yes [82-84]
PDK1 Exhaustion Signaling mediator No

PKC Exhaustion Signaling mediator No

p38 Senescence Signaling mediator No

PIR-B Exhaustion Signaling mediator No

p21€P! Senescence Cell cycle regulation No
plGINK4A Senescence Cell cycle regulation No

p53 Senescence Cell cycle regulation No

RB Senescence Cell cycle regulation No

hTERT Senescence Telomeres stabilization Yes [87]
CAT Exhaustion/senescence Oxidative stress response Yes [90]
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be considered to reverse the dysfunctional state of CAR
T cells induced by CTLA-4 pathway. Simultaneous block-
ade of CTLA-4, PD-1, and TIM-3 in CAR T cells by so-
called blocking minibodies enhanced their effector func-
tions. Among the different combinations of minibody-
secreting CAR T cells, however, only the anti-CTLA-4
minibody-secreting CAR T cells showed prolonged func-
tion, signifying the unique characteristics of this immune
checkpoint mediator [33]. Using a similar concept,
checkpoint-resistant CAR T cells with genetic ablation for
TCR, HLA class I, PD-1, and CTLA-4 were generated by a
one-shot CRISPR system. However, the disruption effi-
ciency minimized with increased numbers of target genes,
which might be due to competition between multiple guide
RNAs (gRNAs) for Cas9. In addition, the in vivo efficacy
and lifespan of these PD-1- and CTLA-4-deficient CAR
T cells need to be further examined [34].

TIM-3 and LAG-3

Blockade of PD-1 in combination with other immune
checkpoint receptors, including TIM-3 and LAG-3, has
strong synergistic effects, and boosts effector functions of
CAR T cells [35, 36]. The high efficacy of this combina-
torial approach suggests that TIM-3 and LAG-3 pathways
have non-redundant effects that synergize with PD-1 sig-
naling to dampen antitumor responses in dysfunctional
CAR T cells. As that the precise mechanisms by which
TIM-3 and LAG-3 induce T cell exhaustion and senescence
are still not fully understood, only a few studies have
explored selective blockade of these inhibitory receptors in
CAR T cells. In one effort, antibody-based blocking of
Galectin-9, a putative TIM-3 ligand, reduced exhaustion of
CAR T cells and significantly increased their cytotoxicity
against previously resistant tumor cells [37]. Of note, FGL1
has been identified as a major ligand for LAG-3, and pos-
sibly will be considered as a candidate target for LAG-3
signaling blockade in the future studies [38]. Additionally,
it has been speculated that intracellular trafficking and cell
surface expression of LAG-3 is dependent on PKC signal-
ing, revealing a role of PKC in mediating T cell exhaustion
[39]. This notion is in contrast with the recent finding that
exhaustion is reversed in T cells by PKC-inducing small
molecules [40]. An explanation for this discrepancy is that
the function of PKC-0 can be disrupted by PD-1/SHP-2-
dependent CD28 inactivation, as CD28 is necessary for
PKC-6-mediated downstream signaling [41, 42]. Therefore,
augmentation of PKC functioning might be useful for
bypassing the suppressive PD-1 signaling. However, the
distinct role of PKC, especially regarding different PKC
isoforms, in T cell exhaustion seems to remain
controversial.

TIGIT

TIGIT is a recently identified immune checkpoint that is
transiently overexpressed in activated dysfunctional CD8
T cells, regulatory T cells, and natural killer (NK) cells that
mediates signaling for exhaustion and senescence in host
cells upon binding to its ligands (CD155 and CD112) on the
surface of antigen-presenting cells (APCs) [36, 43, 44].
Similar to TIM-3 and LAG-3, the knowledge about the
intracellular signaling cascade activated by TIGIT during
induction of exhaustion and senescence is largely incom-
plete. Since TIGIT competes with its costimulatory coun-
terpart, CD226 (DNAM-1), for binding to the same ligands,
engagement of TIGIT with its ligands diminishes costimu-
lation signaling in the host cells. In line with this, con-
comitant expression of a TIGIT-based chimeric
costimulatory switch receptor composing of the extra-
cellular domain of TIGIT and the signaling domain of
CD28, called TIGIT-28, endowed a superior antitumor
function to the anti-CD19 CAR T cells, while rescuing the
hypofunctional T cells [45].

c-JUN/c-FOS axis

Dysregulation of AP1 transcription factor-binding motifs is
a predominant epigenetic alteration in exhausted T cells,
which leads to increased expression of exhaustion-related
transcription factors from bZIP/IRF family (BATF3, IRF4)
and/or AP1 family (BATF, JunB). These events subse-
quently elicit inhibitory signaling molecules in T cells, such
as PD-1 [11, 46]. In a recent work, Mackall and colleagues
overexpressed c-JUN, an AP1 family transcription factor
involved in T cell activation, in CAR T cells to reverse the
dysfunctional state of exhaustion-prone CAR T cells. They
showed that CAR T cells with forced overexpression of c-
JUN became exhaustion-resistant and displayed enhanced
functional capacities as well as a reduced expression of
exhaustion markers PD-1 and CD39. Mechanistically, c-
JUN prevented development of terminally exhausted CAR
T cells by directly activating AP1 complex (c-JUN/c-FOS),
and indirectly disrupting AP1i complex (exhaustion-asso-
ciated complex) through displacing JunB, BATF, and
BATF3 from chromatin [11]. Another possible interpreta-
tion is that c-JUN competes for chromatin binding with
NR4A family members, which regulate T cell exhaustion,
as c-JUN and NR4A1 share a substantial number of com-
mon chromatin-binding sites [47]. Intriguingly, although c-
JUN overexpression increased expansion of CAR T cells, it
had no marked effect on cytokine production. Moreover,
future studies are warranted to fully understand why over-
expression of c-FOS alone, unlike c-JUN, did not lead to the
enhanced functioning of CAR T cells [11].

SPRINGER NATURE
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Eomes and T-bet

The transcription factors Eomes and T-bet play a key role in
differentiation and exhaustion of T cells. Eomes knockdown
restores the functional defects of exhausted T cells, indi-
cating its positive impact on the development of T cell
exhaustion. Conversely, T-bet" T cells express an inter-
mediate level of inhibitory receptors, and are linked to the
high functional properties [48, 49]. However, new data
suggest that T-bet, in a key interplay between TCF1 and
TOX, has a role in the development and dynamics of T cell
exhaustion [15]. In the absence of IL-12, CAR T cells
secreting IL-18 switched to a T-bet" FOXO1 phenotype
that prevented exhaustion and augmented antitumor immu-
nity [50]. In a case study, PD-1 blockade increased CAR T
cell efficacy and expansion, and decreased Eomes expres-
sion, implying a positive correlation between PD-1 and
Eomes expression in terminally exhausted CAR T cells [51].

TOX/NR4A axis

The sustained expression of TOX, an HMG-box transcrip-
tion factor involved in the regulation of thymocyte selection
[52], in exhausted T cells is associated with impaired anti-
tumor activity, and its downregulation alleviates T cell
exhaustion [15, 53]. This transcription factor is induced by
calcineurin and NFAT, and is implicated in the early epi-
genetic events responsible for fate commitment of exhaus-
ted T cells [54]. In addition to TOX, calcineurin-regulated
NFAT can regulate the expression of NR4A, which coop-
erates with TOX proteins in a positive feedback loop to
induce exhaustion in PD-1" TIM-3" CAR T cells [55].
Therefore, disruption of TOX and NR4A function may
inhibit the induction of exhaustion in CAR T cells. In line
with this, TOX- and NR4A-deficient CAR T cells demon-
strated increased cytokine production and decreased
expression of inhibitory receptors [55]. Moreover, NR4A
triple knockout CAR T cells lacking NR4A1, NR4A2, and
NR4A3 with a PD-1" TIM-3" phenotype exhibited a superior
effector phenotype. Of note, chromatin accessible regions in
these modified CAR T cells were selectively enriched for
binding motifs for NFkB and AP1, which are actively
involved in regulation of T cell effector functions [10].

PI3BK/AKT/mTOR/FOXO axis

In human lymphocytes, the PI3K-AKT pathway plays a
critical role in regulating T cell differentiation and activity.
Although this signaling pathway is essential for TCR sig-
naling and production of cytolytic molecules [14], con-
stitutively active AKT induces terminal differentiation and
formation of KLRG-17 effector T cells [56]. The advantage
of AKT targeting is that there are numerous available AKT
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inhibitors compatible with CAR T cell expansion ex vivo.
For instance, expansion of CAR T cells in the continuous
presence of an allosteric kinase inhibitor (AKT Inhibitor
VII; AKTi) could generate minimally differentiated
CD62L-expressing memory cells with superior antitumor
function, without compromising cell yield [57].

It has been postulated that PI3K-mediated CAR T cell
exhaustion is occurred through its role in tonic CAR signaling
during ex vivo expansion, and this is why PI3K inhibitors
preserve less-differentiated state of CAR T cells with heigh-
tened in vivo persistence [58]. PI3Ks are composed of four
validated isoforms including, PI3K«a, PI3Kf, PI3Ky, and
PI3KSd, but only inhibition of PI3KS has resulted in a delay in
terminal differentiation of T cells [59]. Consistent with this,
mutation-derived hyperactive PI3K$ decreased the threshold
of exhaustion and senescence in T cells through cumulative
epigenetic aberrations in the promoter region of inhibitory
receptors (e.g., demethylation of the PD-1 promotor), leading
to an increase in the inhibitory signaling [60]. This inhibitory
effect was reported to be diminished in CAR T cells when
PI3Kd was selectively blocked by Idelalisib (CAL-101). The
blockade switched CAR T cells to an undifferentiated phe-
notype (CD62LT CAR T) that expressed lower levels of
exhaustion markers [61].

The transcription factor mTOR is a multifunctional reg-
ulator of T cell metabolism that plays various roles in the
regulation of exhaustion and senescence pathways. On the
one hand, activation of mTOR, when accompanied by cell
cycle arrest and DNA damage, promotes cell senescence
[62, 63]. On the other hand, mTOR activation leads to a
decreased cell exhaustion via declined FOXO function [16],
a critical rheostat downstream of mTOR that sustains PD-1
signaling to promote the exhaustion of PD-1" Eomes"
T cells [64]. Moreover, FOXO differentially regulates T-bet
and Eomes, two transcription factors implicated in type I
effector and differentiated memory phenotypes, respectively
[65]. These findings support the notion that regulation of
FOXO by PD-1 is necessary for induction of T cell
exhaustion [16], and importantly, the whole process is
augmented by a positive feedback loop between PD-1 and
FOXO [64]. However, FOXO-deficient T cells fail to retain
their persistence, indicating the functionally diverse
mechanisms of this transcription factor in the regulation of
T cell exhaustion and longevity [64, 65]. Thus, the impact
of mTOR/FOXO axis on the T cell exhaustion/senescence
is likely determined under specific circumstances. Pre-
ferably, targeting of mTOR/FOXO axis in the CAR T cells
is performed by cytokine exposure. EX vivo expansion of
CAR T cells in the presence of IL-15 (or IL-2 with mTOR
inhibitors) resulted in a less-exhausted stem cell memory T
(Tsem) phenotype with higher anti-apoptotic properties, and
enhanced the proliferative capacity of CAR T cells. The
authors argued that depletion of mTORCI1 activity was a
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hallmark of the IL15-mediated harnessing of CAR T cell
dysfunction [5]. In another platform, a FOXO1'" T-beth
phenotype was induced in CAR T cells via inducible IL-18
expression, and the modified CAR T cells had superior
antitumor function and prolonged survival [50].

PTPN2 and PP2A

It has been recently established that the phosphatases
PTPN2 and PP2A act as a critical regulator of CD8 + T cell
exhaustion by attenuating the type 1 interferon pathway and
mediating CTLA-4 signaling, respectively [66, 67].
Recently, stronger activation and improved tumor infiltra-
tion was observed in PTPN2-deficient CAR T cells, which
were less prone to exhaustion. The authors concluded that
this “exhaustion-resistant” phenotype of CAR T cells was
obtained by upregulation of LCK and cytokine-induced
STAT-5 signaling [68]. However, suppressing CAR T cell
exhaustion by PTPN2 ablation might not always have
desirable output, as for example deletion of the PTPN2-
encoding gene (Ptpn2) in CD8 T cells enhanced the ratio of
terminally exhausted T cell populations (TIM-3" T cells) to
progenitor exhausted T cells (SLAMF6" T cells) by
increasing the number of TIM-3" cells without depleting
the pool of SLAMF6™ populations [66]. To disrupt PP2A
function, Zhuang and colleagues used the small molecule
LB-100, and found that inhibition of this phosphatase
increased the therapeutic efficacy of CAR T cells [69].

LCK and SHP1/SHP2

SHP1 counteracts the effect of LCK and dephosphorylates
key components of TCRs and CARs including CD3C,
specifically in BB{ CARs [70]. Although dispensable,
SHP2 is also considered as a molecule involved in devel-
opment of T cell exhaustion [71]. These phosphatases are
recruited to the cytoplasmic portion of PD-1 and other
inhibitory receptors, and negatively regulate IL-2 produc-
tion upon PD-1 engagement [72]. Some preliminary data
are available that report the feasibility of SHP1 ablation in
CAR T cells [73, 74]. In a recent report, Dotti et al. engi-
neered LCK and SHP1 to be recruited within the synapse of
T cells expressing BB{ and 28( CARs, respectively. The
results indicated that overexpression of LCK in CAR T cells
encoding 4-1BB could boost the expansion capacity and
antitumor functions. Remarkably, LCK-mediated CAR T
cell activation did not show any increase in expression of
inhibitory receptors. In contrary, recruitment of SHP1 to the
synapse of CD28-encoding CAR T cells by hetero-
dimerization of the small molecule AP21967 did not aug-
ment antitumor effects, but decreased the severity of
cytokine release syndrome (CRS) [70]. These findings
highlight the potential of LCK and SHP1 for generating

CAR T cells with predictable activity and toxicity profiles,
respectively.

A2AR/PKA axis

In the hypoxic conditions, the HIF-1a pathway is amplified
in tumor cells, which leads to upregulation of CD73 and
CD39, two ectonucleotidases involved in adenosine sig-
naling on the surface of both tumor and T cells [75].
Adenosine is known as an immunosuppressive molecule
that exerts an inhibitory signal within T cells following its
A2AR-mediated delivery into cytoplasm and subsequent
conversion to the cyclic AMP (cAMP). In the TME, CAR
T cells upregulate A2AR that predominantly suppresses
endogenous antitumor responses via facilitating the
adenosine-to-cAMP conversion [76]. Inhibition of A2AR
results in greater expansion of tumor-specific CD8 T cells
[77], which suggests that this receptor may represent a
highly translational target for blocking T cell exhaustion. As
shown independently by two groups, pharmacological tar-
geting of A2AR or expression of an anti-A2AR short
hairpin RNA (shRNA) in CAR T cells restored their pro-
liferation and cytokine production deficits caused by the
adenosine signaling [76, 78]. In association with Ezrin,
PKA sustains the inhibitory effect of adenosine signaling by
blocking TCR signaling in CAR T cells. Previous data
showed that expression of a peptide-based inhibitor of PKA
and blocking of Ezrin association blunted the negative
effect of adenosine/PKA/Ezrin axis in CAR T cells [79].

TGFBR1/TGFBR2

TGF-f secretion in TME is particularly evident in resistant
tumors, and is associated with poor antitumor immunity and
clinical outcome [80]. Of particular interest here, activation
of TGF-f signaling in tumor-reactive T cell acts as a potent
inducer of exhaustion pathways via phosphorylation of
SMAD?2 and SMAD3 ahead of immune checkpoints. This
reflects a hierarchy of inhibitory events during T cell
exhaustion that is initiated by TGF-f signaling cascade and
that subsequently progresses due to PD-1/PD-L1 interaction
[81, 82]. To address this, various immunotherapies based on
blocking TGF-p (signaling) are in clinical development,
which holds promise for revitalizing T cell antitumor
activity in resistant tumors [81]. In CAR T cell therapy,
these approaches have focused on targeting TGF-p recep-
tors. For example, Wang et al. knocked out the endogenous
TGFBR2 in CAR T cells with CRISPR/Cas9 technology to
prevent exhaustion by blocking TGF-p-induced phosphor-
ylation of SMAD proteins. Impressively, knocking out
TGFBR2 bestowed CAR T cells with superior proliferative
and tumoricidal capabilities, both in vitro and in vivo [82].
In another attempt, a dominant-negative TGFBR2 was
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coexpressed in PSMA-specific CAR T cells. The engi-
neered CAR T cells were resistant to exhaustion, while they
displayed enhanced abilities to proliferate and secrete
cytokines. However, the enhanced proliferation of CAR
T cells was associated with lymphoproliferative syndrome,
emphasizing the safety considerations to be addressed
before employing this approach [83]. A successful TGF-f
signal conversion platform has also been reported in recent
years. In this approach, T cells were transduced with chi-
meric variants of TGFBR1 and TGFBR2 containing the
TGF-B-binding domain of each receptor and the intracel-
lular signaling domains of a T cell stimulating interleukin
receptor. As anticipated, TGF-f exposure induced STAT
signaling (instead of SMAD?2/3 signaling), and promoted
effector function and persistence of CAR T cells [84].

hTERT

Endogenous hTERT, which encodes the catalytic compo-
nent of the telomerase complex, serves as a major deter-
minant of human T cell longevity. Expression of this gene is
decreased in the memory T cells upon antigen encounter
[85]. It has been indicated that hTERT downregulation
directly imposes replicative senescence in terminally dif-
ferentiated T cells [20]. Having observed these findings,
ectopic hTERT expression in T cells restored gradual loss
of telomeric DNA, and extended the lifespan of T cells
without loss of functionality [86]. As yet, limited data has
been obtained in the CAR T cells. In an attempt, Bai et al.
could successfully increase the proliferative capacity of
CD19-directed CAR T cells using a transiently coexpres-
sion of hTERT. The hTERT upregulation improved anti-
tumor effects of CAR T cells, and delayed initiation of
replicative senescence [87].

CAT

Although low concentrations of reactive oxygen species
(ROS), most notably H,0,, act as signal molecules and
trigger intracellular signaling as well as defense pathways
against pathogens, increased levels induce cell senescence
and exhaustion pathways [88]. Effector T cells encountering
the hostile TME or viral infections are skewed toward state
with reduced effector functioning, reduced glucose uptake
and glycolysis, upregulated inhibitory receptors, and
increased ROS levels [89]. This gives rise to the rationale
that blockade of high-level ROS can reinvigorate CAR
T cells in vivo. Indeed, CAR T cells coexpressing CAT
enzyme, an antioxidant enzyme that specifically scavenges
H,0,, were largely protected against intrinsic and extrinsic
oxidative stress, and demonstrated higher persistence and
efficacy [90]. Even though increased ROS levels in the
TME are generally unfavorable for CAR T cell function, it
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has been shown that pre-treatment of cancer cells with a
ROS accelerator renders them more susceptible to CAR T
cell-mediated killing. These ROS accelerators did not affect
CAR T cell function, opening a window of opportunity for
combinational treatment using armored CAR T cells and
ROS accelerators [91].

Overall, prevention of CAR T cell dysfunction through
blockade of major drivers of exhaustion and senescence, or
by augmentation of repressors of exhaustion and senescence
has led to some appealing results that could potentially
contribute to improved CAR T cell-based immunotherapies.
The considerable number of genes targeted for this purpose
in CAR T cells, either by genetic modification or pharma-
cological interventions, are depicted in Fig. 3.

Costimulation induction and cytokine
exposure

After priming of T cells by antigens, costimulatory factors,
and inflammation mediators, they can subsequently differ-
entiate into two new subsets: (i) highly polyfunctional
memory T cells, enabling them to become vigorously
cytolytic with high proliferative potential; (ii) dysfunctional
T cells with almost no effector functions, which show a
progressive increase in the number, diversity, and
“intensity” of inhibitory receptors [13] (Fig. 4). Therefore,
differentiation of functional CAR T cells into exhausted or
senescent stage is a predictable phenomenon in the tumors
with suppressive barriers and high antigen load. But a
question emerges: whether the costimulation induction and
cytokine exposure can prevent or delay the onset of
exhaustion or senescence of CAR T cells? To address this,
several studies have demonstrated an enhanced persistence
and efficacy in the CAR T cells when exposed to the
costimulatory molecules or cytokines [7, 92-94].

CD28 and 4-1BB intracellular domains are the most
widely used domains for generation of CARs, which are
associated with prompt effector response and long-term
function, respectively [95]. New costimulatory factors have
also shown to have a role in the persistence of CAR T cells.
As suggested by June et al., incorporation of ICOS (also
called CD278) and 4-1BB intracellular domains into CARs
remarkably augmented the effector function and persistence
of CAR T cells. Interestingly, the strong costimulatory
effect was observed only when ICOS domain was linked to
its transmembrane peptide, and thereby positioned proximal
to the cell membrane [92]. This demonstrates that
proper selection and configuration of costimulatory domains
is an essential consideration. In functional terms, ICOS-
bearing CARs were initially identified to preserve the sig-
nature characteristics of CD4 Ty17 cells. This costimulatory
domain could induce antitumor responses (by upregulating
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Fig. 3 Intracellular network between exhaustion or senescence
regulators. Competition between exhaustion or senescence regulators
and inhibitors determines the fate of CAR T cell in the TME. Inhi-
bitory receptors transfer exhaustion/senescence signal to the inhibitory
transcription factors (i.e., FOXO, Eomes, BATF, BLIMPI1, TOX,
NR4A, IRF4, NFAT, etc.) via downstream signaling pathways,
whereas exhaustion/senescence delaying transcription factors (i.e.,
c-FOS, TCF1, T-bet, NFxB, etc.) counteract these inhibitory signals.
The green plus and red minus signs refer to the enhanced/upregulated
and blocked/downregulated genes in CAR T cells, respectively.

IFNy) and mitigate exhaustion (by upregulating T-bet) in
Tyl7 cells carrying a CAR [96]. This finding led to the
extension of ICOS-based CARs to the CD8 T cells [92].
Previous studies suggest that antigen-independent tonic
signaling by CARs, perhaps due to the physical interactions
between CARs or scFv dimerization, limits CAR T cells
potency by induction of exhaustion pathways. This antigen-
independent exhaustion can be tolerated by CAR T cells
through tonic 4-1BB signaling. [97]. However, other parts
of the CAR construct design as well as the transduction
method used to generate CAR T cells can also contribute to
the extent of tonic signaling, and the effect of CD28/4-1BB
domains should be evaluated for each individual CAR
[7, 97]. Recruitment of TRAF proteins and induction of
noncanonical NFxB signaling are critical events in 4-1BB
costimulation, and contribute to mitigated exhaustion
[98, 99]. Importantly, endodomains of CD28 may promote
antigen-independent exhaustion, since replacing of this
costimulatory molecule with 4-1BB reversed exhaustion in
CAR T cells [7]. Recently, Posey et al. reported that a single
asparagine (Asn) amino acid in the intracellular domain of
CD28 is responsible for CD28-mediated exhaustion in CAR
T cells. Substituting this Asn to phenylalanine hindered cell
exhaustion and led to a durable antitumor response [100].

Costimulation of CAR T cell Coinhibition of CART cell

Normal Deregulated

ICOS boli i PD-1
LA

NFkB, AP1,
TCF1, etc

TOX, NR4A,
/ BLIMP1, etc.

Effector genes N '\‘ Repressor genes

cp2 ENy cD57
TNF
GITR 0.0 L2 IFNy @ @
D226 @60g Perforin TN ':. KLRG-1
@®@@® GzmB

- High effector fuctions
- Increased proliferative capacity
- Persistent cytokine production

- Loss of effector functions
- Cell growth arrest
- Exhaustion and senescence

Fig. 4 Costimulation and coinhibition of CAR T cell. Upregulation
of costimulatory and coinhibitory receptors on the surface of CAR
T cells is associated with effector polyfunctional and exhausted
hypofunctional phenotypes, respectively. The final functional outcome
depends on the number and diversity of relevant receptors. Although
differentiation of functional CAR T cells to the exhausted/senescent
phenotype is a common phenomenon in the tumor site, the possibility
of reinvigorating exhausted/senescent CAR T cells is still a question.

Based on these findings, although induction of
CD28 signaling will apparently restore the immuno-
competence of senescent CAR T cells [101], it might drive
the cells into states of exhaustion and dysfunction. There-
fore, the mutant-type CD28 (with substituted Asn in the
YMNM motif) costimulation in CAR T cells may result in
more benefits [100].

Cytokines are able to provide further stimulatory signals
for T cell activation, and therefore have been effectively
used to exert a spectrum of pleiotropic effects on CAR T
cell proliferation and function [102]. Apparently, the ratio-
nale underlying this approach’s efficiency is that cytokines
are able not only to convert the inherent features of hypo-
functional CAR T cells to the effector signature, but also to
reduce the number of suppressor cells in TME, resulting in
an augmented immunity [50, 93, 94, 101, 103]. Apart from
IL-2, the most widely used cytokine to culture CAR T cells
for ACT, a number of other cytokines such as IL-7, IL-15,
IL-18, and IL-21 have shown promising outputs
[93, 94, 102, 103]. In a clinical setting, Dotti et al.
demonstrated that IL-7 and IL-15 preserved more CAR
T cells with Ty, phenotype. High frequency of these less-
differentiated CAR T cells was correlated with overall
in vivo expansion and persistence in lymphoma patients
[93]. Although controversial, IL-15 has the advantage of
having synergistic effect with different cytokines
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[5, 93, 104]. Simultaneous coexpression of IL-15 and IL-21
in CAR T cells enriched for less-differentiated T cells by
sustaining TCF1 expression, a transcription factor asso-
ciated with higher percentage of stem cell memory and
central memory populations [104]. In addition, IL-18-
secreting CAR T cells have exhibited a boosted prolifera-
tion and antitumor activity, describing the IL-18 influence
on the CAR T cell function and persistence [103, 105].

Change in the milieu of TME

External suppressive signals (i.e., TGF-p, IL-10, PGE2,
soluble FAS, adenosine, ROS) from stromal and suppres-
sive immune cells such as cancer associated fibroblasts
(CAFs), myeloid-derived suppressor cells (MDSCs), tumor
associated macrophages (TAMs), tumor associated neu-
trophils, mast cells, and regulatory T cells (T,g) contribute
to the initiation of exhaustion of CAR T cells [106].
However, also tumor cells produce many of these sup-
pressive mediators in the TME (i.e., PD-L1, TGF-p, IL-10,
PGE2) to counteract effective immune responses. Activa-
tion of negative signals in tumor cells synergizes with the
function of suppressive cells in the TME and can addi-
tionally induce a plethora of immunosuppressive pathways
that may lead to the CAR T cell dysfunction [107]. Several
efforts have been made to interfere with these suppressive
signals activated by either tumoral or non-tumoral cells to
make the TME milieu more tolerable for CAR T cells. Long
and colleagues modulated MDSCs by all-trans retinoic acid
(ATRA) molecule to diminish the suppressive effect of
these cells on CAR T cells. Co-administration of ATRA
enhanced antitumor effect of CAR T cells and prolonged
their survival in vivo [108]. Aiming to eliminate MDSCs
from the TME, Parihar et al. described a creative strategy by
means of NKG2D-based CAR NK cells. The authors found
that pretreatment of xenograft model with the modified NK
cells resisted CAR T cells to the TME suppression, and
improved tumor infiltration and efficacy of CAR T cells
through killing NKG2D ligand-expressing tumor cells and
MDSCs. Of note, administration of CAR T cells alone
could not prevent tumor growth due to the suppressive
signals from tumor-infiltrated MDSCs [109]. Blockade of
suppressor cells in the TME can also lead to the elimination
of immune checkpoint signaling, as these cells are an
important source of immune checkpoint ligands (i.e., PD-
L1). In concordance with this, targeting PD-L1-positive
MDSCs and T in the TME prevented CAR T cell sup-
pression by these cells’ immunosuppressive pathways, and
augmented the efficacy of CAR T cell therapy [110]. Some
studies have focused on the enhancement of CAR T cell
resistance to the suppressor cells, rather than direct targeting
of suppressor cells. As an instance, CAR T cells with
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constitutive or induced expression of IL-12 switched to the
resistant cells with less susceptibility t0 Tyegs, MDSCs, and
TAMs [111-113]. Notably, the IL-12-mediated stromal
collapse was associated with the upregulation of FAS death
receptors on MDSCs, macrophages, and dendritic cells
(DCs) within the tumor stroma [112].

Targeting specific surface markers of cancer-associated
stromal cells (CASCs) such as PD-L1 have the potential to
reinforce CAR T cell therapies in tumor site by collapsing
dense stromal components [114]. In an effort, co-
administration of CAR T cells with oncolytic adeno-
viruses expressing PD-L1 blocking antibodies not only
resulted in further antitumor activity, but also diminished
the expression of PD-1 on the surface of CAR T cells [115].
In addition, tumor site-specific delivery of PD-L1 antibody
by CAR T cells could impede the cell exhaustion and
diminish tumor growth much better than conventional CAR
T cells [116]. In an interesting approach, PD-L1 in the TME
was targeted as an antigen via nanobody-based CAR
T cells. The PD-Ll-targeted CAR T cells successfully
controlled tumor growth and alleviated the expression of
exhaustion markers such as LAG-3, TIM-3, and PD-1
[114]. This approach has two advantages of activating local
antitumor response in the TME and eliminating CASCs,
simultaneously. As highlighted above, TGF-f is another
critical suppressor of effector T cells that is produced by
major cell compartments in the TME. Thus, antagonizing
this ligand may benefit cancer immunotherapies [80].
Efforts including, CD28 or cytokine costimulation,
expression of constitutively active AKT, expression of
dominant negative TGF-p receptors, or design of TGF-
B-based decoy CARs have been carried out to overcome
TGF-B-mediated repression of CAR T cells [117]. In
addition to PD-L1 and TGF-f, tumor cells and some
immune cells in the TME can further suppress CAR T cells
by expressing IDO, an intracellular enzyme that converts
the amino acid tryptophan to the kynurenine. The immu-
nosuppressive kynurenine subsequently increases Tiegs
population and biases the TME’s cells (i.e., DCs and
macrophages) toward an immunosuppressive phenotype
through activating the receptor AhR [118-120]. Down-
regulation of IDO by fludarabine and cyclophosphamide,
two lymphodepleting drugs often used before CAR T cell
infusion, significantly improved the efficacy of CAR T cell
therapy in IDO-positive tumors [121]. The serine protease
FAP, which is highly expressed by CASCs like CAFs, may
also play an important role in alleviation of antitumor
immunity. Direct targeting of this protease using CAR
approach has shown to be safe and effective for depleting
the FAP" stromal cells and enhancing CAR T cell function
[122]. Lately, FAP-specific CAR T cells advanced into a
phase I clinical trial for treatment of patients with malignant
pleural mesothelioma (NCT01722149). TAMs, particularly
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M2 polarized macrophages, express several specific mar-
kers that can be modulated by CAR-based modalities.
CSFIR is one of such TAM biomarkers that was recently
targeted using CAR T and CAR NK platforms, and repre-
sented a promising potential for depletion of the suppressive
TAMs [123]. Further TAM biomarkers (i.e., MARCO,
FRp) are also being interrogated as potential candidates for
TAM targeting to establish optimal CAR T immu-
notherapies [124].

It should be noted that metabolic changes in the TME
can enforce the exhausted phenotype of CAR T cells.
Indeed, due to the limited vascular exchange and metabo-
lism of tumor cells leading to a microenvironment with
acidic, hypoxic and/or depleted nutrients (e.g., glucose,
amino acids), the TME is metabolically hostile [125].
Metabolic dysfunction in the tumor site linked to early
inhibitory signals can enhance the development of T cell
exhaustion [126]. As it happens with cancer cells, T cell
metabolism is totally dependent on the composition of the
TME, which may enable the necessary activity levels of
aerobic glycolysis, pentose phosphate and tricarboxylic acid
pathways required for T cell proliferation and function. For
instance, under low-glucose conditions T cells produce
lower levels of effector molecules such as IFNy, granzyme
B, and IL-7 [127, 128]. Another important aspect is mito-
chondrial integrity and number, which is crucial for effector
cells. Exhausted tumor-infiltrating T cells show signs of
mitochondrial dysfunction that correlate with reduced
activity of PGCla and the antitumor activity could be res-
cued by through overexpression of PGCla [129]. Further-
more, production of immunosuppressive metabolites also
contributes to the effector dysfunction of T cells. As an
example, adenosine is a key metabolic regulator implicated
in the T cell exhaustion. This metabolite is generated by the
ectonucleotidases CD39 and CD73 and has a critical role in
mediating suppressive effects of stromal cells, tumor cells,
and infiltrating immune cells [75]. Hence, pharmacologic or
genetic metabolic reprogramming of either the TME cells or
CAR T cells is beginning to accrue. To this end, potential
targets have been identified such as IDO, ARG1, CD36,
CD39, CD73, GLS, A2AR, AMPK, and PDHK1 [130].

Safety considerations and concluding
remarks

It should be pointed out that reversing or delaying exhaus-
tion and senescence in CAR T cells is a two-edged sword.
Regardless of impressive efficacy of reinvigorated CAR
T cells, a risk assessment of unexpected toxicities has
remained to be investigated [11]. “On-target, on-tumor”
toxicity can be a direct consequence of reinvigorated CAR
T cells, which is related to the induction of CRS and tumor

lysis syndrome induced by abundant cytokine release and
excessive tumor cell death in tumor site [131]. On the other
hand, a catastrophic and rapid “on-target, off-tumor” toxicity
might be observed after infusion of armored CAR T cells
targeting a tumor-associated antigen (TAA), which is
expressed in both tumor and normal cells. This is the most
serious complication of armored CAR T cells that results
from a direct attack to the TAAs as well as long-term cir-
culation and persistence of armored CAR T cells [131, 132].
Although controversial, senescence is considered to be a
crucial obstacle against cancer development, and blockade
of senescence drivers in tumor site may therefore be pro-
carcinogenic [133, 134]. Taken together, there is a concern
regarding the side effects associated with exhaustion/senes-
cence-resistant CAR T cells. To avoid these adverse effects
in modified CAR T cells, further developments need to be
considered [135]. For instance, some researchers recom-
mend to insert an inducible “suicide gene” or “elimination
gene” (e.g., HSV-TK, inducible caspase 9, truncated EGFR,
TMPK) into the CAR T cell genome that renders CAR
T cells susceptible to an exogenous molecule-mediated
death in case of adverse effects [136].

In conclusion, the field of cancer immunotherapy has
undergone a revolution, with the development of adoptive cell
transfer (ACT) therapies and immune checkpoint inhibitors
(ICIs) leading the way in improving the outcome of cancer
therapy. Nevertheless, the ability of the immune system to
fight tumors in the hostile TME remains a major challenge for
both ICIs and ACT therapies, particularly when it comes to
various types of solid tumors. Here we summarized how the
efficacy of CAR T cell therapy is restricted by the activation
of exhaustion and senescence pathways, and what efforts
have been made to reinvigorate dysfunctional CAR T cells.
As research on CAR T cell dysfunction, especially in relation
to the senescence, is a relatively new field and experimental
data is limited, this review largely focuses on CAR T cell
exhaustion. Approaches to delay the exhaustion/senescence in
CAR T cells include direct modulation of intrinsic pathways
and/or harnessing exogenous signals. Costimulation induction
and cytokine exposure as well as attenuation of TME’s sup-
pressive milieu appears to be feasible in this context. The
efficacy and scalability of much of what has been discussed
here is not limited to the CAR T cells, and can also be
developed to other types of T cells therapies such as tumor-
infiltrating  lymphocytes (TILs) or TCR-engineered
T (TCR-T) cells. However, further investigations into the
safety of these platforms have to be taken into consideration.
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