

Supplementary Fig.1

Supplementary Fig.1: VE-Cad/CTF2 generation and apoptosis induction in HUVECs exposed to increasing concentration of H_2O_2 . a) WB analysis of VE-cadherin in HUVECs treated with increasing concentration of H_2O_2 , as indicated. Actin was used as loading control. Results are representative of 2 independent experiments. b) Percentage of Annexin V FITC positive cells and propidium iodide (PI) positive cells was calculated counting 4 fields for each experimental condition in 3 independent experiments. Data are mean \pm s.e.m, *P<0.001 vs AnnexV FITC positive cells in NT, 100 μ M and 200 μ M H_2O_2 , # P<0.001 vs PI positive cells in NT, 100 μ M and 200 μ M H_2O_2 c) Representative images of HUVECs exposed to increasing concentrations of H_2O_2 and stained with annexin V-FITC/PI, as described in materials and methods. Scale bar=50 μ m.

Supplementary Fig.2

Supplementary Fig.2: BMP9 does not prevent oxidative stress-induced permeability. The graph shows permeability of HUVECs pre-treated with BMP9 and exposed to $500 \,\mu\text{M} \,\text{H}_2\text{O}_2$ for 6 hours. Data are mean \pm s.e.m. of 3 independent experiments. *P<0.01 vs NT.

Supplementary Fig.3

Supplementary Fig.3: VE-cadherin, β -catenin, and F-actin distribution in HUVECs exposed to increasing concentration of H_2O_2 . HUVECs were exposed to H_2O_2 (25-500 μ M) for 6h. HUVECs were stained for VE-Cadherin (red), β -Catenin (green) using specific antibodies. Phalloidin was used to stain F-actin (blue). Scale bar=30 μ m.

Supplementary Fig.4

Supplementary Fig.4: VE-cadherin, β-catenin, and F-actin distribution in HUVECs exposed to BMP9/10 or MMPs inhibitor. HUVECs were pre-treated with BMP9 (10 ng/ml), BMP10 (10 ng/ml) or GI254023X (10 μM) for 24h. HUVECs were stained for VE-Cadherin (red), β-Catenin (green) using specific antibodies. Phalloidin was used to stain F-actin (blue). Scale bar=30 μm. The panels are from the same representative experiment shown in Fig.4.

SHORTER EXPOSURE BLOTS USED FOR FULL LENGTH

E-Cad/FL

VE-Cad/FL

LONGER EXPOSURES USED FOR CTF1 and CTF2

E-Cad/CTF1 and E-Cad/CTF2

ANTI E- Cadherin

VE-Cad/CTF1 and VE-Cad/CTF2

22 .

SHORTER EXPOSURE BLOTS USED FOR VE-cadherin FULL LENGTH, and ACTIN

VE-Cad/FL

LONGER EXPOSURE USED FOR VE-Cad/CTF1 AND VE-Cad/CTF2

MUCH LONGER EXPOSURE

VE-Cad/CTF2

SHORTER EXPOSURE USED FOR VE-cadherin FULL LENGTH

VE-Cad/FL

LONGER EXPOSURE USED FOR VE-Cad/CTF1 AND VE-Cad/CTF2

VE-Cad/CTF1 and VE-Cad/CTF2

SHORTER EXPOSURES USED FOR VE-cadherin FULL LENGTH, ACTIN AND P-smad1,5,8

VE-Cad/FL

ACTIN

P-smad 1,5,8

LONGER EXPOSURE USED FOR VE-Cad/CTF1 and VE-Cad/CTF2

Fig. 2c

SHORTER EXPOSURE BLOTS USED FOR VE-cadherin FULL LENGTH and ACTIN

LONGER EXPOSURE BLOT USED FOR VE-cadherin CTF1 and CTF2

SHORTER EXPOSURE BLOTS USED FOR VE-cadherin FULL LENGTH, ACTIN AND P-smad1,5,8

VE-Cad/FL

ACTIN

P-smad 1,5,8

P-JNK

LONGER EXPOSURE USED FOR VE-Cad/CTF1 and CTF2

VE-Cad/CTF1 VE-Cad/CTF2

Fig. 3b

SHORTER EXPOSURE BLOTS USED FOR VE-cadherin FULL LENGTH and ACTIN

LONGER EXPOSURE USED FOR VE-Cad/CTF1 and CTF2

VE-Cad/CTF1 VE-Cad/CTF2

Suppl Fig. 1a