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The immune system has evolved since the birth of humans. However, immune-related
diseases have not yet been overcome due to the lack of expected indicators and targeting
specificity of current medical technology, subjecting patients to very uncomfortable
physical and mental experiences and high medical costs. Therefore, the requirements
for treatments with higher specificity and indicative ability are raised. Fortunately, the
discovery of and continuous research investigating circular RNAs (circRNAs) represent a
promising method among numerous methods. Although circRNAs wear regarded as
metabolic wastes when discovered, as a type of noncoding RNA (ncRNA) with a ring
structure and wide distribution range in the human body, circRNAs shine brilliantly in
medical research by virtue of their special nature and structure-determined functions,
such as high stability, wide distribution, high detection sensitivity, acceptable
reproducibility and individual differences. Based on research investigating the role of
circRNAs in immunity, we systematically discuss the hotspots of the roles of circRNAs in
immune-related diseases, including expression profile analyses, potential biomarker
research, ncRNA axis/network construction, impacts on phenotypes, therapeutic target
seeking, maintenance of nucleic acid stability and protein binding research. In addition, we
summarize the current situation of and problems associated with circRNAs in immune
research, highlight the applications and prospects of circRNAs in the treatment of
immune-related diseases, and provide new insight into future directions and new
strategies for laboratory research and clinical applications.

Keywords: circRNAs, immunity, immune-related diseases, autoimmune diseases, tumor, infectious diseases
1 INTRODUCTION

CircRNAs are molecules belonging to the noncoding RNA family that form ring-like structures with
covalent bonds without 5’ caps and 3’ poly (A) tails (1). CircRNAs were first found in pathogens but
were regarded as meaningless or even incorrect expression products for decades. In recent years,
researchers have begun to realize the importance of circRNAs with the rapid development of specific
biochemical and computational methods, such as high-throughput sequencing technology and
microarray techniques (2, 3). CircRNAs are generally stable and thought to have unique structural
org May 2022 | Volume 13 | Article 8947071
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conformations that differ from their linear RNA homology (4). As
confirmed, circRNAs are principally formed via the junction of a
downstream 3’ site with an upstream 5’ site, generated via back-
splicing or exon skipping of premRNAs in general (5, 6). Over
years of research, circRNAs have been found to feature four main
characteristics (Figure 1). First, circRNAs are connected from end
to end to form ring structures, enhancing their stability and
resistance to most ribonucleases. Studies have shown that the
half-life of circRNAs is longer than that of corresponding linear
transcripts, which is beneficial for the transportation,
preservation, and analysis of samples. Second, circRNAs are
conserved, tissue- and spatiotemporal specific, resulting in
Frontiers in Immunology | www.frontiersin.org 2
acceptable reproducibility and individual differences (7). Third,
circRNAs are abundant and almost endogenous (8, 9). The
expression level of circRNAs changes accordingly under
physiological or pathological conditions. Therefore, the change
in the amount of circRNAs can reflect the stage of disease to some
extent. Fourth, circRNAs are widely distributed and have high
detection sensitivity (8). Currently, circRNAs are commonly
divided into the following four categories according to their
constituent sequences: exonic circRNAs (ecircRNAs), circular
intronic RNAs (ciRNAs), exon–intron circRNAs (EIciRNAs)
and tRNA intronic circular RNAs (tricRNAs). However, the
circRNAs currently found are mainly derived from exons (5, 9).
FIGURE 1 | This figure shows the four main characteristics of circRNAs. (A) The ring structure is beneficial for the transportation, preservation, and analysis of
samples. (B) The change in the amount of circRNAs can reflect the stage of disease to some extent. (C) CircRNAs are widely distributed and have high detection
sensitivity. (D) CircRNAs are conserved, tissue- and spatiotemporal specific, resulting in acceptable reproducibility and individual differences.
May 2022 | Volume 13 | Article 894707
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Since the advent of empirical immunology, research
investigating immunity has lasted for a long time. The immune
system plays a dual role in the fight against diseases. On the one
hand, the body’s immune barrier acts as a defense against
intruders, and a functioning immune system can quickly detect
and address abnormal conditions in the body. On the other
hand, a dysregulated response of the human immune system
may lead to the deterioration of the disease or the emergence of
autoimmune diseases. With the development of research,
scientists have noticed that circRNAs are of vital importance in
human immunity and have potential clinical significance in the
diagnosis and treatment of autoimmune diseases, tumor
immunity, infectious diseases and other immune-related
diseases (9–12).

This review expounds upon the progress and existing
problems in this field and provides potential development
directions for the future to improve the environment for
clinical treatment.
2 BIOLOGICAL FUNCTIONS OF
CIRCRNAS

According to current studies, circRNAs participate in different
physiological processes of human diseases and perform a wide
range of functions as miRNA sponges, transcription templates,
special protein binding sites and regulators of host genes. Many
current studies have focused on circRNAs in the cytoplasm, and
some of those circRNA were reported to act as competing
endogenous RNAs (ceRNAs) and usually function as sponges
for miRNAs, thereby regulating miRNAs targeting gene
expression (13, 14). A typical example is CDR1as, namely,
ciRS-7, which contains more than 70 miRNA response
elements (MREs) for miR-7 and can combine with miR-7 to
downregulate its miRNA actions (15–17). In addition, circRNAs
can use their specific regions to interact with proteins (18),
function as protein scaffolds (19) and recruit specific proteins
to certain locations in cells (20); thus, circRNAs with internal
ribosome entry sites (IRESs) and infinite open reading frames
(ORFs) can be translated under specific circumstances (21, 22).
Moreover, circRNAs correlated with RNA polymerase II (Pol II)
in human cells, localizing in the nucleus, could modulate the
expression of their host genes (23, 24). However, unfortunately,
research concerning the function of circRNAs only focuses on a
small fraction of circRNAs that have been found, thereby
requiring more specificity. Therefore, there is still more
development space for other types of circRNAs that are less
studied, rending the future of this field full of uncertainty
and promises.
3 ROLES OF CIRCRNAS IN
IMMUNE-RELATED DISEASES

Many studies have been performed to uncover the mechanism of
immunity with the purpose to solve the problems of
Frontiers in Immunology | www.frontiersin.org 3
immunological diseases. With continuous research development,
increasing evidence has emerged showing that circRNAs are able to
intervene in the biological processes of assorted immune-related
diseases by acting as miRNA sponges, protein interactors, mRNA
stability maintainers, potential biomarkers and therapeutic targets
via diverse axes and intricate signaling pathways (Table 1). In this
section (Figure 2), we describe new experimental progress in
circRNAs that participate in organ-specific autoimmune diseases
(OSADs), systemic autoimmune diseases (SADs), tumor
immunology, and infectious diseases and summarize the roles of
circRNAs in other studies.

3.1 CircRNAs in Organ-Specific
Autoimmune Diseases
In OSADs, autoantigens are a specific component of an organ,
and the pathological damage and dysfunction of tissue are
limited to the organ targeted by antibodies or lymphocytes.
Multiple sclerosis (MS) is an autoimmune disease that
demyelinates the white matter of the central nervous system.
Although the specific pathogenesis remains unclear, circRNAs
have been found to participate in the progression of MS (55).
Cardamone et al. indicated that the abnormal metabolism of
circRNAs is a potential characteristic of MS (26). Moreover,
Iparraguirre et al. found two downregulated circRNAs and
considered them potential biomarkers of MS (25). Among
ncRNAs, miRNAs and lncRNAs are currently popular issues in
MS, while circRNAs are relatively less studied; thus, more
research is needed to supplement the regulatory network of
ncRNAs in MS (56).

In addition to MS, circRNAs play an important role in many
other OSDAs. For example, circRNAs showed promise as
candidate biomarkers of primary biliary cholangitis (27), and
plasma circRNA_002453 could be used as a novel biomarker of
lupus nephritis (28). Researchers also found that circSnx5
control the immunogenicity of dendritic cells as a miRNA
sponge, thereby alleviating experimental autoimmune
myocarditis (29). Although the participation of circRNAs has
further increased the complexity of the mechanism of OSAD,
current research is still very simple, and it is difficult to promote
the understanding of this type of disease and the therapeutic
application of circRNAs.

3.2 CircRNAs in Systemic
Autoimmune Diseases
Systemic autoimmune disease is a type of systemic multiple
organ damage caused by the extensive deposition of antigen and
antibody complexes on the vascular wall, and systemic lupus
erythematosus (SLE) is a common disease. The exact cause of
SLE is still unclear, but circRNAs have recently been regarded as
vital molecules in SLE. Li et al. compared the different circRNA
profiles in T cells from healthy and ailing patients and then
revealed the biofunction of hsa_circ_0045272 (30). Currently,
many circRNAs have been identified as biomarkers of SLE (31–
34). Recently, Zhang et al. retrieved the GEO database and
obtained a regulatory network, providing novel insight into the
role of circRNAs in SLE (57).
May 2022 | Volume 13 | Article 894707

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


TABLE 1 | Roles of circRNAs in four main immune-related diseases.
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hsa_circ_0044235 Potential biomarker —— ——

hsa_circ_0068367
circPTPN22 Potential activity indicator —— ——

hsa_circ_407176 Potential biomarker —— ——

hsa_circ_001308
Rheumatoid arthritis hsa_circ_0001200 Potential biomarker —— ——

hsa_circ_0001566
hsa_circ_0003972
hsa_circ_0008360
hsa_circ_0000396 Potential biomarker —— ——

hsa_circ_0130438
hsa_circ_0088036 miRNA sponge miR-140-3p, SIRT1 AMPK signaling path

Primary Sjögren's syndrome hsa_circ_001264 Potential biomarker —— ——

hsa_circ_104121
hsa_circ_045355

Tumor immunology
Laryngeal squamous cell
carcinoma

hsa_circ_001569 miRNA sponge CD274, IL-10, FOXP3 Th17 cell differentiatio
hsa_circ_001859

Pancreatic adenocarcinoma circUBAP2 miRNA sponge CXCR4, ZEB1 Wnt signaling pathwa
Melanoma circ_0020710 miRNA sponge miR-370-3p, CXCL12 mTOR signaling path
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circFGFR1 miRNA sponge miR-381-3p, CXCR4 HIF-1 signaling pathw
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TNF-a, TIM-3
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Colorectal cancer circSPARC miRNA sponge, protein binder, potential
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STAT3, FUS

JAK/STAT signaling p
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Pulmonary tuberculosis hsa_circ_14623 miRNA sponge, potential biomarker —— Endocytosis pathway
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Another common type of systemic autoimmune disease is
rheumatoid arthritis (RA), whose pathogenesis has not been fully
elucidated thus far. Currently, in the research field of circRNAs
in RA, research mainly focuses on expression profile analyses,
biomarker research and the proliferation and migration of
fibroblast-like synovial cells. Wen et al. constructed a network
of differentially expressed circRNAs and miRNAs and eventually
revealed the expression profile of peripheral blood mononuclear
cells (PBMCs) in patients with RA (35). Yang et al. used RNA
sequencing technology to uncover the circRNA expression
profiles of PBMCs in experimental and control groups and
found that circRNAs are novel diagnostic markers of RA (36).
Regarding the proliferation and migration of fibroblast-like
synovial cells, Zhong et al. found that hsa_circ_0088036
promoted the proliferation and migration of fibroblast-like
synovial cells via the miR-140-3p/SIRT1 axis in RA (37). In
addition to SLE and RA, circRNAs are of great concern in some
SADs. For example, Su et al. reported that hsa_circ_001264
might be a biomarker of primary Sjögren’s syndrome (pSS)
(38). Although circRNAs are closely connected to SADs such
as SLE, RA and pSS, research concerning SADs, such as
scleroderma, dermatomyositis and polymyositis, currently
mainly focuses on miRNAs. Consequently, there is substantial
untapped potential in research investigating the mechanisms of
circRNAs and SADs.

3.3 CircRNAs in Tumor Immunology
Currently, the study of tumor immunology focuses on the body’s
immune response to tumors, the mechanism of tumor immune
escape tumor immune diagnosis and immune prevention. Over
years of research, scientists have discovered that circRNAs are
very important molecules in various tumors, playing a variety of
immunological functions. The hottest research area is the
competing endogenous RNA (ceRNA) network and its
regulatory molecules. Sun et al. constructed ceRNA networks
based on 133 laryngeal squamous cell carcinoma (LSCC) patients
and found that hsa_circ_001569 and hsa_circ_001859 might
regulate the expression of CD274, IL-10 and FOXP3, thus
intervening in the immune escape of LSCC (39). In another
study on ceRNA networks in pancreatic adenocarcinoma
(PAAD), Zhao et al. reported that CXCR4 and ZEB1 were
regulated by the circUBAP2-mediated ceRNA network,
inhibiting antigen presentation and promoting tumor immune
escape (40). Among studies investigating ceRNA networks,
research focusing on the circRNA/miRNA/mRNA axis is
especially plentiful. The effects on cell phenotypes are mainly
reflected in the ability to drive tumor immune escape and
promote proliferation and metastasis via different axes (41, 42).
In addition, studies related to anti-PD-1 therapy are included in
these reports (43, 44).

With the deepening of understanding, researchers have
discovered the potential of circRNAs as therapeutic targets and
biomarkers with abilities to assist with diagnosis and prognosis
and their function in the immune regulation of exosomes. Wang
et al. showed that circSPARC might conceivably act as a possible
biomarker for diagnosis and prognosis and a target for therapy in
colorectal cancer (CRC) (45). In another study concerning
T
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hepatocellular carcinoma (HCC), scientists reported that the
upregulated level of plasma exosomal circUHRF1 decreased
NK-cell tumor infiltration, curbing the function of NK cells (44).

Generally, from the laboratory to the clinical level, current
research focusing on circRNAs in tumor immunology is
proceeding in an orderly manner. Therefore, the application of
circRNAs in the future may have a very positive impact on many
aspects of tumor immunotherapy, such as diagnosis, treatment,
and prognosis.

3.4 CircRNAs in Infectious Diseases
Infectious diseases refer to diseases in which bacteria, viruses,
fungi, parasites, and other infectious agents, invade, grow, and
reproduce in the body, causing damage to the normal metabolic
functions of the tissue structure. Thus far, circRNAs have been
found to be used as biomarkers of many infectious diseases in
most cases, while emergent corroboration indicates that a small
number of circRNAs are verified to directly impact the
Frontiers in Immunology | www.frontiersin.org 6
regulatory network of infectious diseases (58). By regulating
the NF-kB pathway, the potential miRNA targets of
hsa_circ_001937 exert effectiveness in antibacterial immune
responses in patients with tuberculosis (46, 48). In a
bioinformatics analysis experiment, Zhuang et al. found that
hsa_circ_0005836 could be a novel biomarker for diagnosis and
prognosis and a target for therapy of active pulmonary
tuberculosis (47). In a similar experiment, Yang et al.
performed a circRNA transcription analysis of primary human
brain microvascular endothelial cells infected with meningeal
Escherichia coli and preliminarily constructed a potential
regulatory network that enhanced our understanding of the
mechanisms of bacterial meningitis (49). Additionally, in
Marinov et al.’s study focusing on an LPS-inducible circRNA
called circRasGEF1B, the authors assumed that inducible
RasGEF1B circular RNA may play an essential role in
protecting cells against microbial infection by preserving the
constancy of the mature mRNA of ICAM-1 in LPS-activated
FIGURE 2 | Main areas and research hotspots of the roles of circRNAs in immune-related diseases. Five main areas consist of organ-specific autoimmune diseases
(A), systemic autoimmune diseases (B), tumor immunology (C), infectious diseases (D), and other studies (E). In summary, research hotspots of the roles of
circRNAs in immune-related diseases include expression profile analyses, potential biomarker research, ncRNA axis/network construction, impacts on phenotypes,
therapeutic target seeking, maintenance of nucleic acid stability and protein binding research.
May 2022 | Volume 13 | Article 894707
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cells (53), providing a new idea for antimicrobial infection
therapies. CircRNAs are of vital importance to the infection of
viruses because the abnormal expression of circRNAs may
promote or suppress the infection progress of viruses, and vice
versa. Studies have shown that when infected with viruses,
circRNAs are rapidly degraded by RNase L, releasing PKR
(dsRNA-activated protein kinase) linked to circRNAs and
participating in innate cellular immune responses (35, 59).
Notably, circRNAs initiate innate immunity by combining with
K63, which links ubiquitin chains, and RIG-I (retinoic acid-
inducible gene I). Exogenous circRNAs without m6A
modification can attach to K63 and RIG-I. This complex can
promote the polymerization and activation of RIG-I, affect the
aggregation of downstreammitochondrial antiviral signals, guide
the dimerization and activation of interaction regulating factor 3
(IRF3), and finally induce the expression of autoimmune-related
pathway genes (50, 60, 61). The antiviral dsRNA-binding protein
NF90/110 can stabilize the secondary structure of intronic RNA,
thereby promoting the biogenesis of circRNAs. NF90/110 can
also act as global regulators of circRNA biogenesis by reducing
their nuclear levels during viral infection (51, 62).

Since the end of 2019, the world has experienced several
rounds of outbreaks caused by variants of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and
improper anti-epidemic measures. Omicron, a newly discovered
SARS-COV-2 variant with high transmission, is causing unease
and uncertainty. Therefore, whether focusing on the present or
the future, it is particularly important to develop new treatment
technologies on the basis of existing epidemic prevention
measures such as drug development and vaccination (63).
CircRNAs, molecules closely associated with viral infection, is
one option. A differential host circRNA expression profile analysis
in human lung epithelial cells infected with SARS-CoV-2 was
completed (64), and two circRNA profile analyses revealed
abundant and diverse information regarding the identification
and characterization of the circRNAs encoded by SARS-CoV-1,
SARS-CoV-2 and MERS-CoV (65, 66), facilitating future studies
concerning on COVID-19 infection and pathogenesis. Arora et al.
identified a circRNA/lncRNA-miRNA–mRNA ceRNA network
involving two circRNAs in SARS-CoV-2-infected cells, enhancing
the current understanding of the mechanisms associated with
coronavirus disease 2019 (COVID-19) (52). Specific segments of
the SARS-CoV-2 5’-untranslated region can be expeditiously
accessed by particular antisense circRNAs, resulting in bringing
an approximately 90% cutback in virus proliferation in cell
culture with a minimal duration of 2 days, which is attractive
and promising (67). Briefly, relevant research focused on
expression profile analyses, ceRNA construction and therapeutic
target seeking. Although circRNAs are in the initial stage in the
prevention and treatment of novel coronavirus, with the
development of cross-discipline and the emergence of more
advanced technology, it is believed that there will be
opportunities for circRNAs to display their clinical talents in
the future.

In addition to bacteria and viruses, circRNAs function in
many other infectious diseases, such as chlamydia infection (54).
Frontiers in Immunology | www.frontiersin.org 7
In addition to modulating the human body, circRNAs can play a
regulatory role in other organisms during infectious diseases,
such as parasite infection. Broadbent et al. identified
developmentally regulated lncRNAs and circRNAs by strand-
specific RNA sequencing in Plasmodium falciparum malaria
(68), but currently, there is no clinical significance.

Overall, current research concerning circRNAs in infectious
diseases mostly focuses on viral and bacterial infections, but in
addition to research as biomarkers, these results are still a long
way from clinical application.

3.5 CircRNAs in Other
Immunological Research
Thus far, we mentioned that circRNAs are of great significance in
autoimmune diseases, tumors, and bacterial and viral infections. In
addition, expanding the perspective to the whole area, circRNAs
perform effectively in hypersensitivity, immunodeficiency diseases
and transplantation immunity, namely, the pathological changes
caused by immune defense function. However, because the contents
and categories of current related studies are relatively similar, there
are only a few examples, which are no longer explained in detail
here. For instance, circHIPK3 was proven to modulate the
proliferation of airway smooth muscle cells by the miR-326/
STIM1 axis in asthma (69), a group of ample circRNAs and
ceRNA networks were found to likely contribute to acquired
immune deficiency syndrome (AIDS) (70), and a two-circular
RNA signature of donors was thought to be a biomarker of early
allograft dysfunction after liver transplantation (71). In addition to
the above diseases, circRNAs play vital roles in a variety of
immunological diseases and immune cells. Under stimulation by
different pathological factors, the way that circRNAs are involved in
the activation of macrophages is a large subject (53, 72–74). In
addition, a variety of circRNAs have been identified to influence
various immune cells, such as intestinal immune cells (75), lung
immune cells poisoned byNd2O3 (76), CD4+ T cells in asthma (77)
and immune cells in periodontitis (78). In addition to these effects
on different immune cells, there are also some studies focusing on
innovative technologies. Recently, Wesselhoeft et al. showed that
unmodified exogenous circRNA can bypass cellular RNA sensors,
thereby avoiding immune responses in RIG-1- and Toll-like
receptor (TLR)-competent cells and mice, suggesting that RNA
circularization reduces immunogenicity and can prolong the
translation time in vivo (61).

Studies concerning circRNAs in immune-related diseases are
miscellaneous, but the core functions and mechanisms are
constant. The discovery of circRNAs has further deepened
researchers’ understanding of the intricate immune regulatory
network. Generally, the immune system has three major
functions, namely, immune defense, immune surveillance and
immune homeostasis, and circRNAs realize immune-related
mechanisms as follows: 1) during immune defense functions,
circRNAs can assist the body in removing pathogenic
microorganisms and other antigens in various ways; however,
hypersensitivity or immune deficiency occurs when the immune
response is too high or too low; 2) when immune surveillance
operates regularly, circRNAs can help the body remove mutant
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cells and virus-infected cells through various pathways; if this
function is abnormal, it could lead to tumor occurrence and
persistent virus infection; and 3) when immune homeostasis
occurs naturally, circRNAs can aid the body in removing
damaged or senescent cells in various ways, but imbalance
could lead to autoimmune diseases. Therefore, the balance
between the immune system and circRNAs plays a key role in
whether the body is in a healthy or pathological state.

3.6 Regulatory Mechanisms of circRNAs in
Immune-Related Diseases
The regulatory mechanism of circRNAs in immune-related
diseases can be summarized into the following two aspects: the
regulatory effects of circRNAs on immune-related signaling
pathways (Figure 3), such as the MAPK signaling pathway,
endocytosis signaling pathway, JAK-STAT signaling pathway,
mTOR signaling pathway, and Wnt signaling pathway, and the
regulatory effects of circRNAs on immune cells, such as the
regulation of macrophages, etc.

3.7 Important Signaling Pathways of
circRNAs Involved in the Regulation of
Immune-Related Diseases
3.7.1 MAPK Signaling Pathway
The MAPK signaling pathway is a signal transduction system
important for eukaryotic cells to mediate extracellular signals in
the intracellular response. This pathway transduces extracellular
signals in the form of a triple kinase cascade, namely, MAP
kinase kinase kinase (MKKK), MAP kinase kinase (MKK) and
MAP kinase (MAPK), which regulates a variety of physiological
processes, such as cell growth, differentiation, apoptosis and
death. There are four main branches of the MAPK pathway as
follows: extracellular-signal regulated protein kinase (ERK), c-
Jun N-terminal kinase (JNK), p38 mitogen-activated protein
kinase (p38 MAPK) and ERK5. Among them, JNK and p38
have similar functions, which are related to inflammation,
apoptosis and cell growth; ERK is mainly responsible for cell
growth and differentiation, and its upstream signals are the
famous Ras and Raf proteins (79, 80). According to current
studies, circRNAs mainly play roles as miRNA sponges in the
MAPK signaling pathway in immune-related research. For
example, Chen et al. found that circSnx5 acted as a sponge of
miR-544 to upregulate suppressor of cytokine signaling 1
(SOCS1) (81). Zhang et al. revealed the circUHRF1/miR-449c-
5p/TIM-3 axis in HCC (44). Zhao et al. constructed a ceRNA
network consisting of 4 DEcircRNAs, 3 DEmiRNAs and 149
DEmRNAs in PAAD (40), which also showed the sponge
function of circRNAs. Among the regulated proteins, SOCS1
(82–84), TIM-3 (85–87), ZEB1 (88–90), etc., serve as important
regulators in the MAPK signaling pathway.

3.7.2 Endocytosis Signaling Pathway
Endocytosis is the process of transporting extracellular
substances into cells through the deformed movement of the
plasma membrane. Endocytosis can be divided into
phagocytosis, pinocytosis and receptor-mediated endocytosis
Frontiers in Immunology | www.frontiersin.org 8
according to the size and mechanism. According to clathrin
dependence, endocytosis can be divided into clathrin-dependent
endocytosis (CDE) and clathrin-independent endocytosis (CIE).
In terms of trends, the mechanism of the relationship between
signal transduction and endocytosis has received increasing
attention in studies investigating of the occurrence and
development of many diseases. Endocytosis has been proven to
be closely related to lipid metabolism, intracellular iron
homeostasis, metabolism, immunity and other functions (91–93).
On the basis of existing research, circRNAsmainly participate in the
endocytosis pathway as miRNA sponges in immune-related
research. Abnormally expressed circRNAs were identified in
pulmonary tuberculosis (46) and chlamydia infection (54), and all
were predicted to be miRNA sponges. Through bioinformatics
analyses, these circRNAswere found to be related to the endocytosis
signaling pathway. A special study focused on the protein
translation function of circRNAs, and verified that circ-EGFR
attenuates EGFR endocytosis and degradation (94).

3.7.3 JAK-STAT Signaling Pathway
The JAK-STAT signaling pathway has been revealed to consist of
the following four parts: extracellular signaling factors, tyrosine
kinase-related receptors, tyrosine kinase called Janus kinase
(JAK) that transmits signals, and transducer and activator of
transcription (STAT) that exerts effects. When a variety of
cytokines and growth factors bind receptors, JAK is activated,
and then the activated JAK phosphorylates the receptor and
itself. These phosphorylated sites become the binding
sites of STAT with an SH2 structure, thus recruiting and
phosphorylating STAT and allowing it to enter the nucleus in
the form of a dimer to bind to target genes, regulating the
transcription of downstream genes and modulating the process
of cell proliferation, differentiation and apoptosis (95, 96). In
light of research conducted thus far, circRNAs mainly act as
miRNA sponges in the JAK-STAT signaling pathway in
immune-related research. For instance, Wang et al. uncovered
the circSPARC/miR-485-3p/JAK2 axis in CRC (45). In type 1
diabetes mellitus, Yang et al. identified the hsa_circ_0060450/
miR-199a-5p/mRNAs axis, which suppressed the JAK-STAT
signaling pathway triggered by IFN-I (97).

3.7.4 mTOR Signaling Pathway
Mammalian target of rapamycin (mTOR) is an evolutionarily
conserved serine/threonine protein kinase that can regulate a
variety of cell functions by phosphorylating its downstream
target protein. There are two key complexes in the mTOR
signaling pathway called mTOR complex 1 (mTORC1,
including mTOR, Raptor, mLST8, etc.) and mTOR complex 2
(mTORC2, including mTOR, Rictor, mLST8, etc.). mTORC1 is
activated in the presence of lysosome levels, ER stress, sterols,
hypoxia and energy stress to regulate several biological processes,
including lipid metabolism, autophagy, protein synthesis and
ribosomal biogenesis, while mTORC2 responds to growth factors
and controls cytoskeletal organization, metabolism and cell
survival (98–100). According to studies, circRNAs mainly exert
an influence as miRNA sponges in the mTOR signaling pathway
in immune-related research. For example, Zhong et al. revealed
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FIGURE 3 | Important signaling pathways of circRNAs involved in the regulation of immune-related diseases. This figure shows how circRNAs influence immune-
related diseases via a variety of signaling pathways, including the Wnt, TNF, NF-kB, JAK-STAT, mTOR, antiviral and antibacterial pathways. and the corresponding
responses. Effects and processes are shown in light green rectangles, circRNAs are shown in red rectangles, miRNAs are shown in dark green rectangles, mRNAs
are shown in yellow rectangles, and proteins are shown in blue rectangles. Different signaling pathways are distinguished by arrows and inhibitors of different colors.
Solid lines represent direct interactions between molecules, while dotted lines represent indirect interactions.
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the circ0088036/miR-140-3p/silent information regulator 1
(SIRT1) axis in the promotion of RA (37). Wei et al. indicated
the importance of the circ_0020710/miR-370-3p/CXCL12 axis in
melanoma (41). Regarding the regulated proteins, SIRT1 (101–103),
CXCL12 (104–106), etc., served as important regulators in the
mTOR signaling pathway.

3.7.5 Wnt Signaling Pathway
TheWnt signaling pathway is a complex regulatory network that
has been verified to include at least the following three branches:
the classical Wnt signaling pathway, namely, the Wnt/b-catenin
signaling pathway, Wnt/planar cell polarity (PCP) pathway and
Wnt/Ca2+ pathway activated by Wnt5a andWnt11. Wnt mainly
transmits signals through 7 transmembrane receptors of the
Frizzled family and LRP5/6 coreceptors and plays a regulatory
role in cells through key molecules such as CK1, Deshevelled,
GSK3, APC, Axin, and b-Catenin (107–109). Currently,
circRNAs mainly produce marked effects as miRNA sponges in
the Wnt signaling pathway in immune-related research. For
instance, Zhang et al. stated that the circFGFR1/miR-381-3p/
CXCR4 axis promoted NSCLC progression and resistance to
anti-programmed cell death 1 (PD-1)-based therapy (43). Zhao
et al. proposed that circEAF2 counteracts Epstein–Barr virus-
positive diffuse large B-cell lymphoma progression via the miR-
BART19-3p/APC/b-catenin axis (110). Regarding the regulated
proteins, CXCR4 (111–113), APC (114–116), etc., served as
important regulators in the Wnt signaling pathway.
Specifically, a study revealed that a novel protein AXIN1-295aa
encoded by circAXIN1 activated the Wnt/b-catenin signaling
pathway to promote gastric cancer progression (117).

In addition to the pathways highlighted above, circRNAs
participate in the regulation of the TNF, AMPK, HIF-1 and NF-
kB. signaling pathways, but generally, the mechanisms are
similar; thus, circRNAs exert effects on immune function and
immune-related diseases mainly by translating proteins and
acting as miRNA sponges.

3.7.6 Regulation of circRNAs in Immune Cells
CircRNAs have various regulatory functions and have been
detected in different types of immune cells, such as
macrophages, dendritic cells (DCs), natural killer cells (NK
cells), CD4+ T cells and CD8+ T cells. By inhibiting or
promoting the activation or exhaustion of these cells, circRNAs
participate in the development of various diseases.

3.7.7 Regulation of circRNAs in Macrophages
CircRNAs affect the activation of macrophages. For instance,
mouse macrophages specifically express circ-RasGEF1B in the
form of NF-kB after being stimulated by lipopolysaccharide
(LPS), which can activate macrophages by positively regulating
the expression of intercellular adhesion molecule-1 (ICAM-1)
(53, 72). Zhang et al. found that circPPM1F participates in the
activation of MI macrophages in diabetic patients (118), while
another study showed that hsa_circ_0110102 inhibits
macrophage activation via the miR-580-5p/PPARa/CCL2
pathway (119). In addition, SiO2 induces macrophage
activation through the circHECTD1/HECTD1 pathway and
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circZC3H4 RNA and ZC3H4 protein in the process of
pulmonary fibrosis (120, 121). In addition, circRNA HIPK3
and circUbe3a can activate macrophages, while the latter
participates in the process of myocardial fibrosis (122, 123).

Furthermore, circRNAs can lead to the polarization of tumor-
associated macrophages to M1 or M2 macrophages. One study
showed that circN4 bp1 could act as a miR-138-5p sponge for the
modulation of macrophage polarization through the regulation
of the expression of EZH2 (a histone methyltransferase) (124).
Moreover, circRNA Cdyl, circPrkcsh and circPPM1F were found
to play a role in inducing M1 macrophage polarization (118, 125,
126). Many studies have highlighted the importance of circRNAs
in the occurrence and development of tumors, and one effect is
the mediation of the polarization of M2 macrophages. For
example, tumor-derived extracellular circFARSA was
discovered to mediate the polarization of M2 macrophages
(127). Additionally, cyclic RNA PLCE1, circITGB6,
circ_0001142 and hsa_circ_0074854 were also found to play
such a role (128–131).

CircRNAs also play a role in regulating the macrophage-
related inflammatory response; for example, hsa_circ_0005567
can promote M2 macrophage polarization via the mir-492/
SOCS2 axis (132). Moreover, hsa_circ_0004287 inhibits
macrophage-mediated inflammation in an N-methyladenosine-
dependent manner in atopic dermatitis and psoriasis (133).
Furthermore, circRNAs can also advance the inflammatory
response. In gouty arthritis, circHIPK3 was found to be able to
activate the macrophage inflammasome (134), as did
hsa_circ_0087352, circ_1639 and circ_0001490 (135–
137).Significantly, in Mycobacterium tuberculosis infection,
circRNAs TRAPPC6B and hsa_circ_0045474 can induce
autophagy in macrophages (138, 139). Other studies have
found that the circRNA calcitonin gene-related peptide
(CGRP) can induce macrophages to express IL-6 (140).

3.7.8 The Regulation of circRNAs on Other Immune
Cells
Current research investigating the correlation between circRNAs
and immune cells mainly focuses on macrophages, and there are
relatively few studies of other cells. Here, we briefly review the
regulation of circRNAs in NK cells, DCs, CD4+ T cells and CD8+
T cells.

CircRNAs can promote NK-cell depletion and regulate
cytotoxicity. A study found that hsa_circ_0048674 and cancer
cell-derived exosome circUHRF1 can induce NK-cell
dysfunction (44, 141). Hsa_circ_0007456 regulates NK-cell-
mediated hepatocellular carcinoma cytotoxicity through the
mir-6852-3p/ICAM-1 axis (131). Moreover, circARSP91 can
enhance innate immune surveillance by strengthening the
cytotoxicity of NK cells (142). In addition, circrHT1 knockout
can aggravate the sensitivity of bladder cancer cells to NK cells,
and another study showed that circ_0000977 knockout can
enhance the killing effect of NK cells on pancreatic cancer cells
through HIF1A and ADAM1 (143, 144). A GO analysis showed
that circRNAs were involved in regulating DC differentiation
and other biological functions (145). Chen et al. found that
circSnx5 controls the immunogenicity of DCs through the miR-
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544/SOCS1 axis (29). Furthermore, Wang et al. discovered that
the knockdown of circFSCN1 could affect the ability of DCs to
activate T cells and enhance Treg generation (146). Another
study showed that growth differentiation factor 15 induces
tolerant DCs (Tol DCs) by inhibiting the circ_malat-1 and NF-
kB signaling pathways and upregulating IDO (147).

Research investigating the connection between circRNAs and
CD4+ T cells mainly concentrates on systemic lupus
erythematosus (SLE) and asthma. Studies have shown that the
DNA methylation of CD11a and CD70 in CD4 T cells form
patients with SLE is associated with the downregulation of
hsa_circ0012919 (148). In addition, the regulatory network
among circHIPK3, LncGAS5 and miR-495 can promote Th2
differentiation in allergic rhinitis (149), and hsa_circ_0002594
and hsa_circ_0005519 can affect asthma by regulating CD4+ T
cells (77, 150). Moreover, N-methyladenosine-modified
circIGF2BP3 was found to inhibit CD8+ T-cell responses and
promote tumor immune evasion (151), while exogenous
circTRPS1 was proven to be related to CD8+ T-cell exhaustion
(152). In addition, Chen et al. noted that the expression of
circRNA100783 is affected by time- and CD28-related CD8(+)
T-cell aging during antigen exposure (153). Clinically, cancer
cell-derived exosomal circUSP7 was proven to induce CD8+ T
cell dysfunction and anti-PD1 resistance by regulating the miR-
934/SHP2 axis in NSCLC (154).

3.8 Applications and Prospects of
circRNAs in the Treatment of
Immune-Related Diseases
Immunotherapy refers to a treatment technique that artificially
heightens or represses the immune function of the body to treat
immune-related diseases in accordance with the low or
hyperactive immune state of the body. Because of their unique
structure and various functions, circRNAs have broad application
prospects in the treatment of immune-related diseases.

At the current stage, most studies investigating the functions
of circRNAs are still in the laboratory stage, and only a few
theories have been developed for technical applications in
clinical treatment, such as gene therapy. Tens of thousands of
studies have proven circRNAs to be substantially considerable in
the advancement of many immune-related diseases, suggesting
the roles of circRNAs as therapeutic agents and targets (50, 62,
147, 155–157). To date, there are four main approaches to
realizing gene therapy as follows: inducing or inhibiting the
expression of the target circRNA upstream, chemically
modifying key molecules, designing analogs of the target
circRNA and designing downstream molecular analogs of the
circRNA, i.e., miRNA.

In addition to gene therapy, with the discovery of the function
of encoding proteins, circRNAs are speculated to have the
potential to be novel drug delivery carriers. Wesselhoeft et al.
produced a protein with high quality and stable expression in
eukaryotic cells after the circularization of mRNA in vitro and
indicated that RNA circularization can reduce immunogenicity
and extend translational duration in vivo (61, 158, 159),
providing insight into the treatment of immune-related
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diseases. In addition, circRNAs have the potential to function
as appropriate biomarkers of immune-related diseases. In case of
immune-related diseases, it is usually difficult for patients to
determine whether they fell ill by the clinical symptoms in the
early stage so that they will not go to the hospital until their
symptoms worsen (9). Therefore, circRNAs can function as ideal
biomarkers due owing to the four main characteristics
mentioned above. Thus far, numerous circRNAs have been
found in exosomes, and changes in the content of circRNAs in
exosomes can reflect the process of diseases (159). However, the
current problem that has blocked the application of circRNAs as
biomarkers in the clinic is that with the continuous improvement
of the circRNA database in immune-related diseases, the
expression of the same circRNA in different diseases may have
the same trend, which may interfere with the judgment.
Therefore, a more refined database needs to be established.

Unparalleled strides have been made in cancer treatment with
the use of immune checkpoint blockade (ICB), but ICB resistance
hinders the efficacy of cancer immunotherapies (160). Based on
existing research, regulating gene expression at the transcriptional
level, acting as miRNA sponges, binding functional proteins and
encoding proteins are the four major biological functions of
circRNAs, and these functions can play a vital role in regulating
immune diseases, such as immune escape, immune tolerance, and
antitumor and anti-infection effects, either independently or in
combination (7, 12, 161–167). Moreover, circRNAs can achieve
cross-cellular regulation via exosomes. Recent studies have
certified the potential role of exosomes in tumor immunity and
resistance to ICB (160). For instance, Lu et al. suggested that
immuno-repression and anti-PD1 resistance were caused by
exosomal circTMEM181 by increasing the expression of CD39,
and suppressing the ATP-adenosine signaling pathway by
targeting CD39 on macrophages could rescue anti-PD1 therapy
resistance in HCC (168). Therefore, via exosomes, circRNAs may
yield unusually brilliant clinical results in ICB.

Considering that specially designed antisense circRNAs can
effectively access the SARS-CoV-2 5’-untranslated region and
inhibit the proliferation of most viruses for a time, circRNAs also
an option for the clinical treatment of COVID-19, which is a
major achievement that uses of the unique structure of circRNAs
and artificial assistance for modification, showing many
advantages. The best advantage is that the antisense sequence
of circRNAs is better than the corresponding linear
configuration and modified antisense oligonucleotides, and
antisense circRNAs have strong activity against point
mutations in the target sequence. This approach manifests the
function of circRNAs as nucleic acid binders, starting novel
applications for designing circRNAs and hopeful therapeutic
strategies for COVID-19 (67). Fortunately, Qu et al. designed a
circular RNA vaccine encoding the receptor domain (RBD) of
the spike protein of SARS-CoV-2 for the very virus and its
mutants and found that the circRNARBD-Delta vaccine
designed for the SARS-CoV-2 Delta mutant was a candidate
vaccine for COVID-19 with broad-spectrum protection in rhesus
monkeys. A series of comparative evaluations showed that
compared with mRNA vaccines, circRNA vaccines have higher
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stability and a higher proportion of neutralizing antibodies,
which can effectively reduce the potential side effects of
vaccine-associated respiratory diseases (VAERD) (169).

Despite numerous studies, research focusing on circRNAs is
still limited, and many problems remain to be solved. Although
the structure of circRNAs can help attenuate off-target effects,
this problem cannot be avoided. Moreover, a specific circRNA
may have different functions in different cells and may cause
uncontrollable side effects. In addition, if an exogenous circRNA
is synthesized without protein-binding partners, it may be
recognized by RIG-I as a virus-derived circRNA and thus
induce innate immunity (7–9, 62).

3.9 Discussion and Perspectives
CircRNAs perform the functions of sponging miRNAs, binding
specific proteins and regulating gene transcription, and some can
even encode proteins. Meanwhile, circRNAs are widely
distributed in cells, the internal environment and exosomes,
coupled with stable ring structures; thus, they have application
potential in the diagnosis, treatment and prognosis of immune-
related diseases. However, current research investigating related
diseases mainly focuses on tumor immunity, bacterial and viral
infections, and some autoimmune diseases, while relatively
uncommon diseases are rarely studied. The hotspots of the
roles of circRNAs in immune-related diseases include
expression profile analyses, potential biomarker research,
ncRNA axis/network construction, impacts on phenotypes,
therapeutic target seeking, maintenance of nucleic acid stability
and protein binding research. In addition, the study of the
mechanism of circRNAs in immune regulation only occupies
the tip of the iceberg in immunology. Currently, few studies on
the regulation of circRNAs in the establishment of the immune
system and the regulation of the immune system in the normal
physiological state. A representative study showed that the
structure and decomposition of circRNAs modulate PKR
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activation in innate immunity (4). At present, this field also
faces some unsolved problems, such as off-target effects and
unpredictable side effects. Therefore, continuing to supplement
the regulatory network of circRNAs, attempting to explore new
mechanisms, and developing new functions will be crucial for the
entire field in the future, and the birth of new technologies will
further contribute to the complete unveiling of the roles of
circRNAs in immunity and immune-related diseases.
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