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Segmentation of skin lesions plays a very important role in the early detection of skin cancer. However, indistinguishability due to
various artifacts such as hair and contrast between normal skin and lesioned skin is an important challenge for specialist
dermatologists. Computer-aided diagnostic systems using deep convolutional neural networks are gaining importance in order
to cope with difficulties. This study focuses on deep learning-based fusion networks and fusion loss functions. For the
automatic segmentation of skin lesions, U-Net (U-Net + ResNet 2D) with 2D residual blocks and 2D volumetric convolutional
neural networks were fused for the first time in this study. Also, a new fusion loss function is proposed by combining Dice
Loss (DL) and Focal Tversky Loss (FTL) to make the proposed fused model more robust. Of the 2594 image dataset, 20% is
reserved for test data and 80% for training data. In test data training, a Jaccard score of 0.837 and a dice score of 0.918 were
obtained. The proposed model was also scored on the ISIC 2018 Task 1 test images, whose ground truths were not shared. The
proposed model performed well and achieved a Jaccard index of 0.800 and a dice score of 0.880 in the ISIC 2018 Task 1 test
set. In addition, it has been observed that the new fused loss function obtained by fusing Focal Tversky Loss and Dice Loss
functions in the proposed model increases the robustness of the model in the tests. The proposed new loss function fusion
model has outstripped the cutting-edge approaches in the literature.

1. Introduction

Skin cancer is the 19th most commonly occurring cancer in
men and women. There were nearly 300,000 new cases in
2018. Australia and New Zealand share the first two places
in skin cancer patients [1]. In 2012, the total number of non-
melanoma skin cancer in the US population was estimated
at 5,434,193. The total number of people treated for nonme-
lanoma skin cancer in the United States was estimated at
3,315,554 [2]. In the United States, $8.1 billion was spent
for melanoma and nonmelanoma skin lesions, with a total
cost of $4.8 billion and $3.3 billion, respectively [3]. Between

1994 and 2014, the number of nonmelanoma skin lesions
reached 77% in the USA [4]. Approximately 90% of nonme-
lanoma skin cancers of nonmelanoma are associated with
ultraviolet (UV) radiation from the sun [5]. The imaging
technique used for the precise and efficient diagnosis of skin
lesions is called dermoscopy. Dermoscopy allows doctors to
diagnose and treat cancerous skin lesions in more detail by
examining benign and malignant tumors on the skin that
cannot be distinguished through the eye in more fact.
Dermoscopy is performed with a hand microscope called a
dermatoscope, which allows us to see under the skin surface
in detail using polarized light. Thanks to the ABCD criteria
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used in the dermoscopy method, superior performance is
obtained than other imaging methods [6]. However, precise
and rapid skin lesion segmentation remains challenging due
to diversity of skin lesions and the low difference between
normal and lesioned skin. In addition, many artifacts such
as hair strands and blood vessels cause problems during
the segmentation [7-19].

For this reason, automated medical image segmentation
is essential for facilitating the lesion’s pathological diagnosis,
planning treatment, and monitoring the disease’s progress
[20]. Second, some structures have various scales and
shapes, such as skin lesions in dermoscopic views, making
it challenging to create a previous shape model [21]. Besides,
in magnetic resonance imaging (MRI), the location and
orientation of some structures in the context of a large
image, such as the placenta and fetal brain, can vary greatly
[20, 22, 23]. Compared with the manual segmentation
method, convolutional neural networks (CNNs) in many
different organ segmentations have started to gain higher
performance [24].

According to Taghanaki et al. [25], they replaced the jump
links with the select-join-transfer (SAT) module to increase
the segmentation robustness of the U-Net based model.

Jha et al. [26] proposed a binary parallel U-NET archi-
tecture using two U-NETs together.

Abhishek et al. [27] proposed a deep semantic neural
network to improve the segmentation performance of deep
learning-based networks.

Arora et al. [28] proposed a U-Net-based deep learning
model using group normalization [29, 30].

Gu et al. [31] tried to propose a more robust model with
multiple connections between layers by modifying the
U-Net architecture. They also tried to increase the robust-
ness of the model by adding a channel awareness module.

Goyal et al. [32] proposed a community network
combining R-CNN and DeeplabV3C for segmentation of
skin lesions.

According to Jiang et al. [33], they proposed the
CSARM-CNN model that includes both channel and spatial
attention modules for the segmentation of skin lesions based
on deep learning C.

Lei et al. [34] proposed a general contentious network
(GAN). The proposed model is a modified version of the
U-Net network consisting of double layers.

According to San et al. [35], they proposed a community
network combining FCN and DPN networks.

Ocal et al. [36] proposed an architecture fusing the 3D
and 2D volumetric CNN (V-Net) networks for the segmen-
tation of prostate images.

Ocal et al. [37] proposed a model combining ResUnet
3D and ResUnet 2D to segment MR prostate scans based
on deep learning. They also proposed a new loss function
that dynamically calculates the loss according to the mini-
batch size.

In this article, information about data preprocessing and
data augmentation is given in Chapter 2. In addition, infor-
mation about the performance metrics used for the pro-
posed model is given. The analyses of the proposed model
are examined in the third section. In the 4th chapter, the
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analyses of the fusion model are evaluated. In addition, the
performance results obtained were analyzed in comparison
with other studies in the literature. In Chapter 5, the evalu-
ations made in Chapter 4 are discussed, and various sugges-
tions are made. In the 6th chapter, the conclusions of the
proposed deep learning architecture are shared.

2. Materials and Methods

2.1. Dataset. In this study, the dataset was used for training
and testing of the fusion method [21, 38]. The dataset con-
sists of 2594 training images. The dataset from different
institutes and various dermatoscopy types belongs to other
anatomical regions of the patients containing various diag-
nostic challenges in the dermoscopic lesion images.

2.2. Preparing the Dataset. Deep learning methods usually
require large datasets to produce better performance results.
Therefore, image augmentation methods have been applied
to the dataset to increase the number of images. First, 2594
images in the dataset were divided into different training
(2075) and test (519) sets. The training images were then
increased by applying horizontal and vertical flips, random
rotation, random distortion, elastic transformation, and
border data augmentation with the scaling and cropping
method. The purpose of boundary data augmentation is to
enable the proposed model better to detect the lesions’ edges
better. With the data augmentation methods applied, 72000
test images were obtained. This number is 92594 for the test
set in the ISIC 2018 Challenge. That is, two different training
datasets were created. The training model was used for 80%
training and 20% validation compared with other models.
Training images were pre-processed to achieve reliable and
robust results. Next, contrast stretching was applied to make
the lesions more prominent in the image. Contrast stretch-
ing always used the partial-based linear function that
increased linearly and monotonously. Then, the sharpening
algorithm was applied to the obtained images (with = 10).
Thanks to sharpening, we tried to deal with the difficulty
of fuzzy edges in images. Since the images are of many dif-
ferent sizes, and the proposed model is uniform, we resized
all images to 512 x 512 dimensions. Figure 1 shows examples
of pre-processed and enhanced images.

2.3. Fusion Architecture. V-Net2D and U-Net + Resnet2D,
which are the most used CNN models in biomedical image
segmentation, have been fused in the proposed Fusion
model. Milletari et al. [39] proposed V-Net architecture for
volumetric, fully convolutional image segmentation. The
proposed V-Net2D model for the fusion model is shown in
Figure 2. As can be seen from the image, V-Net and U-Net
are very similar [40]. However, the feature map is repre-
sented by squares in the figure. Additionally, it can be seen
(orange line) that Vnet borrowed U-Net to superimpose
the attribute map in the compressed path to complete the
lost information (orange line). What needs a particular
explanation here is that V-Net and U-Net’s most significant
difference is that V-Net uses the short circuit connection of
residual block at each stage (gray route). It is equivalent to
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FIGURE 1: Data augmentation of the training set. (a) 8 bit RGB
image and (b) ground truth.

promoting residual block in U-Net. The residual block is
Vnet’s most significant improvement.

Besides, only one convolution is performed in the first
stage of Vnet and twice in the second stage. The first and
second layers in the compressing and decompressing stages
are different from Unet’s structure, which has the same
number of convolution operations at each stage. Besides,
we replaced the convolutions in the U-Net with the residual

blocks shown in Figure 3. In this way, we have obtained the
U-Net +Resnet2D model shown in Figure 4, where we
achieve better performance than U-Net. The proposed
fusion segmentation model is shown in Figure 5.

2.3.1. The Encoder Stage. In each model, Xavier was
employed for weight initialization and ReLU was employed
as activation function [41]. In addition, ADAM was used
for the optimization of the model [42]. In the V-Net2D
model, the convolution layer in each channel consists of
3 x 3 filters. In addition, GN was used on the channels
to normalize the feature maps. Unlike BN, GN normalizes
groups of channels and calculates mean and variance for
group normalization for each layer by performing both
layer normalization (LN) and sample normalization (IN)
simultaneously [7]. Unlike V-Net2D, U-Net+ Resnet2D
used BN instead of GN. In U-Net+ Resnet2D, 2 x 2 maxi-
mum pooling was used, which halved the properties of the
layer in the first four convolution blocks. Figures 2 and 4
show the encoder (left part of the image) preprocessed
512x512x 1 input image fed into the first block. Also,
the convolution layers increased 2x from 32 to 512 per
block.

2.3.2. The Decoder Stage. Low-resolution feature maps from
the encoder are fed into the decoder section, upsampling
images. As shown in Figures 2 and 4, upsampling (right part
of the image) performs deconvolution, which is upsampling
of feature maps from the downsampling stage. Low-
resolution images with high-value feature maps are resized
to the input image by performing many convolutions and
merging operations in the decoder stage. Each convolutional
layer in the decoder consists of 3 x 3 filters. ReLU is used as
the activation function in each decoder layer. The output of
the penultimate layers is fed into the 1x 1 convolutional
layer, which has the sigmoid activation function.

2.4. Evaluation Metrics. The proposed fusion model was
scored in ISIC 2018 Challenge and using the most used
performance metrics in the literature. The first of these met-
rics is the membrane similarity coefficient (DICE), which is a
measure of the similarity of actual and predicted outcomes
and is shown in Eq. (1). The Jaccard index (Jaccard), defined
in Eq. (2), is a metric that calculates the ratio of similarity
and difference of data samples. Accuracy (ACC), shown in
Eq. (3), represents the percentage of correct predictions on
the dataset. Sensitivity (Sens), defined in Eq. (4), is a percent-
age of the proportion of samples in test images estimated as
true positive (TP). Sensitivity can also be defined as Recall.
The Specificity (Spec), shown in Eq. (5), gives the percentage
of correctly predicted lesion-free areas in the dataset. While
DICE shows high performance in training in class imbal-
ances, it is not as successful in estimating the test set. The
metric defined to meet this challenge is the Tversky index
function shown in Eq. (6).

2% TP
Dice = * , (1)
2+« TP+ FP+ FN




Computational and Mathematical Methods in Medicine
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2.5. Loss Functions. A fusion loss model is obtained in the
proposed model by fusing Focal Tversky Loss (FTL) and
Dice Loss (DL), the most widely used loss functions in the

literature. The loss functions used in the proposed fusion
model are explained below.

2.5.1. Focal Tversky Loss (FTL). Another drawback of Dice
Loss is the difficulty in segmenting small ROIs as there is
no significant change in the loss. In this model, we used
Dice Loss and Focal Tversky loss function (FTL), which
constitute the fusion loss function. FTL is calculated using
the in Eq. (7) formula. FTL can be called the fused form
of cross-entropy with dice. It combines the loss curve’s
nonlinearity and controls how the function behaves at dif-
ferent samples [8].

FTL=(1-TI)". (7)

It is crucial that y is chosen correctly in Eq. (7). If y > 1,
the loss function will focus more on false positives, making
a worse prediction and classification. If it happens with
y <1, then the loss function will focus more easily on
the examples, and the training of the model will be faster.
If we select y=0, the model will be no different from
Tversky Loss. After trying different values for y for the
proposed model, we got the best result with y = 0.75. For this
reason, we set the p value as 0.75 in all our training stages. We
defined TT hyperparameters as « =0.7 and 3=0.3 to better
convergence of the proposed model to FP. If a=£=0.5,
the Tversky index will resemble the Dice Coefficient.
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FIGURE 7: V-Net2D validation accuracy and loss results.

2.5.2. Dice Loss (DL). In the proposed model, Dice Coeffi-
cient (DSC) in Eq. (1). is taken as a reference as another loss
function. DSC is a ratio of similarity of samples in two differ-
ent datasets. DSC value takes values between minimum 0
and maximum 1. If Dice =1, these two different clusters
were matching each other perfectly. Conversely, if DSC =0,
it means that these two sets are entirely different from
each other. Dice Loss is found by the 1-DSC formula to
maximize overlap.

3. Calculation

3.1. Application Details. The hardware equipment used to
evaluate the proposed model’s performance must have suffi-
cient Cuda and ram to train the model. Intel NVIDIA GTX
1080TTI (11 GB) graphics card was used in the training of the
proposed model. To calculate the final loss value of both
models, the learning rate was set as le—3 and the lot
size =4. The training of the models was carried out for
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FIGURE 8: Removing small connected components. (a) U-Net + Resnet2D test result, (b) V-Net2D test result, and (c) U-Net-Resnet2D test

result after removing the small connected pixels.

TaBLE 1: Comparative analysis of proposed and the single methods (results of the 20% test set from the training set).

Method

Performance metrics

Dice Jaccard Acc Sens Spec
U-net + Resnet2D (with dice loss) 0.75 0.67 0.86 0.85 0.86
U-net + Resnet2D (with FTL) 0.87 0.79 0.88 0.87 0.88
V-Net2d (with dice loss) 0.88 0.81 091 0.90 091
V-Net2D (with FTL) 0.90 0.83 0.93 0.92 0.93
Fusion model with fusion loss (ours) 0.92 0.84 0.95 0.95 0.96

TaBLE 2: Comparative analysis of proposed and the single methods (results of the ISIC 2018 test set).
Method T.Jaccard Dice Pe};fcoc?r“; e memcj\cc Sens Spec
U-net + Resnet2D (with dice loss) 0.56 0.72 0.64 0.86 0.85 0.86
U-net + Resnet2D (with FTL) 0.64 0.81 0.75 0.90 0.89 0.90
V-Net2d (with dice loss) 0.71 0.86 0.78 091 0.89 0.92
V-Net2D (with FTL) 0.72 0.87 0.79 0.91 0.92 0.91
Fusion model with fusion loss (ours) 0.74 0.88 0.80 0.93 0.94 0.94
TasLE 3: Comparative analysis of the proposed model with the cutting-edge methods in the literature.

Method Dice Jaccard Performal:icmemcs Sens Spec
Ensemble with CRF v3 0.90 0.84 0.95 0.93 0.95
SE_U-Net [28] 091 0.83 0.95 0.89 0.96
DAGAN [34] 0.89 0.83 0.93 0.95 0.91
DRU-Net [9] 0.86 0.76 — 0.88 0.92
Attn_U-Net + GN [28] 0.91 0.83 0.95 0.94 0.95
Fusion model with fusion loss (ours) 0.92 0.84 0.95 0.95 0.96

100,000 epoch. The models consisted of the proposed
fusion model were trained separately on the preprocessed
dataset. The tests were performed, as seen from the valida-
tion accuracy and loss values in Figures 6 and 7.

As shown in Figure 8, the small connected components
were extracted from the test results obtained in the architec-
tures forming the fusion model, using the SimpleITK.con-
nected part in the Simple ITK model.

By comparing the prediction images obtained from the
proposed model, the least related points are extracted. The
final segmentation result was obtained by calculating the most
overlapping regions.

3.2. Qualitative Analysis. The segmentation results and final
segmentation result of each model in the proposed model
are shown in Figure 5. In the figure, images obtained by
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FiGUre 9: Continued.
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FiGure 9: ISIC 2018 1000 test set prediction results. (a) Original image. (b) U-Net+ Resnet2D + DL, (c) U-Net+ Resnet2D+ FTL,
(d) V-Net2D + DL, (e) V-Net2D +FTL, (f) proposed fusion model (DL: Dice Loss, FTL: Focal Tversky Loss).

the fusion of the two models with two different loss
functions are demonstrated. Figures 6 and 7 show the graph-
ical analysis of the models that form the proposed approach
to validation accuracy and validation loss performed for
100,000 epochs.

3.3. Hardware Analysis. The recommended fusion model was
tested using a NVIDIA Geforce GTX 1080 TI graphics card.
The proposed model has been tested with other state-of-the-
art models for the numerous model parameters, storage
requirements, and extraction rates. There is no need for any
operation that requires calculation before training in datasets.
Training of each model took approximately from 4 to 6 hours
with different loss functions. It took 15 minutes to calculate
the overlap points of the V-Net and U-Net+ Resnet2D
models’ results and find the final segmentation result.

4. Experimental Results

The proposed segmentation model’s skin lesion perfor-
mance was tested in the augmented ISIC 2018 dataset con-
sisting of dermoscopic images. The proposed fusion model
created by combining two different loss functions is thought
to be a robust fusion model for lesion segmentation. One of
the most important factors in this is the application of the
border data augmentation method.

4.1. Comparison of the Proposed Model with Cutting-Edge
Approaches. Table 1 shows the proposed framework’s com-
parative study with other single methods using the ISIC
2018 dataset. The proposed fusion model is compared with
the value in each loss function and fusion loss function of
U-Net2D and V-Net2D. The augmented ISIC 2018 dataset
achieved a Dice Coefficient of 0.92, surpassing the pro-
posed architectural single models. This result was mainly
achieved using Dice Loss and FTL as the fusion loss func-
tion best for small and complex lesion images. Besides, the
proposed model has achieved better results compared to
other single models.

Unlike other studies, the proposed model was also tested
in the test dataset in the ISIC 2018 Challenge, and a dice
score of 0.88 and a Jaccard score of 0.80 were obtained, as
can be seen in Table 2. As can be seen from the table, the
proposed model achieved from 2% to 4% more Jaccard

scores than the single Vnet2D and Unet2D architectures
thanks the new fusion loss function. The Dice and Sen per-
formance results of the proposed model are consistent with
the Jaccard score. The architecture based on the fusion
model performed better than other single models in both
the 20% test set and the ISIC 2018 Challenge test set and
all segmentation processes.

Table 3 shows the proposed model’s comparative results
with other models on the ISIC 2018 dataset. Our fusion
model obtained a dice score of 0.92 in tests on the 2018
Challenge dataset, surpassing the latest literature methods.
Using attention gates (AG) and group normalization (GN),
Attn_U-Net+GN achieved results closest to the proposed
model. Although Attn_U-Net+GN performed well, the
proposed model outperformed Attn_U-Net+GN in other
performance metrics except for ACC. Another method that
can be compared with the proposed model is SE_Unet.
One of the reasons the proposed model outperforms other
models is fusing the two best segmentation loss functions
(DL +FTL) in the literature.

Figure 9 shows the visually estimated outputs of some
complex samples in the ISIC 2018 1000 test set with the pro-
posed approach and the models that make up the proposed
model. As can be seen from the images, models with FTL
gave better results. It is seen that V-Net2D models with
FTL gave the closest results to the proposed approach.

The ground truth and predicted output of some complex
samples in the 519 test images separated from the training
dataset for training the proposed fusion model are shown
in Figure 10.

5. Discussion

Maybe a little more training time will take as the recom-
mended model is fusion. However, the testing phase will
take almost the same time as the others. In a way, the study
has been a comparative analysis study. We used BN in
U-Net + Resnet2D and GN in V-Net2D. As can be seen from
Tables 1 and 2, V-Net2D using GN gave more successful
results. Besides, we had the opportunity to analyze Dice Loss
and FTL comparatively in models with this study. FTL gave
more successful outcomes than Dice Loss in the test results,
as shown in Tables 1 and 2. Also, V-Net2D finished training
1.5 hours earlier than U-Net + Resnet2D. However, a more
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FI1GURE 10: Test results according to 519 splitted test set from the ISIC 2018 training set. (a) Input image, (b) image mask, and (c) predicted mask.

robust automatic segmentation model was obtained by fus-
ing two different segmentation models and loss functions,
most commonly used as backbones in the literature. Future
studies can examine these two models and two different loss
functions, and studies can be made on the new singular
segmentation model and the loss function. However, there
are still many challenging ways to achieve %100 flawless
segmentation in all lesion imaging goals with AI studies used
for diagnosis.

6. Conclusion

In this article, the proposed fusion model was created by
fusing the two most robust networks, such as V-Net2D
and U-Net+ Resnet2D, which are the most used in the
segmentation of skin lesions recently. Results have been
trained and tested in the ISIC 2018 dataset. Images are
entered into the proposed algorithm separately, containing
gate vectors that separate essential information from lower-
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level information. GN in each CNN block in the upsampling
and downsampling stage in the V-Net2D reduces the pay-
load of precomputed statistics for images in groups. Also, a
new loss function has been proposed by fusing the best loss
functions DL and FTL. The novel fusion loss function
proposed by combining DL and FTL has shown to be more
suitable for skin lesion segmentation by obtaining higher
performance metrics ratios in the experiments performed.
The proposed fusion loss function can play a crucial role
in challenging segmentation tasks. This created model has
a highly desirable feature of outperforming existing essential
segmentation networks. More tuning of the hyperpara-
meters and adding more color space enhancements can
provide better segmentation performances. Accuracy and
Jaccard in the dataset were recorded as 0.95 and 0.84,
exceeding the state-of-the-art segmentation techniques.
The proposed model and fusion loss function are also tested
in datasets from different medical fields to check their
robustness and accuracy.

Data Availability

Skin lesion analysis toward melanoma detection: A challenge
at the 2017 international symposium on biomedical imaging
(ISBI) hosted by the international skin imaging collabora-
tion (ISIC). CoRR, abs/1710.05006. (https://arxiv.org/abs/
1710.05006#). We have given the dataset from this database.

Conflicts of Interest

None of the authors of this manuscript has any Conflict of
Interest related to this work.

References

[1] Skin Cancer Statistics, 2018, https://www.wcrf.org/dietandcancer/
cancer-trends/skincancer-statistics, ().

[2] H.W. Rogers, M. A. Weinstock, S. R. Feldman, and B. M. Col-
diron, “Incidence estimate of non-melanoma skin cancer
(keratinocyte carcinomas) in the US population. 2012,” JAMA
Dermatology, vol. 151, no. 10, pp. 1081-1086, 2015.

[3] G.P.Guy]r,S.R. Machlin, D. U. Ekwueme, and K. R. Yabrof,
“Prevalence and costs of skin cancer treatment in the US,
2002-2006 and 2007-2011,” American Journal of Preventive
Medicine, vol. 48, no. 2, pp. 183-187, 2015.

[4] S. V. Mohan and A. L. S. Chang, “Advanced basal cell carci-
noma: epidemiology and therapeutic innovations,” Curr Der-
matol Rep, vol. 3, no. 1, pp. 40-45, 2014.

[5] H.K.Koh, A. C. Geller, D. R. Miller, T. A. Grossbart, and R. A.
Lew, “Prevention and early detection strategies for melanoma
and skin cancer,” Archives of Dermatology, vol. 132, no. 4,
Pp. 436-442, 1996.

[6] M. E. Vestergaard, P. H. P. M. Macaskill, P. E. Holt, and S. W.
Menzies, “Dermoscopy compared with naked eye examination
for the diagnosis of primary melanoma: a meta-analysis of
studies performed in a clinical setting,” British Journal of Der-
matology, vol. 159, no. 3, pp. 669-676, 2008.

[7] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normal-
ization: the missing ingredient for fast stylization,” 2016,
https://arxiv.org/abs/1607.08022.

11

[8] N. Abraham and N. M. Khan, “A novel focal Tversky loss
function with improved attention U-net for lesion segmenta-
tion,” in 2019 IEEE 16th international symposium on biomed-
ical imaging (ISBI 2019), pp. 683-687, IEEE, 2019.

M. Jafari, D. Auer, S. Francis, J. Garibaldi, and X. Chen, “Dru-
Net: an efficient deep convolutional neural network for medi-
cal image segmentation,” in 2020 IEEE 17th International
Symposium on Biomedical Imaging (ISBI), pp. 1144-1148,
1EEE, 2020.

[10] S. Wang, A. Wang, M. Ran et al., “Hand gesture recognition
framework using a lie group based spatio-temporal recurrent
network with multiple hand-worn motion sensors,” Informa-
tion Sciences, vol. 606, pp. 722-741, 2022.

[11] M. Lin, Q. Zhan, and Z. Xu, “Decision making with probabilis-
tic hesitant fuzzy information based on multiplicative consis-
tency,” International Journal of Intelligence Systems, vol. 35,
no. 8, pp. 1233-1261, 2020.

[12] M. Lin, Z. Chen, R. Chen, and H. Fujita, “Evaluation of startup
companies using multicriteria decision making based on
hesitant fuzzy linguistic information envelopment analysis
models,” International Journal of Intelligence Systems, vol. 36,
no. 5, pp. 2292-2322, 2021.

[13] M. Lin, X. Li, R. Chen, H. Fujita, and J. Lin, “Picture fuzzy
interactional partitioned Heronian mean aggregation opera-
tors: an application to MADM process,” Artificial Intelligence
Review, vol. 55, no. 2, pp. 1171-1208, 2022.

[14] S. A.Parah,]. A. Kaw, P. Bellavista et al., “Efficient security and
authentication for edge-based internet of medical things,”
IEEE Internet of Things Journal, vol. 8, no. 21, pp. 15652-
15662, 2021.

[15] N. Khan, Z. Ma, U. Ullah, and K. Polat, “Categorization of
knowledge graph based recommendation methods and bench-
mark datasets from the perspectives of application scenarios: A
comprehensive survey,” Expert Systems with Applications,
vol. 206, p. 117737, 2022.

[16] S. Pirbhulal, W. Wu, K. Muhammad, I. Mehmood, G. Li, and
V. H. C. de Albuquerque, “Mobility enabled security for opti-
mizing IoT based intelligent applications,” IEEE Network,
vol. 34, no. 2, pp. 72-77.

[17] C. Huang, S. Chen, Y. Zhang, W. Zhou, J. J. P. C. Rodrigues,
and V. H. C. de Albuquerque, “A robust approach for privacy
data protection: IoT security assurance using generative adver-
sarial imitation learning,” IEEE Internet of Things Journal.

[18] W. Wu, H. Zhang, V. H. C. de Albuquerque, and L. Xu,
“Hyper-noise interference privacy protection framework for
intelligent medical data-centric networks,” IEEE Network,
vol. 35, no. 1, pp- 333-339, 2021.

[19] A. F. Hussein, N. Arun Kumar, G. Ramirez-Gonzalez,
E. Abdulhay, J. M. R. S. Tavares, and V. H. C. de Albuquerque,
“A medical records managing and securing blockchain based
system supported by a genetic algorithm and discrete wavelet
transform,” Cognitive Systems Research, vol. 52, pp. 1-11,
2018.

[20] G. Wang, W. Li, M. A. Zuluaga et al., “Interactive medical
image segmentation using deep learning with image-specific
fine tuning,” IEEE Transactions on Medical Imaging, vol. 37,
no. 7, pp. 1562-1573, 2018.

[21] N. Codella, V. Rotemberg, P. Tschandl et al., “Skin lesion anal-
ysis toward melanoma detection 2018: a challenge hosted by
international skin imaging collaboration (ISIC),” 2019,
https://arxiv.org/abs/1902.03368.

o
X


https://arxiv.org/abs/1710.05006#
https://arxiv.org/abs/1710.05006#
https://www.wcrf.org/dietandcancer/cancer-trends/skincancer-statistics
https://www.wcrf.org/dietandcancer/cancer-trends/skincancer-statistics
https://arxiv.org/abs/1607.08022
https://arxiv.org/abs/1902.03368

12

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

G. Wang, M. A. Zuluaga, W. Li et al., “Deep IGeoS: a deep
interactive geodesic framework for medical image segmenta-
tion,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 41, no. 7, pp. 1559-1572, 2019.

S. S. Salehi, S. R. Hashemi, C. Velasco-Annis et al., “Real-time
automatic fetal brain extraction in fetal MRI by deep learning,”
2018 IEEE 15th international symposium on biomedical imag-
ing (ISBI 2018), pp. 720-724, 2018.

G. Litjens, T. Kooi, B. E. Bejnordi et al., “A survey on deep
learning in medical image analysis,” Medical Image Analysis,
vol. 42, pp. 60-88, 2017.

S. A. Taghanaki, A. Bentaieb, A. Sharma et al., Select, attend,
and transfer: light, learnable skip connections, Springer, 2019.

D. Jha, M. A. Riegler, D. Johansen, P. Halvorsen, and H. D.
Johansen, “Doubleu-net: a deep convolutional neural network
for medical image segmentation,” in 2020 IEEE 33rd interna-
tional symposium on computer-based medical systems (CBMS),
pp. 558-564, IEEE, 2020.

K. Abhishek, G. Hamarneh, and M. S. Drew, “Illumination-
based transformations improve skin lesion segmentation in
dermoscopic images,” Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition workshops,
pp. 728-729, 2020.

R. Arora, B. Raman, K. Nayyar, and R. Awasthi, “Automated
skin lesion segmentation using an attention-based deep convo-
lutional neural network,” Biomedical Signal Processing and
Control, vol. 65, article 102358, 2020.

Y. Wu and K. He, “Group normalization,” Proceedings of the
European conference on computer vision, , pp. 3-19, ECCV, 2018.

S. Toffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,”
2015, https://arxiv.org/abs/1502.03167.

R. Gu, G. Wang, T. Song, R. Huang, M. Aertsen, and
J. Deprest, “CA-net: comprehensive attention convolutional
neural networks for explainable medical image segmentation,”
IEEE Transactions on Medical Imaging, vol. 40, no. 2, pp. 699-
711, 2021.

M. Goyal, A. Oakley, P. Bansal, D. Dancey, and M. H. Yap,
“Skin lesion segmentation in dermoscopic images with ensem-
ble deep learning methods,” IEEE Access, vol. 8, 2019.

Y. Jiang, S. Cao, S. Tao, and H. Zhang, “Skin lesion segmenta-
tion based on multi-scale attention convolutional neural net-
work,” IEEE Access, vol. 8, pp. 122811-122825, 2020.

B. Lei, Z. Xia, F. Jiang et al., “Skin lesion segmentation via gen-
erative adversarial networks with dual discriminators,” Medi-
cal Image Analysis, vol. 64, article 101716, 2020.

P. Shan, Y. Wang, C. Fu, W. Song, and J. Chen, “Automatic
skin lesion segmentation based on FC-DPN,” Computers in
Biology and Medicine, vol. 123, no. 2020, p. 103762, 2020.

H. Ocal and N. Barisci, “Prostate segmentation via dynamic
fusion model,” Arabian Journal for Science and Engineering,
vol. 9, no. 2, pp. 1-14, 2022.

H. Ocal and N. Barisci, “A novel prostate segmentation
method: triple fusion model with hybrid loss,” Neural Com-
puting and Applications, vol. 19, no. 1, pp. 1-20, 2022.

N. C. Codella, D. Gutman, M. E. Celebi et al., “Skin lesion anal-
ysis toward melanoma detection: a challenge at the 2017 inter-
national symposium on biomedical imaging (ISBI) hosted by
the international skin imaging collaboration (ISIC),” 2017,
https://arxiv.org/abs/1710.05006.

(39]

(40]

[41]

(42]

Computational and Mathematical Methods in Medicine

F. Milletari, N. Navab, and S. A. Ahmadi, “V-net: fully convo-
lutional neural networks for volumetric medical image,” in
2016 fourth international conference on 3D vision (3DV),
pp. 565-571, IEEE, 2016.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional
networks for biomedical image segmentation,” in International
Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 234-241, Springer, 2015.

X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” Aistats, vol. 9,
pp. 249-256, 2010.

D. P. Kingma and J. Ba, “Adam: a method for stochastic opti-
mization,” International Conference on Learning Representa-
tions (ICLR), pp. 1-11, 2015.


https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1710.05006

	A Novel Approach to Skin Lesion Segmentation: Multipath Fusion Model with Fusion Loss
	1. Introduction
	2. Materials and Methods
	2.1. Dataset
	2.2. Preparing the Dataset
	2.3. Fusion Architecture
	2.3.1. The Encoder Stage
	2.3.2. The Decoder Stage

	2.4. Evaluation Metrics
	2.5. Loss Functions
	2.5.1. Focal Tversky Loss (FTL)
	2.5.2. Dice Loss (DL)


	3. Calculation
	3.1. Application Details
	3.2. Qualitative Analysis
	3.3. Hardware Analysis

	4. Experimental Results
	4.1. Comparison of the Proposed Model with Cutting-Edge Approaches

	5. Discussion
	6. Conclusion
	Data Availability
	Conflicts of Interest

