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Abstract
Background: Many place-based randomized trials and quasi-experiments
use a pair of cross-section surveys, rather than panel surveys, to estimate
the average treatment effect of an intervention. In these studies, a random
sample of individuals in each geographic cluster is selected for a baseline
(preintervention) survey, and an independent random sample is selected for
an endline (postintervention) survey. Objective: This design raises the
question, given a fixed budget, how should a researcher allocate resources
between the baseline and endline surveys to maximize the precision of the
estimated average treatment effect? Results: We formalize this allocation
problem and show that although the optimal share of interviews allocated
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to the baseline survey is always less than one-half, it is an increasing function
of the total number of interviews per cluster, the cluster-level correlation
between the baseline measure and the endline outcome, and the intraclus-
ter correlation coefficient. An example using multicountry survey data from
Africa illustrates how the optimal allocation formulas can be combined with
data to inform decisions at the planning stage. Another example uses data
from a digital political advertising experiment in Texas to explore how
precision would have varied with alternative allocations.

Keywords
place-randomized trial, cluster-randomized experiment, quasi-experiment,
repeated cross-section surveys, sample allocation

Surveys are widely used to measure outcomes in randomized control trials

(RCTs) and quasi-experiments. Although only endline (posttreatment) out-

come data are required for the estimation of treatment effects in RCTs,

baseline (pretreatment) survey data may be helpful for improving statistical

precision and power. In panel surveys, a common set of respondents is

tracked over time from baseline to endline, allowing researchers to assess

how the trajectories of individual subjects’ outcomes in the treatment group

compare with those of the control group. Optimizing the design of panel

surveys for efficient estimation of average treatment effects (ATEs) has

attracted increasing scholarly attention (McKenzie, 2012).

As Gail, Mark, Carroll, Green, and Pee (1996) discuss, panel surveys

have important strengths and are often desirable for statistical precision, but

they can also have important drawbacks in some contexts. Maintaining

contact with baseline respondents may be costly or difficult, especially

when tracking subjects who frequently change address or phone number

(Parker & Teruel, 2005). A further concern is that the baseline interview

may prime subjects in ways that alter their reaction to the treatment, distort

their posttreatment survey responses, or cause nonresponse rates in the

endline survey to differ between treatment and control groups (Flay &

Collins, 2005; Solomon, 1949).

When treatments are administered to a set of geographic clusters (Bor-

uch, 2005; Gail, Mark, Carroll, Green, & Pee, 1996), an alternative mea-

surement design is to interview a random sample of individuals within each

cluster at baseline and another random sample at endline. When researchers

gather survey data using this repeated cross-section design with clusters of
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equal size, the ATE of the intervention may be estimated by comparing the

average outcomes of treatment and control group clusters in the endline

survey, adjusting for preexisting differences in the baseline survey.

A wide array of applications have used this design. Table 1 presents

illustrative examples of repeated cross-section designs from a variety of

substantive domains. For example, Ter Kuile et al. (2003) assessed the

effects of bed nets on malaria among young children by randomly assigning

60 Kenyan villages to treatment and control. Random samples of children in

each village were given medical exams at baseline, and new random sam-

ples were examined at endline. Another example is Gerber, Gimpel, Green,

and Shaw (2011), which assessed the persuasive effects of political adver-

tisements across 18 television markets by conducting a baseline survey

within each market before the advertising campaign and drawing new sam-

ples within each market for the endline surveys. Indeed, the use of this

design is common among experiments that assess the persuasive effects

of political advertising, where automated phone surveys are conducted with

distinct random samples of registered voters during baseline and endline

periods. These automated surveys are directed at landline phone numbers

associated with a particular address rather than a specific person, which

makes it impractical to conduct panel surveys that track the same respon-

dents over time. One of the empirical applications described below (Turitto,

Green, Stobie, & Tranter, 2014) uses this design to assess the effects of

digital advertising on behalf of a candidate for lieutenant governor of Texas.

Although such studies are common, political campaigns rarely make the

results public.

When using the repeated cross-section design to estimate the ATE of an

intervention, a resource allocation question arises: In order to maximize the

precision of the estimated ATE, how much of the survey budget should be

allocated to the baseline survey as opposed to the endline survey? To our

knowledge, none of the studies listed in Table 1 discuss this allocation

problem.

This article begins by formalizing the allocation problem in a balanced

experimental design (where equal numbers of clusters are assigned to treat-

ment and control) and deriving a result that expresses the optimal allocation

as a function of the budgeted number of survey interviews per cluster, the

cluster-level correlation between the baseline measure and the endline out-

come, and the intracluster correlation coefficient (ICC). We then show how

insights from the formal analysis can be applied in practice, using data from

the Afrobarometer surveys (Afrobarometer, 2009, 2015) for an illustrative

example. Next, we discuss survey allocation in an imbalanced design,
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where the expense associated with administering treatment leads research-

ers to assign more clusters to control than to treatment. In the concluding

section, we summarize the main lessons and discuss possible extensions to

address a wider range of design considerations.

Model and Notation

To keep the allocation problem tractable, we will make a number of sim-

plifying assumptions. First, suppose that we are planning an experiment

or quasi-experiment with J clusters and that we are willing to assume

the clusters are randomly assigned to treatment or control—either

because the study is in fact a cluster-randomized experiment or because

we believe the treated and untreated clusters are similar enough that mod-

eling treatment as cluster randomized is reasonable. (In many nonrando-

mized studies, this assumption is not reasonable, and our analysis would

need to be extended to consider possible roles for baseline covariates in

reducing bias.)

Assume that baseline and endline interviews are equally costly and that

our survey budget allows a total of S interviews.1 One option is to allocate

the entire budget to the endline survey, since treatment effects can be

estimated without baseline data. Can precision be improved by allocating

some interviews to a baseline survey and using the baseline data for block-

ing or covariate adjustment? If so, how many baseline and endline inter-

views should be conducted?2

For now, we assume a balanced design in which J=2 clusters are

assigned to treatment and J=2 to control; the main ideas carry over to the

case of an imbalanced design, which we discuss later. We also assume that

any attempt to use a baseline covariate to improve precision will be done via

linear regression adjustment, not blocking.3 However, we do not assume

that the true relationship between the outcome and the covariate is linear.4

Our analysis assumes that the J clusters were randomly selected from a

much larger superpopulation and that the goal is to estimate an ATE

(defined below) in the superpopulation. In practice, many studies use clus-

ters that are not randomly drawn from any superpopulation. Some research-

ers therefore prefer a “finite population” framework in which statistical

inferences are limited to the actual clusters in the study. Others defend the

superpopulation framework on the grounds that it is useful to make infer-

ences about “a hypothetical infinite population, of which the actual data are

regarded as constituting a random sample” (Fisher, 1922, p. 311). However,

the two frameworks tend to yield similar or even identical results, and the
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superpopulation framework often makes the mathematics easier. For a help-

ful discussion, see Reichardt and Gollob (1999).

Suppose each cluster j has a population of Nj individuals. Let yij and xij

denote the endline outcome and the baseline covariate, respectively, for

individual i in cluster j. Using the potential outcomes framework (Holland,

1986; Neyman, 1923; Rubin, 1974), let yijð1Þ and yijð0Þ denote the values that

yij would take if cluster j were assigned to treatment or control, respectively.

Averaging at the cluster level, let Yj ¼ 1
Nj

PNj

i¼1yij, Xj ¼ 1
Nj

PNj

i¼1xij,

Yjð1Þ ¼ 1
Nj

PNj

i¼1yijð1Þ, and Yjð0Þ ¼ 1
Nj

PNj

i¼1yijð0Þ. Assume that our goal is

to estimate the ATE in the superpopulation of clusters, weighting each cluster

equally: ATE ¼ E½Yjð1Þ � Yjð0Þ�. (Since each cluster j is randomly drawn

from the superpopulation, the expectation in this formula is just the average

over all clusters in the superpopulation.)

In each cluster j, the endline survey collects outcome data from a random

sample Ej of npost individuals, and the baseline survey (if conducted) col-

lects covariate data from an independent random sample Bj of npre individ-

uals.5 Thus, the cluster has sample mean outcome bY j ¼ 1
npost

P
i2Ej

yij and

sample mean covariate value bX j ¼ 1
npre

P
i2Bj

xij. For simplicity, we assume

the sample sizes npost and npre are constant across clusters and are small

relative to each cluster’s population size Nj.

If npre ¼ 0 (i.e., no baseline interviews are conducted), we will estimate

the ATE using the unadjusted treatment–control difference in mean out-

comes, weighting each cluster equally. Letting Tj equal 1 if cluster j is

assigned to treatment and 0 otherwise, this estimator is given by:

dATEunadj ¼
1

J=2

X
j:Tj¼1

bY j �
1

J=2

X
j:Tj¼0

bY j: ð1Þ

If npre > 0, we will use the estimated coefficient on Tj in an ordinary

least squares regression of bY j on Tj and bX j. Let dATEadj denote the

regression-adjusted estimator.6

The allocation problem is to choose npre and npost to minimize the var-

iance of the estimated ATE, subject to the constraint that npre þ npost ¼ n,

where n ¼ S=J is the budgeted number of survey interviews per cluster.

Equivalently, the problem is to choose the proportion of baseline interviews

p ¼ npre=n.

To simplify the derivations and formulas, we will analyze the variances

of dATEadj and dATEunadj when the treatment effect is homogeneous: Assume

there is a constant t such that yijð1Þ � yijð0Þ ¼ t for all i and j. Relaxing this
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assumption would complicate the analysis but would not necessarily be

useful for study design, since the more complex formulas would involve

quantities that are difficult to guess at the planning stage (such as the effect

of treatment on the correlation between the covariate and the outcome).

We now define several quantities that affect the variance of the estimated

treatment effect. The between-cluster variance of the potential outcomes is

the variance of Yjð0Þ (or, equivalently, the variance of Yjð1Þ, since we are

assuming a homogeneous treatment effect):

s2
yðbetweenÞ ¼ VarðYjð0ÞÞ ¼ E ðYjð0Þ � �Y ð0ÞÞ2

h i
; ð2Þ

where �Y ð0Þ ¼ EðYjð0ÞÞ and the expectations in these formulas are again

just averages over all clusters in the superpopulation. The average within-

cluster variance is given by:

s2
yðwithinÞ ¼ E

1

Nj

XNj

i¼1

ðyijð0Þ � Yjð0ÞÞ2
" #

: ð3Þ

Define the covariate’s between-cluster variance s2
xðbetweenÞ and average

within-cluster variance s2
xðwithinÞ analogously. Assume s2

yðbetweenÞ, s
2
yðwithinÞ,

s2
xðbetweenÞ, and s2

xðwithinÞ are all nonzero (as would be expected in most

applications).

The ICC of the potential outcomes is given by:

ICCy ¼
s2

yðbetweenÞ

s2
yðbetweenÞ þ s2

yðwithinÞ
: ð4Þ

We define ICCx analogously and assume that ICCx ¼ ICCy (which may

be a reasonable approximation if the covariate is a baseline version of the

outcome). In what follows, it will be convenient to work with the quantity

K ¼ 1

ICCy

� 1 ¼
s2

yðwithinÞ

s2
yðbetweenÞ

: ð5Þ

The between-cluster correlation between the covariate and each poten-

tial outcome is the correlation between Xj and Yjð0Þ (or, equivalently, the

correlation between Xj and Yjð1Þ):

r ¼ CovðXj; Yjð0ÞÞ
sxðbetweenÞsyðbetweenÞ

¼ E½ðXj � �X ÞðYjð0Þ � �Y ð0ÞÞ�
sxðbetweenÞsyðbetweenÞ

: ð6Þ
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Equivalently, r is the square root of the R2 that would be obtained if we

could run a regression of Yjð0Þ on Xj in the superpopulation of clusters.

Results for Balanced Designs

The Appendix shows that the variance of dATEunadj is approximately

4

J
s2

yðbetweenÞð1þ
K

npost

Þ; ð7Þ

while, for large enough J , the variance of dATEadj is approximately

4

J
s2

yðbetweenÞð1þ
K

npost

Þ 1� r2ð1þ K

npre

Þ�1ð1þ K

npost

Þ�1

� �
: ð8Þ

The factor 4
J
s2

yðbetweenÞ is what the variance of the treatment–control

difference in mean outcomes (weighting each cluster equally) would be if

we could observe each cluster’s population mean outcome Yj. The next

factor, ð1þ K=npostÞ, inflates the variance because each cluster’s sample

mean outcome bY j is a noisy estimate of Yj. Finally, linear regression adjust-

ment improves asymptotic precision, multiplying the variance by a factor of

approximately ½1� r2ð1þ K=npreÞ�1ð1þ K=npostÞ�1�, in which the

squared correlation r2 between the population means Xj and Yjð0Þ is atte-

nuated by ð1þ K=npreÞ�1ð1þ K=npostÞ�1
because the sample means bX j andbY j are noisy estimates of Xj and Yj.

The approximation to the variance of dATEadj may be improved by multi-

plying formula (8) by the degrees-of-freedom correction factor

ðJ � 3Þ=ðJ � 4Þ (Cox & McCullagh, 1982, p. 547). This factor is close to

1 when J is large.

The optimal allocation of interviews between the baseline and endline

surveys is derived in the Appendix. If jrj � K=n, allocating all interviews

to the endline survey is optimal (unless baseline interviews are desired for

reasons other than improving precision). On the other hand, if jrj > K=n,

the proportion of baseline interviews p that minimizes the approximate

variance of dATEadj is

popt ¼ 1� 1þ K=n

1þ jrj > 0; ð9Þ

and, for large enough J , allocating p ¼ popt and using dATEadj is

more efficient than allocating all interviews to the endline survey and

using dATEunadj.

To interpret formula (9) and its requirement that jrj > K=n, note that:
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� popt < 0:5 (since K > 0 and jrj � 1). Thus, the proportion of inter-

views allocated to the baseline survey should always be less than

one-half.

� popt is an increasing function of jrj and n and a decreasing function of

K ¼ 1=ICCy � 1. Intuitively, the usefulness of collecting data on

baseline covariates depends on both jrj (the strength of the true

correlation between population mean covariate values and popula-

tion mean potential outcomes at the cluster level) and the signal-to-

noise ratio in the sample means (which improves with larger values

of n and the ICC).7

� Related to the previous point, the condition jrj > K=n is needed in

order for popt in formula (9) to be positive. Otherwise, the true

covariate–outcome correlation r is not strong enough, relative to the

measurement error in the sample means, to make it worthwhile to

allocate any interviews to the baseline survey.

� For any given values of r and K, as n goes to infinity, popt approaches

an upper limit of jrj=ð1þ jrjÞ.

Example Using Afrobarometer Data

When deciding how to allocate a survey budget between baseline and end-

line interviews, one does not know the values of r and the ICC, but it may

be possible to form educated guesses using external data. This example

illustrates the types of calculations involved, using data from the Afroba-

rometer, an ongoing series of cross-section public opinion surveys on

democracy, governance, economic conditions, and related issues in African

countries (Afrobarometer, 2009, 2015).

The first round (wave) of Afrobarometer surveys was conducted in 12

countries from 1999 to 2001. More recent rounds have included over 35

countries, with representative samples of 1,200 or 2,400 noninstitutiona-

lized adult citizens in each country. The Afrobarometer surveys are useful

for illustrative purposes given the large number of randomized trials con-

ducted in Africa that use surveys to measure outcomes, the large number of

respondents in each country at each point in time, and the wide array of

outcomes measured (which allows us to consider outcomes with different

ICCs and different values of r).

In order to simulate the country-level assignment typical of many quasi-

experiments that estimate the effects of national policies on outcomes (e.g.,

Dorn, Fischer, Kirchgässner, & Sousa-Poza, 2007; Welsch, 2007), we use

data from the 20 countries that were included in both the fourth (March

Green et al. 401



2008 to June 2009) and the fifth (October 2011 to September 2013) rounds

of Afrobarometer surveys.8 We focus on two outcome variables:

� Economic optimism: “Looking ahead, do you expect the following to

be better or worse: Economic conditions in this country in 12

months’ time?” (coded on a scale of 1¼ “much worse” to 5¼ “much

better”).9

� Inclination to protest: “Here is a list of actions that people sometimes

take as citizens. For each of these, please tell me whether you,

personally, have done any of these things during the past year. If

not, would you do this if you had the chance: Attended a demonstra-

tion or protest march?” (coded on a scale of 0 ¼ “no, would never do

this” to 4 ¼ “yes, often”).10

Consider the problem of allocating a survey budget in a cluster-

randomized experiment or quasi-experiment where the main outcomes of

interest resemble the economic optimism and protest inclination variables.

Suppose it has already been decided that the experiment will include 20

clusters, with 10 clusters assigned to treatment and 10 to control, and the

budget allows a total of n interviews per cluster. For illustrative purposes,

we will show calculations for both n ¼ 100 and n ¼ 500. (The larger sam-

ple size is similar to those in several of the evaluations listed in Table 1,

such as Gerber et al. 2011.) Should a baseline survey be fielded, and if so,

how should the interviews be allocated between the baseline and endline

surveys?

To apply formula (9), we have the number of interviews per cluster n,

but we need to estimate K ¼ 1=ICCy � 1 and r for the main outcomes. If

the interval between the proposed baseline and endline surveys is approx-

imately the same as that between the fourth and fifth rounds of Afroba-

rometer surveys, we can use the Afrobarometer data to estimate both ICCy

and r.

Here, we use the analysis of variance (ANOVA) estimator of ICC (Don-

ner, 1986, p. 68; Ridout, Demétrio, & Firth, 1999, p. 138). The estimated

ICCs for economic optimism are 0.180 and 0.231 in the fourth and fifth

rounds of the survey, while for inclination to protest, the corresponding

estimates are 0.0425 and 0.0458. These translate into estimates for K of

4.56 or 3.33 (economic optimism) and 22.5 or 20.8 (inclination to protest).

The simplest way to estimate r is to just use the observed correlation

between the fourth- and fifth-round country-level means of the relevant

variable. These correlations are 0.578 for economic optimism and 0.681
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for inclination to protest. However, r in formula (9) is the correlation

between the cluster-level population means of the covariate and outcome

in the absence of treatment, while the observed correlation robs between the

sample means is expected to be somewhat attenuated (because the sample

means are noisy estimates of the population means). A more refined esti-

mate of r (derived in the Appendix) is

br ¼ robs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K4

n4

Þð1þ K5

n5

� �s
; ð10Þ

where n4 ¼ 849:2 and n5 ¼ 1; 100:0 are the harmonic means of the country-

level sample sizes in the fourth- and fifth-round surveys, and K4 and K5 are

the estimates of K given above. Using this method, we obtainbr ¼ 1:004� robs ¼ 0:581 for economic optimism andbr ¼ 1:023� robs ¼ 0:696 for inclination to protest. The refinement does

not matter much in this example, but it can matter when the sample sizes in

the external data source are smaller or the ICCs are smaller. For example,

without changing the ICCs, if we had n4 ¼ n5 ¼ 100, formula (10) would

yield br ¼ 1:22� robs for inclination to protest.

The boundary condition jrj > K=n is easily satisfied given our planned

number of interviews per cluster (n ¼ 100 or n ¼ 500) and any of the above

estimates of r and K, so we can use formula (9) to calculate popt, the optimal

share of interviews to allocate to the baseline survey. The fourth- and fifth-

round survey estimates of K are close enough that the choice between them

hardly makes a difference; we use the fifth-round estimates in the remainder

of this example. If n ¼ 500, formula (9) yields popt ¼ 0:36 for economic

optimism and popt ¼ 0:39 for inclination to protest, while if n ¼ 100, the

same formula yields popt ¼ 0:35 for economic optimism and popt ¼ 0:29 for

inclination to protest.11 As shown below, the precision of the estimated

ATEs does not change dramatically as the proportion of baseline interviews

p varies between 36% and 39% (for n ¼ 500) or between 29% and 35% (for

n ¼ 100), so whether p is optimized for one outcome variable or the other

(or a compromise between them) will not matter much in this example.

Figure 1 shows how the proportion of baseline interviews p affects the

standard error (SE) of the estimated ATE on economic optimism:

� Near the top left corner, the two points marked with a filled triangle

(for n ¼ 100) and circle (for n ¼ 500) show the SE of the unadjusted

estimate dATEunadj when all interviews are allocated to the endline

survey. To compute these SEs (0.275 and 0.272), we take the square
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root of formula (7) with J ¼ 20, K ¼ 3:33, and s2
yðbetweenÞ set to

0.367, the unbiased estimate from the ANOVA (Donner, 1986, p.

68) applied to the fifth-round survey data.

� The two curves (dashed for n ¼ 100 and solid for n ¼ 500) show the

approximate SE of the regression-adjusted estimate dATEadj, calcu-

lated by multiplying the asymptotic variance from formula (8) by the

degrees-of-freedom correction ðJ � 3Þ=ðJ � 4Þ and then taking the

square root, with npre ¼ pn, npost ¼ ð1� pÞn, r ¼ 0:581, and the

same values as above for J , K, and s2
yðbetweenÞ.

� The open circle on each curve marks the optimal allocation from

formula (9). The optimal baseline shares are popt ¼ 0:346 (for
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Figure 1. Survey allocation and precision when the outcome variable is economic
optimism. Near the top left corner, the filled triangle (for n ¼ 100 interviews per
cluster) and circle (for n ¼ 500) show the standard error (SE) of the unadjusted
estimate of average treatment effect when all interviews are allocated to the endline
survey. The curves plot the SE of the regression-adjusted estimate against the share
of interviews allocated to the baseline survey. The open circle on each curve marks
the optimal baseline share. See text for details.
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n ¼ 100) and popt ¼ 0:363 (for n ¼ 500), achieving SEs of 0:241 and

0:230, respectively. However, both curves are relatively flat over a

wide range of allocations: Virtually the same SEs could be achieved

by allocating anywhere from 20% to 50% of the interviews to the

baseline survey. Thus, it is not important for the allocation to be

exactly optimal.

In Figure 1, when n ¼ 500, the optimal allocation’s SE, 0.230, is about

15% lower than the SE that could be achieved without any baseline inter-

views, 0.272. Therefore, the minimum detectable effect (MDE; Bloom,

1995) is about 15% smaller under the optimal allocation than it would be

without any baseline interviews. (When n ¼ 100, the corresponding

reduction is about 13%.) For example, for a two-sided test at the 10%
significance level, the MDE with 80% power is 2.49 � 0.230 ¼ 0.573

under the optimal allocation, while it is 2.49 � 0.272 ¼ 0.677 without any

baseline interviews. (The unit for these MDEs is a point on the 5-point

scale of 1 ¼ “much worse” to 5 ¼ “much better” for the economic opti-

mism question.)

Figure 2 plots the analogous calculations for the protest inclination out-

come variable. (The SEs are much smaller because the estimate of the

between-cluster variance s2
yðbetweenÞ is only 0.0325 for this variable.) When

n ¼ 500, the optimal allocation (popt ¼ 0:386) achieves an SE of 0.066,

which is about 20% lower than the SE that could be achieved without any

baseline interviews (0.082). However, as discussed in note 11, when n is

reduced to 100, the usefulness of the baseline covariate data declines sub-

stantially because the ICC for inclination to protest is not very large. Now

the optimal allocation (popt ¼ 0:288) achieves an SE of 0.084, which is only

about 6% lower than the SE that could be achieved without any baseline

interviews (0.089). Again, it is not important for the allocation to be exactly

optimal. When n ¼ 500, all baseline allocations between 20% and 50%
achieve approximately the same precision. When n ¼ 100, a 50% baseline

allocation results in an SE of 0.086, which is just slightly higher than the

optimal SE (0.084).

Imbalanced Designs

Many experiments and quasi-experiments use imbalanced designs with

unequal-sized treatment and control groups. For example, if the interven-

tion is very costly, the researchers may decide to assign Jt < J=2 clusters to

treatment and Jc ¼ J � Jt clusters to control. In this section, we assume that
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J , Jt, and the total number of survey interviews S have already been chosen,

but we need to decide how to allocate the S interviews between the baseline

and endline surveys and between the treatment and control group clusters.

(As shown below, it turns out to be desirable to allocate more interviews per

cluster to the group that has fewer clusters.) We assume here that the base-

line survey, if any, will be administered after clusters are assigned but

before treatment begins. Thus, for both the baseline survey and the endline

survey, we have the option of allocating different numbers of interviews per

cluster to the treatment and control groups.

We also assume that if a baseline survey is conducted, we will

estimate the ATE using the coefficient on Tj in an ordinary least squares

regression of bY j on Tj, bX j, and the interaction Tj � ð bX j � 1
J

PJ
k¼1
bX kÞ.
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Figure 2. Survey allocation and precision when the outcome variable is inclination
to protest. Near the top left corner, the filled triangle (for n ¼ 100 interviews per
cluster) and circle (for n ¼ 500) show the standard error (SE) of the unadjusted
estimate of average treatment effect when all interviews are allocated to the endline
survey. The curves plot the SE of the regression-adjusted estimate against the share
of interviews allocated to the baseline survey. The open circle on each curve marks
the optimal baseline share. See text for details.
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Including the interaction can improve asymptotic precision in imbal-

anced designs (Lin, 2013; Yang & Tsiatis, 2001). In our context, the

interaction term allows the regression model to take into account the

possibility that the correlation between bX j and bY j is stronger or weaker

in the treatment group than the control group. For example, if we

allocate more baseline and endline interviews per cluster to the treat-

ment group than to the control group, then the cluster-level sample

means bX j and bY j will be noisier estimates of the cluster-level population

means Xj and Yj in the control group than in the treatment group. We

would therefore expect the correlation between bX j and bY j to be stronger

in the treatment group than in the control group.

While it appears to be difficult to solve for an exact optimum, numerical

calculations (such as those in the example below) suggest that the following

allocation performs well in many scenarios:

� Allocate half the interviews to the treatment group and half to the

control group.12 The number of interviews per cluster will then

differ between the treatment and control groups: There will be

nt ¼ S=ð2JtÞ interviews per cluster in the treatment group and

nc ¼ S=ð2JcÞ in the control group. For example, if the budget

allows S ¼ 20; 000 interviews, and there are 30 clusters with 10

assigned to treatment and 20 to control, then allocate 10,000 inter-

views (1,000 per cluster) to the treatment group and 10,000 (500 per

cluster) to the control group.

� Let nm ¼ maxðnt; ncÞ. If jrj � K=nm, allocate all interviews to the

endline survey. If jrj > K=nm, allocate a proportion of interviews

p ¼ 1� 1þ K=nm

1þ jrj ð11Þ

to the baseline survey. (Although p could be allowed to differ between the

treatment and control groups, in many scenarios, there is little gain from

such fine-tuning. The suggested baseline allocation here mimics the one we

derived for the balanced design in Equation 9 and uses nm, the number of

interviews per cluster in the group that has fewer clusters.)

Example: A Digital Advertising Experiment

To illustrate the ideas discussed above, we consider an application to digital

political advertising drawn from Turitto, Green, Stobie, and Tranter (2014).

Ten of 30 noncontiguous midsized cities in Texas were randomly assigned
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to the treatment, a 7-day digital advertising campaign on behalf of David

Dewhurst, the incumbent candidate for lieutenant governor in the 2014

Republican primary. Using a repeated cross-section design, a baseline sur-

vey of Republican voters was conducted during January 3–6 (just before the

launch of the treatment) and an endline survey was conducted during Jan-

uary 14–17 (just after the treatment ended). These automated phone surveys

asked respondents, “Thinking about the race for Texas Lieutenant Governor

for a moment, if the primary election were held today, which of the fol-

lowing candidates would you vote for?” and presented a list of candidates in

random order. The goal of the study was to estimate the effect of the

treatment on the proportion of respondents who indicated that they would

vote for Dewhurst.

The baseline survey was designed to obtain approximately 100 inter-

views in each treatment group city and 50 interviews in each control group

city, while the endline survey was designed to obtain approximately 300

interviews in each treatment group city and 150 interviews in each control

group city. Thus, out of a total of approximately 8,000 interviews, half

were allocated to the treatment group and half to the control group (as

suggested above), with 25% allocated to the baseline survey and 75% to

the endline survey.

We can explore in hindsight how the precision of the estimated treatment

effect would vary with alternative allocations of the survey interviews.13

The budgeted total number of interviews is S ¼ 8; 000, with Jt ¼ 10 cities

in the treatment group and Jc ¼ 20 cities in the control group. Our outcome

variable is defined as 1 if the respondent indicated support for Dewhurst and

0 otherwise. Using the endline survey data and the same methods as in the

Afrobarometer example, we estimate s2
yðbetweenÞ as 0.00575 and ICCy as

0.0291. The corresponding ICC estimate from the baseline survey is

0.0210. The observed correlation between the baseline and endline city-

level means of the outcome variable is 0.609, and the harmonic means of the

city-level sample sizes are 56.9 for the baseline survey and 175.7 for the

endline survey. Applying Equation 10, we estimate the covariate–outcome

correlation r as 0.895 (which suggests that city-level support for Dewhurst

was fairly stable from early to mid-January).

Next, we calculate the suggested proportion of baseline interviews p
from Equation 11. The suggested number of interviews per city is

nt ¼ S=ð2JtÞ ¼ 400 for treatment group cities and nc ¼ S=ð2JcÞ ¼ 200 for

control group cities, so the parameter nm in (11) equals 400. The boundary

condition jrj > K=nm is easily satisfied with the above estimates of r and

the ICC. Equation 11 yields p ¼ 0:43.
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Figure 3 explores how alternative allocations of the survey interviews

would affect the SE of the estimated treatment effect.14 Each curve shows

how the SE varies with the share of interviews allocated to the treatment

group, holding the share allocated to the baseline survey (which is assumed

to be the same across the treatment and control groups) constant at zero,

25% (the actual baseline share), 43% (the baseline share suggested above),

or 50%. Comparisons within each curve show that the SE is minimized

when half the interviews are allocated to the treatment group and half to the

control group. Comparisons across the bottom three curves show that pre-

cision is only slightly better with the suggested 43% baseline share (yield-

ing at best an SE of 2.28 percentage points, which implies an MDE of 5.68

percentage points) than a 25% or 50% baseline share (yielding an SE of 2.35

or 2.30 percentage points at best, which implies an MDE of 5.85 or 5.73

percentage points). Thus, the actual 25% baseline share appears to have

been a reasonable choice. Finally, the topmost (dotted) curve shows that

precision would be noticeably worse if all interviews were allocated to the

endline survey (the SE for the unadjusted estimate is at best 3.1 percentage

points, implying an MDE of 7.7 percentage points).

Discussion

When the outcomes of interest are relatively stable over time, a study design

with repeated cross-section surveys can be an effective strategy for efficient

estimation of ATEs. Our analysis is intended to sketch some of the key issues

involved in cost-efficient allocation of survey interviews and to invite more

complex formalizations of the allocation problem. For simplicity, we omitted

a number of complications that researchers may want to consider in applica-

tions, such as multiple baseline or follow-up survey waves, fixed costs asso-

ciated with each survey wave, asymmetric costs of interviews in treatment

and control areas, use of multiple baseline covariates in regression adjust-

ment, and motivations for conducting a baseline survey other than improving

the precision of estimated ATEs. Also, we assumed that the estimand is an

ATE that weights each cluster equally, but researchers may prefer to weight

the clusters according to population size or other considerations. Further-

more, we took the numbers of clusters assigned to treatment and control as

given, while a more sophisticated analysis would simultaneously optimize

the allocation of clusters to treatment arms and the allocation of survey

interviews, given information about treatment costs, survey costs, and the

overall budget. Researchers may wish to use our framework as a starting

point for more complicated analyses that consider such issues.
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Because we omitted such complications, the formulas we have given for

optimal allocation will not necessarily be optimal in practice, but the anal-

ysis may be of heuristic value. In a cluster-randomized experiment with

repeated cross-section surveys, the optimal share of interviews to allocate to

the baseline survey is less than one-half and tends to increase with the

cluster-level correlation between baseline and endline measures of the out-

come variable, the ICC, and the total number of interviews per cluster. In

many scenarios, a wide range of baseline allocations yields approximately

the same statistical precision. This suggests that researchers have quite a bit

of latitude to accommodate other design considerations, such as fielding a

baseline survey in order to train enumerators or pretest a survey instrument.
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Figure 3. Survey allocation and precision in the digital advertising example. The top
(dotted) curve plots the SE of the unadjusted treatment effect estimate against the
treatment group’s share of interviews when all interviews are allocated to the
endline survey. The other three curves plot the SE of the regression-adjusted
estimate against the treatment group’s share of interviews, holding the baseline
survey’s share constant at 25% (the actual allocation), 43% (the suggested alloca-
tion), or 50%. See text for details.
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Appendix

Balanced Designs

Derivation of formula (7). Let bY jð0Þ denote the value that bY j would take if

cluster j were assigned to control:

bY jð0Þ ¼
1

npost

X
i2Ej

yijð0Þ: ðA1Þ

Similarly, let bY jð1Þ denote the value that bY j would take if cluster j were

assigned to treatment:

bY jð1Þ ¼
1

npost

X
i2Ej

yijð1Þ ¼ bY jð0Þ þ t: ðA2Þ

Recall that the J clusters are assumed to be randomly drawn from a much

larger superpopulation. If the sampling fraction (J divided by the number of

clusters in the superpopulation) is close to zero, then, applying a basic result

on the variance of the treatment–control difference in mean outcomes

(Imbens & Rubin, 2015, p. 101, eq. 6.17), we get

VarðdATEunadjÞ �
Varð bY jð0ÞÞ

J=2
þ Varð bY jð1ÞÞ

J=2
¼ 4

J
Varð bY jð0ÞÞ: ðA3Þ

For each cluster j, let

s2
yðjÞ ¼

1

Nj

XNj

i¼1

ðyijð0Þ � Yjð0ÞÞ2: ðA4Þ

By the law of total variance,

Varð bY jð0ÞÞ ¼ Var Eð bY jð0ÞjYjð0Þ;s2
yðjÞÞ

h i
þ E Varð bY jð0ÞjYjð0Þ;s2

yðjÞÞ
h i

ðA5Þ

¼ VarðYjð0ÞÞ þ Eðs2
yðjÞ=npostÞ ðA6Þ

¼ s2
yðbetweenÞ þ s2

yðwithinÞ=npost ðA7Þ
¼ s2

yðbetweenÞð1þ K=npostÞ; ðA8Þ

so

VarðdATEunadjÞ �
4

J
s2

yðbetweenÞð1þ K=npostÞ: ðA9Þ
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Derivation of formula (8). Equation 7 of Yang and Tsiatis (2001) implies that

as J goes to infinity, the asymptotic variance of dATEadj is

1

J

"
1

1� 0:5
Varð bY jjTj ¼ 0Þ þ 1

0:5
Varð bY jjTj ¼ 1Þ

þ 1

Varð bX jÞ � 0:5 � ð1� 0:5Þ
ð1� 0:5Þ � Covð bX j; bY jjTj ¼ 0Þ þ 0:5 � Covð bX j; bY jjTj ¼ 1Þ
n o

� ð1� 3 � 0:5Þ � Covð bX j; bY jjTj ¼ 0Þ þ ð3 � 0:5� 2Þ � Covð bX j; bY jjTj ¼ 1Þ
n o#

:

ðA10Þ

(An exact variance formula would require stronger assumptions, such as

correct specification of the regression model.)

Since Tj is randomly assigned and we assume a homogeneous treatment

effect, the conditional variances and covariances in formula (A10) can be

reexpressed as follows:

Varð bY jjTj ¼ 0Þ ¼ Varð bY jð0ÞjTj ¼ 0Þ ¼ Varð bY jð0ÞÞ; ðA11Þ

Varð bY jjTj ¼ 1Þ ¼ Varð bY jð1ÞjTj ¼ 1Þ ¼ Varð bY jð1ÞÞ ¼ Varð bY jð0ÞÞ; ðA12Þ

Covð bX j; bY jjTj ¼ 0Þ ¼ Covð bX j; bY jð0ÞjTj ¼ 0Þ ¼ Covð bX j; bY jð0ÞÞ; ðA13Þ
Covð bX j; bY jjTj ¼ 1Þ ¼ Covð bX j; bY jð1ÞjTj ¼ 1Þ ¼ Covð bX j; bY jð1ÞÞ
¼ Covð bX j; bY jð0ÞÞ: ðA14Þ

Thus, formula (A10) simplifies to

AvarðdATEadjÞ ¼
1

J
4Varð bY jð0ÞÞ � 4

Covð bX j; bY jð0ÞÞ2

Varð bX jÞ

" #
¼ 4

J
Varð bY jð0ÞÞð1� r2

	Þ;

ðA15Þ

where

r2
	 ¼

Covð bX j; bY jð0ÞÞ2

Varð bX jÞVarð bY jð0ÞÞ
: ðA16Þ

Since bX j and bY jð0Þ are just Xj and Yjð0Þ plus independent random sam-

pling errors, Covð bX j; bY jð0ÞÞ ¼ CovðXj;Yjð0ÞÞ: Thus,

r2
	 ¼

CovðXj; Yjð0ÞÞ2

Varð bX jÞVarð bY jð0ÞÞ
¼ r2

s2
xðbetweenÞ

Varð bX jÞ
s2

yðbetweenÞ

Varð bY jð0ÞÞ
: ðA17Þ
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Using Equation (A8) and the analogous result for Varð bX jÞ, we get

r2
	 ¼ r2 1þ K

npre

� ��1

1þ K

npost

� ��1

: ðA18Þ

Plug Equations (A8) and (A18) into Equation (A15) to get

AvarðdATEadjÞ ¼
4

J
s2

yðbetweenÞ 1þ K

npost

� �
1� r2 1þ K

npre

� ��1

1þ K

npost

� ��1
" #

:

ðA19Þ

Optimal allocation. Reexpressing Equation (A19) in terms of n ¼ npre þ npost

and p ¼ npre=n, we get

AvarðdATEadjÞ ¼
4

J
s2

yðbetweenÞ 1þ K

ð1� pÞn

� �
1� r2 1þ K

pn

� ��1

1þ K

ð1� pÞn

� ��1
" #

:

ðA20Þ

Thus, choosing p 2 ð0; 1Þ to minimize AvarðdATEadjÞ is equivalent to

minimizing

gðpÞ ¼ K

ð1� pÞn � r2ð1þ K

pn
Þ�1; ðA21Þ

which has first and second derivatives

g0ðpÞ ¼ K

n

1

ð1� pÞ2
� rn

pnþ K

� �2
" #

ðA22Þ

and

g00ðpÞ ¼ 2K

n

1

ð1� pÞ3
þ r2n3

ðpnþ KÞ3

" #
> 0: ðA23Þ

If jrj > K=n, then the value popt ¼ 1� ð1þ K=nÞ=ð1þ jrjÞ satisfies

both 0 < popt < 1 and g
0 ðpoptÞ ¼ 0, so AvarðdATEadjÞ is minimized at

p ¼ popt. It can be shown that the resulting value for AvarðdATEadjÞ (plug

p ¼ popt into Equation [A20]) is lower than the lowest possible value for

VarðdATEunadjÞ (plug npost ¼ n into Equation [A9]). Thus, for large enough

J , the optimal allocation is p ¼ popt.
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If jrj � K=n, then gðpÞ is an increasing function for 0 < p < 1, and the

optimal allocation is p ¼ 0 (allocate all interviews to the endline survey and

use dATEunadj).

Estimation of r for Illustrative Examples

Equation (A18) gives the relationship between r	 (the correlation betweenbX j and bY jð0Þ) and r (the correlation between Xj and Yjð0Þ) when the sample

sizes npre and npost are constant across clusters. When the sample sizes vary

by cluster (as in the data sets for our illustrative examples), the law of total

variance yields

Varð bY jð0ÞÞ ¼ Var½Eð bY jð0ÞjYjð0Þ;s2
yðjÞÞ� þ E½Varð bY jð0ÞjYjð0Þ;s2

yðjÞÞ� ðA24Þ

¼ VarðYjð0ÞÞ þ Eðs2
yðjÞ=nj;postÞ ðA25Þ

and similarly

Varð bX jÞ ¼ VarðXjÞ þ Eðs2
xðjÞ=nj;preÞ; ðA26Þ

where nj;pre and nj;post are the sample sizes for cluster j. One possible

approach is to randomly delete observations in such a way as to make

nj;pre and nj;post constant across clusters, then estimate r	 and K, and finally

use Equation (A18) to estimate r. Alternatively, one could estimate

s2
xðjÞ=nj;pre and s2

yðjÞ=nj;post separately for each cluster and then take means

across clusters to estimate the expectations. We use a simpler calculation

that assumes independence between s2
xðjÞ and nj;pre and between s2

yðjÞ and

nj;post. In that case,

Varð bY jð0ÞÞ ¼ VarðYjð0ÞÞ þ Eðs2
yðjÞÞ � Eðn�1

j;postÞ ðA27Þ
¼ s2

yðbetweenÞ þ s2
yðwithinÞ � Eðn�1

j;postÞ ðA28Þ
¼ s2

yðbetweenÞ½1þ K � Eðn�1
j;postÞ� ðA29Þ

and similarly Varð bX jÞ ¼ s2
xðbetweenÞ½1þ K � Eðn�1

j;preÞ�, so Equation (A17)

implies

r2 ¼ r2
	½1þ K � Eðn�1

j;preÞ�½1þ K � Eðn�1
j;postÞ�: ðA30Þ

We use the sample correlation robs to estimate r	; K4 times the sample

mean of n�1
j;pre to estimate K � Eðn�1

j;preÞ; and K5 times the sample mean of

n�1
j;post to estimate K � Eðn�1

j;postÞ.
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Imbalanced Designs

Let dATEinteract denote the estimated coefficient on Tj in the ordinary

least squares regression of bY j on Tj, bX j, and Tj � ð bX j � 1
J

PJ
k¼1
bX kÞ. Using

arguments similar to those in Pitkin et al. (2017, proof of Lemma 3.4),

it can be shown that as J goes to infinity, the asymptotic variance ofdATEinteract is

AvarðdATEinteractÞ

¼ s2
yðbetweenÞ

(
1

Jt

�
1þ K

ð1� pÞnt

�"
1� r2

�
1þ K

pnt

��1�
1þ K

ð1� pÞnt

��1
#

þ 1

Jc

�
1þ K

ð1� pÞnc

�"
1� r2

�
1þ K

pnc

��1�
1þ K

ð1� pÞnc

��1
#

þ r2

J 2

"�
1þ K

pnt

��1

�
�

1þ K

pnc

��1
#2

�
"

Jt

�
1þ K

pnt

�
þ Jc

�
1þ K

pnc

�#)
:

ðA31Þ

In Figure 3, the approximate SE of dATEinteract is calculated by multi-

plying the above formula by the degrees-of-freedom correction

ðJ � 3Þ=ðJ � 5Þ and then taking the square root.

For the variance of dATEunadj when all interviews are allocated to the

endline survey, the derivation is similar to that in Equations (A1)–(A9) but

slightly more complicated. If cluster j is assigned to treatment, the endline

survey collects data from a random sample Ejð1Þ of nt individuals; if the

cluster is assigned to control, the survey collects data from a random sample

Ejð0Þ of nc individuals. In place of Equations (A1) and (A2), we have

bY jð0Þ ¼
1

nc

X
i2Ejð0Þ

yijð0Þ ðA32Þ

and

bY jð1Þ ¼
1

nt

X
i2Ejð1Þ

yijð1Þ ¼
1

nt

X
i2Ejð1Þ

yijð0Þ þ t: ðA33Þ

The basic result on the variance of the treatment–control difference in

mean outcomes (Imbens & Rubin, 2015, p. 101, eq. 6.17) yields

VarðdATEunadjÞ �
Varð bY jð0ÞÞ

Jc

þ Varð bY jð1ÞÞ
Jt

: ðA34Þ

Green et al. 415



By the law of total variance,

Varð bY jð0ÞÞ ¼ Var½Eð bY jð0ÞjYjð0Þ;s2
yðjÞÞ� þ E½Varð bY jð0ÞjYjð0Þ;s2

yðjÞÞ� ðA35Þ
¼ VarðYjð0ÞÞ þ Eðs2

yðjÞ=ncÞ ðA36Þ
¼ s2

yðbetweenÞ þ s2
yðwithinÞ=nc ðA37Þ

¼ s2
yðbetweenÞð1þ K=ncÞ ðA38Þ

and similarly Varð bY jð1ÞÞ ¼ s2
yðbetweenÞð1þ K=ntÞ. Thus,

VarðdATEunadjÞ � s2
yðbetweenÞ

1þ K=nc

Jc

þ 1þ K=nt

Jt

� �
: ðA39Þ

When there is no baseline survey, the optimal allocation of interviews

between the treatment and control groups chooses nt and nc to minimize

VarðdATEunadjÞ subject to the constraint that Jtnt þ Jcnc ¼ S. Rewriting

Equation (A39) as

VarðdATEunadjÞ � s2
yðbetweenÞ

1

Jc

þ 1

Jt

þ K
1

Jcnc

þ 1

Jtnt

� �� �
ðA40Þ

the only part that depends on nt and nc is

1

Jcnc

þ 1

Jtnt

; ðA41Þ

which is minimized when Jcnc ¼ Jtnt ¼ S=2. Thus, it is optimal to allo-

cate half the interviews to the treatment group and half to the control group.
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Notes

1. For automated phone surveys, the costs of repeated cross-sectional interviewing

are essentially identical between baseline and endline. In-person survey costs
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are also likely to be similar across waves (perhaps with slightly lower unit costs

in the endline if the survey team has become more experienced and efficient).

2. Our setup omits some considerations that may be important in practice. In many

applications, the relevant costs will also depend on other factors, such as the

number of clusters, in total and in the treatment group; the number of interviews

allocated to each cluster and each survey; and fixed costs of each survey wave

(which may be considerable). Thus, the budget constraint will involve a cost

function that depends on more than one variable, and if the fixed costs are high

enough, it may be optimal to dispense with the baseline wave entirely. On the

other hand, there may be other reasons to conduct a baseline survey besides

precision improvement (piloting questions, describing the population, etc.), so

the objective function may depend on other factors besides the precision of the

estimated average treatment effect. We return to these considerations in the

concluding section.

3. In large samples, the gains from blocking are similar to those from poststrati-

fication, which is in turn a form of linear regression adjustment (Miratrix,

Sekhon, & Yu, 2013).

4. In randomized experiments, linear regression adjustment with robust standard

errors can be used to construct asymptotically valid confidence intervals for

average treatment effects even when the regression model is misspecified (Lin,

2013). Judkins and Porter (2016) found in simulations that ordinary least

squares regression adjustment gave valid inferences even with a binary outcome

and very small sample sizes. When the goal is to estimate the ATE, nonlinear

models such as logit and probit require the additional complexity of average

marginal effect calculations (Angrist & Pischke, 2009, pp. 103–107; Freedman,

2008; Williams, 2012), and estimates based on the probit maximum likelihood

estimator are not misspecification-robust (Firth & Bennett, 1998; Freedman,

2008).

5. When the baseline and endline samples are drawn independently, there is a

chance that some individuals will be selected for both surveys, but the overlap

is likely to be small if the sample sizes are small relative to the population size.

A reviewer helpfully pointed out that there is a literature on nonindependent

sampling algorithms that minimize or maximize overlap (Ernst, 1998). It is

possible that an overlap-minimizing algorithm could be useful (to minimize

the priming effects we mentioned in the introduction) in some applications with

small population sizes.

6. Raudenbush (1997, pp. 181–182) shows that this “aggregated” regression gives

the same treatment effect estimate as a multilevel model that allows the

between-cluster relationship between the covariate and the outcome to differ

from the within-cluster relationship.
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7. To understand the role of the intracluster correlation coefficient (ICC), note that

random treatment–control differences in the sample means of the covariate and

potential outcomes are due to both (1) the random or quasi-random assignment

of whole clusters to treatment and (2) the random sampling of individuals

within each cluster for the baseline and endline surveys. In the case where the

ICC is near 0, the between-cluster variances of the covariate and potential

outcomes are very small relative to the within-cluster variances, so the treat-

ment–control differences are largely driven by the random sampling of indi-

viduals for the surveys. Since the baseline and endline survey samples are

independent, the baseline difference is of little value for predicting the endline

difference in this case. But in the case where the ICC is near 1, the between-

cluster variances are very large relative to the within-cluster variances, so the

treatment–control differences are largely driven by the random or quasi-random

assignment of clusters, and if r 6¼ 0, then the baseline difference in sample

mean covariate values does help predict the endline difference in sample mean

outcomes.

8. The countries are Benin, Botswana, Burkina Faso, Cape Verde, Ghana, Kenya,

Lesotho, Liberia, Madagascar, Malawi, Mali, Mozambique, Namibia, Nigeria,

Senegal, South Africa, Tanzania, Uganda, Zambia, and Zimbabwe.

9. The other response categories were 2¼ “worse,” 3¼ “same,” and 4¼ “better.”

We omitted don’t-knows, refusals, and missing values from the analysis.

10. The other response categories were 1 ¼ “no, but would do if had the chance,” 2

¼ “yes, once or twice,” and 3 ¼ “yes, several times.” Again, we omitted don’t-

knows, refusals, and missing values.

11. Thus, the optimal baseline share is more sensitive to changes in n when we use

the estimates of r and K for inclination to protest. The reason is that this

variable is estimated to have a larger true covariate–outcome correlation r and

a smaller ICC than the economic optimism variable. As explained in our dis-

cussion of formula (9), increases in n and the ICC improve the signal-to-noise

ratio in the sample means of the covariate and outcome at the cluster level.

When n ¼ 500, the measurement noise in the sample means is less of an issue,

so the optimal baseline share popt is greater for the outcome variable with the

larger true r (inclination to protest). But when n is reduced to 100, the useful-

ness of the baseline data declines more substantially for the inclination-to-

protest variable because it has a smaller ICC, so now popt is smaller for

inclination to protest than for economic optimism.

12. The Appendix shows that this half-half allocation minimizes the variance of the

unadjusted treatment effect estimate (Equation A39). Although we have not

found a solution to the problem of minimizing the asymptotic variance of the

regression-adjusted estimate (equation [A31] in the Appendix), the half–half
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allocation minimized this expression not only in Figure 3, but also when we

changed the ICC to values ranging from 0.001 to 0.9, when we reduced r from

0.895 to 0.1, and when we reduced the total number of interviews S from 8,000

to 800.

13. For simplicity, this illustrative example omits some details of the original study.

In addition to the baseline and endline surveys, the researchers had access to the

Dewhurst campaign’s polls from November and December, which were used to

group the cities into 10 blocks of 3 cities each. Within each block, one city was

randomly assigned to the treatment. As a result, the study achieved greater

precision than shown in our example. The reported SE of the estimated treat-

ment effect was 2.1 percentage points.

14. Equations (A31) and (A39) in the Appendix give the formulas we used to

calculate the SEs of the regression-adjusted and unadjusted estimates.
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