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Microarrays are powerful tools to probe genome-wide replication kinetics. The rich data sets that
result contain more information than has been extracted by current methods of analysis. In this
paper, we present an analytical model that incorporates probabilistic initiation of origins and
passive replication. Using the model, we performed least-squares fits to a set of recently published
time course microarray data on Saccharomyces cerevisiae. We extracted the distribution of firing
times for each origin and found that the later an origin fires on average, the greater the variation in
firing times. To explain this trend, we propose a model where earlier-firing origins have more
initiator complexes loaded and a more accessible chromatin environment. The model demonstrates
how initiation can be stochastic and yet occur at defined times during S phase, without an explicit
timing program. Furthermore, we hypothesize that the initiators in this model correspond to loaded
minichromosome maintenance complexes. This model is the first to suggest a detailed, testable,
biochemically plausible mechanism for the regulation of replication timing in eukaryotes.
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Introduction

The kinetics of DNA replication in eukaryotic cells are carefully
controlled, with some parts of the genome replicating early and
others replicating later. Patterns of replication timing correlate
with gene expression, chromatin structure, and subnuclear
localization, suggesting that replication timing may have an
important function organizing the nucleus and regulating its
function (Goren and Cedar, 2003). The timing of DNA replication
is regulated largely by the timing of replication-origin activation.
Although the biochemical steps of origin firing are increasingly
well understood, the regulation that leads to defined patterns of
replication timing is still a mystery (Sclafani and Holzen, 2007).

Over the past 15 years, the development of two new
technologies has led to significant progress in the description
of DNA replication kinetics. The first development, molecular
combing, is a single-molecule technique in which one labels
replicated and unreplicated DNA and then stretches out the
fibers to detect replication patterns (Herrick and Bensimon,
1999; Herrick et al, 2000). The technique yields ‘snapshots’ of
the replication state of individual fragments of chromosomes.

Advantages include high spatial resolution (E2 kb) and data
from individual DNA molecules, rather than ensemble
averages (Patel et al, 2006; Czajkowsky et al, 2008). The main
disadvantage is that the size of combed fragments (100 kb to
1 Mb) is small relative to the typical size of full chromosomes,
which limits the information available about patterns of
replication timing on larger scales and complicates analysis
(Zhang and Bechhoefer, 2006).

The second development applies microarrays to probe
ensemble averages of replication extent across the genome
(Raghuraman et al, 2001; Yabuki et al, 2002; Feng et al, 2006;
Heichinger et al, 2006). Compared with molecular combing,
the main disadvantages of microarrays are the loss of
information about cell-to-cell variability and the need for
complicated post-signal processing. On the other hand, the
main advantages are the experiment’s high throughput and
complete coverage of the genome that result in both
temporally and spatially resolved data. The availability of
high-resolution, genome-wide data allows one to measure and
model variations in firing time and origin efficiency at a level of
detail that exceeds that provided by past studies.
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The common feature of both technologies is their ability to
generate large data sets for the analysis of replication. With
large data sets comes the potential to construct a much more
detailed picture of how replication occurs and is regulated
(Hyrien and Goldar, 2010). For molecular-combing experi-
ments, previous work has shown that quantitative information
such as replication-origin firing rates and replication-fork
velocities can be extracted (Yang et al, 2009). Such information
has led to an appreciation of the function of stochastic effects
in initiation (Herrick and Bensimon, 1999), to a greater
understanding of the ‘random-completion problem’ for em-
bryonic replication (Yang and Bechhoefer, 2008), to models
highlighting searching and binding kinetics in initiation timing
(Gauthier and Bechhoefer, 2009), and to suggestions that
initiation patterns may be universal across species (Goldar
et al, 2009).

A prevailing picture of eukaryotic replication is that origins
are positioned at defined sites and initiated at preprogrammed
times (Donaldson, 2005). In Saccharomyces cerevisiae, origin
positions are defined, in part, by 11–17 base pair autonomous
replicating sequence (ARS) consensus motifs, which bind the
origin recognition complex (ORC) (Sclafani and Holzen, 2007).
The timing of origin initiation is more controversial: although
microarray experiments have generally been interpreted based
on the assumption of a deterministic temporal program
(Raghuraman et al, 2001), recent molecular-combing experi-
ments suggest that origin initiation is stochastic (Patel et al,
2006; Czajkowsky et al, 2008). A more subtle issue is that the
consequences of the spatiotemporal connection between
origin initiation and fork progression in multiple-origin
systems are often not taken into account. The replication
extent of an origin site is sometimes implicitly assumed to be
solely from the origin itself (Eshaghi et al, 2007), even though
the locus can also be replicated by nearby origins. Our thesis is
that a more rigorous analysis of microarray replication data
based on the same type of stochastic models used to
understand combing experiments can yield greater insight
into the replication process and contribute to forming a more
accurate picture of the replication program. We argue that both
microarray and combing experiments are compatible with
stochastic origin initiation and that the apparent disagreement
is resolved after performing a more sophisticated analysis of
the microarray data.

The analytical model of DNA replication we present extends
previous work that focused on replication in Xenopus laevis
(Jun et al, 2005). The present version includes defined origin
position, variable-elongation rates, and probabilistic initia-
tion. Our model is sufficiently general to describe both
deterministic and stochastic replication-kinetics scenarios
and assumes only that initiation events are not correlated. To
show the kinds of questions our model can address, we fit the
model to a recent set of time course microarray data on
S. cerevisiae (McCune et al, 2008) and extracted origin
positions, the firing-time distribution for each origin, origin
efficiencies, and a global fork velocity. We found that the trend
of origin firing embedded in the data is incompatible with a
naive deterministic model. Based on this finding, we propose a
stochastic-initiator model where temporal patterns in replica-
tion can arise in the absence of an explicit mechanism for
controlling the timing of origin initiation. The details of this

model support a specific molecular mechanism for the
regulation of replication timing, in which the number of
minichromosome maintenance (MCM) complexes loaded at
an origin regulates, in part, the origin firing time.

More generally, the model can be used to reconstruct the
complete spatiotemporal program quantitatively, as reflected
by its ability to fit genome-wide microarray data. It is less
biased than current empirical models, as it accounts for the
effects of passive replication (Raghuraman et al, 2001; Eshaghi
et al, 2007). As it is analytic, it is also faster than simulation-
based models (Lygeros et al, 2008; Blow and Ge, 2009; de
Moura et al, 2010). For these reasons, we believe the model
introduced here to be a powerful tool for analyzing spatio-
temporally resolved DNA replication data. Moreover, the
probabilistic nature of the model allows analysis of a broad
range of dynamics, from deterministic to completely random
timing, and thus offers new ways to look at replication. In
particular, we show that reproducible replication patterns do
not necessarily indicate a temporal program where the
initiation involves time-measuring mechanisms; rather, tem-
poral order can emerge as a consequence of stochastic
initiations.

Results

The time and precision of origin firing are
correlated

To investigate the regulation of replication kinetics, we have
developed a general mathematical model of replication and
used it to analyze the recent budding yeast replication time
course data of McCune et al (2008). Such microarray
experiments yield the fraction of cells in a population that
have a specific site replicated after a given time in S phase (see
Supplementary Material Section A for more experimental
details). The positions of origins are determined by peaks in
the graphs of replication fraction, as an origin site is replicated
before its neighboring sites (Figure 1). Following standard
analytical methods, we define a time trep as the time by which
half of the cells show replication of the origin locus (Raghura-
man et al, 2001). Implicit in this picture are the assumptions
that the variation of firing times of an origin, twidth, is small and
that trep is independent of twidth.

A simple analysis of the data suggests a more complex
picture. We first analyzed the data by fitting a sigmoid through
the time course associated with each origin (Figure 1). Each
sigmoid yields a trep and twidth (defined as the time for the
origin locus to go from 25 to 75% replicated). In contrast to the
deterministic timing scenario that assumes twidth is much less
than trep, the extracted twidth approximately equals trep

(Figure 1C). The apparent variability in origin timings suggests
that stochasticity is important to an accurate description of the
replication kinetics. Moreover, in a model where the timing of
origin firing is regulated by external triggers (Goren and Cedar,
2003), one expects no correlation between trep and twidth. In
other words, the twidth points would scatter about a horizontal
line in Figure 1C, implying that variations in twidth are
independent of trep. Instead, we see a strong correlation
between twidth and trep, suggesting the two are mechanistically
related.
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An analytical model for replication kinetics

The discrepancies between a naive picture of origin firing control
and the data motivate a more detailed approach. We have
developed an analytical model that can generate genome-wide
time course data sets comparable to those from microarray-based
replication experiments (see Materials and methods). The model
takes into account probabilistic initiation and the effects of
passive replication. Its parameters can be separated into a ‘local’
group that describes the properties of each origin and a ‘genome-
wide’ group that describes quantities that are roughly constant
across the genome. Limitations of the model and the microarray
data used are discussed in the Discussion.

We first introduce the ‘sigmoid model’ (SM), which describes
each origin with three local parameters: the origin position, the
median time of the firing-time distribution (t1/2), and the width of
the firing-time distribution (tw, defined as t0.75�t0.25). The last
two parameters define a sigmoidal curve for the cumulative
firing-time distribution. These two parameters t1/2 and tw differ
from trep and twidth. The former describes the firing time of an
origin, whereas the latter describes the replication time of an
origin site, which is replicated by both the origin on the site and
nearby origins. The fit to chromosome XI is shown in Figure 2 to
demonstrate that the model captures the replication process well.
Fits to all chromosomes can be found in Supplementary Figure 1.
A detailed statistical analysis of the fits is presented in
Supplementary Material Section B.

Extracted origins and fork velocity

The initial list of origins consisted of 732 positions from the
OriDB database that had previously been identified using a

variety of methods (Nieduszynski et al, 2007). The results do
not depend sensitively on this initial list, as we allowed the
positions to vary in the fit. After eliminating origins according
to the criteria described in Materials and methods, the SM gave
342 origins (origin parameters tabulated in Supplementary
Table I). Out of the 342 we identify, 236 colocalize with the 275
origins identified previously using a similar data set (Alvino
et al, 2007). The remaining 106 origins were not previously
recognized by Alvino et al, mostly because they are not
associated with apparent peaks in the microarray data. We
found that 75% of the 106 colocalize (within 5 kb) with origins
in the OriDB database (Nieduszynski et al, 2007).

The SM can be modified to include variable-fork rates
across the genome (see Supplementary Material Section C).
Fitting the data with a model that uses spatially varying
fork velocities, we found that both the constant-velocity SM
and variable-velocity SM fit the data well (Supplementary
Figures 6 and 7). Both capture 498% of the variance in the
data (see Supplementary Material Section C). This suggests
that a spatially constant velocity is plausible. The genome-
wide fork velocity we extracted from the SM is 1.9 kb/min. Our
statistical analysis of the fits suggests an error of 0.2 kb/min on
v (see Supplementary Material Section B). Consistent with this
conclusion, recent work using ChIP-chip to monitor the
movement of GINS, an integral member of replication forks,
shows a fork progression rate of about 1.6±0.3 kb/min that
does not vary significantly across the genome (Sekedat et al,
2010). Our conclusion contrasts with that of Raghuraman et al
(2001), where variations in slope from peak to trough were
interpreted as fork-velocity variations. In our model, these
variations can be mostly accounted for by different levels of
passive replication from origins with different distributions of
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Figure 1 (A) Smoothed time course microarray data for chromosome I. Triangles are origins identified in Alvino et al (2007). The arrow indicates the origin analyzed in
(B). (B) Replication fraction of the indicated origin versus time. Fitting the data with Equation (1) gives the median time trep and the 25–75% time width twidth. (C) Time
widths versus median times for all 275 origin loci identified in Alvino et al (2007).
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firing times, including the above-mentioned origins that lack
distinct peaks.

The SM recapitulates observed firing-time
distributions and initiation rates

The least-understood aspect of the replication process is its
temporal program (Sclafani and Holzen, 2007). One reason is
that there has been no direct way of visualizing both the spatial
and temporal aspects of replication at high resolution. Another
reason is that the implications of temporal stochasticity in
initiations have often been neglected. We extracted the firing-
time distributions of the 342 origins identified in the SM
(Figure 3A). The widths are comparable to the length of S
phase, confirming that stochastic effects have an important
function. The kinetic curves of the origins extracted from the
model also show that tw increases with t1/2 (Figure 3B and D;
compare with Figure 1). Further, we show that four repre-
sentative, previously studied origins (ARS413, ARS501,
ARS606, and ARS1114.5) are typical origins that follow this
global t1/2–tw relationship (Figure 3).

The rate of initiation, defined as the number of initiations
per time per unreplicated length, is a crucial parameter in
kinetics (see Materials and methods). It has been proposed
that an increasing rate of initiation later in S phase would lead
to robust completion of replication, even if origin firing is
stochastic (Hyrien et al, 2003). To investigate the initiation rate
in the SM, we plotted initiation rates averaged over the genome
and over individual chromosomes (Figure 3C). Our results
show the initiation rate rising for most of S phase and then
declining in late S phase. A similar pattern has been described
in a number of organisms (Goldar et al, 2009). However, the

genome-wide-averaged initiation rate we extracted does not
decay to zero before S phase ends as it did in the previous
analysis. In Goldar et al (2009), the use of trep rather than the
full distribution of firing times of an origin leads to an
underestimation of origin initiation at late times. Nonetheless,
as the proposed universality of the initiation rate across
species was for scaled initiation rates, that conclusion may
well survive reanalysis of the data with a stochastic model that
would modify the extracted average rates and scalings.

Geometric effect from passive replication affects
variability in origin efficiencies

Understanding origin efficiency is important because these
efficiencies determine the replication completion time and the
robustness of the replication program (Lygeros et al, 2008;
Blow and Ge, 2009). The efficiency of an origin is closely
related to its geometry—its location relative to other origins.
Imagine two highly efficient origins placed near each other;
only one of the two origins will fire in any given cell because
the initiation of one origin will passively replicate the other
origin. Placing an efficient origin next to an inefficient one
should decrease the firing of each by different amounts. For an
isolated origin, one expects that its efficiency would be
unaffected by passive replication.

In our analysis, we distinguish between ‘efficiency,’ which is
traditionally defined as the probability that an origin fires
during normal replication, taking into account passive
replication effects, and ‘potential efficiency.’ The latter term
is defined to be the probability that an origin would have
initiated before the end of S phase if there were no passive
replication (Rhind et al, 2010). We will occasionally use
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‘observed efficiency’ instead of just ‘efficiency’ to emphasize
the effect of passive replication. Experimentally, techniques
that hinder fork progression to avoid passive replication have
been applied to extract the potential efficiencies of origins
(Heichinger et al, 2006). However, such approaches provide
only rough estimates of potential efficiency because they block
origin firing in late S phase. Thus, to determine whether the
observed efficiency of origins is due primarily to their potential
efficiency or to their proximity to neighboring origins, we
investigated the relationship between efficiency and potential
efficiency.

We used the extracted origin positions and firing-time
distributions to calculate both the observed efficiencies (via
Equation 11) and potential efficiencies of all identified origins
(via evaluating Fi(t¼tend), the cumulative firing probability
distribution in our model, see Materials and methods). Here,
tend is the length of S phase, and we estimate it to be 60 min
from flow-cytometric determination of replication progress
(see Supplementary Material Section A). We found that more
than half of the origins have high potential efficiency (40.9),
but the observed efficiencies of origins vary much more

(compare Figure 4A and B). Furthermore, we found that the
relation between observed efficiency and potential efficiency
can be approximately accounted for by a mean-field argument
(see Supplementary Material Section D), where all neighbor-
ing origins are replaced by an average neighbor that has the
genome-wide-averaged firing-time distribution (Figure 4C).
Thus, the efficiency of origins in S. cerevisiae can largely be
explained by geometric effects because of neighboring origins.

Late-firing origins are less efficient

As seen in Figure 4D, later-firing origins have lower potential
efficiency. The monotonic decrease in efficiency with increas-
ing t1/2 is a consequence of the tw-versus-t1/2 relationship
mentioned above. The larger tw associated with later-firing
origins imply that the chance for them to initiate within S
phase is less than that of earlier-firing origins.

A previous experiment reported that although the ARS501
origin is late firing, its kinetics and efficiency resemble that of
an early-firing origin (Ferguson et al, 1991). The ARS501
kinetics was used to support a scenario where origin activation
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is regulated deterministically in time. We compared the kinetic
curves of ARS501 obtained from the earlier slot-blot experi-
ment (Ferguson et al, 1991) with that from the present
microarray data (McCune et al, 2008) and found the two
curves differ significantly. The microarray kinetic curve
suggests that ARS501 is a typical origin with trepE33 min
and twidthE26 min, whereas the slot-blot data suggest trepE33
and twidthE11 min (Supplementary Figure 2). For comparing
origin properties, we argue that the microarray data is more
reliable than the slot-blot data because the former has
information about the relative behavior of origins genome
wide, whereas the latter contains curves for only a few sites.
Simply stated, microarray data contains more relative in-
formation about sites than the slot-blot data. According to our
analysis, ARS501 is neither unusually efficient (observed
efficiency E0.58) nor unusually late (t1/2E36 min).

Temporally alike origins do not cluster

The microarray replication profiles show that different parts of
the genome replicate at different times. McCune et al studied a
mutant yeast strain where origin firings are largely limited to
the first half of the cell cycle and found that the typical
replication fraction of some regions is unaltered whereas it

decreased in other regions. They thus hypothesized that there
are relatively long stretches of chromosomes that replicate
early and late and that temporally alike origins are clustered
together to form these early- or late-replicating regions
(McCune et al, 2008).

To investigate this hypothesis, we recall that the distribution
of t1/2 has a single peak (Figure 5A), suggesting a continuum of
typical firing times and arguing against distinct categories of
temporally alike origins (e.g. early and late origins). To test the
spatial aspect, we calculated the autocorrelation function of
the origins’ t1/2 values (Figure 5B) (Press et al, 2007). In this
test, a positive value means that, typically, an origin and its nth
neighbor are likely to have t1/2 that are both larger or both
smaller than the average firing time, as would be expected if
temporally alike origins were to cluster. Conversely, negative
values would mean that an origin and its nth neighbor were
likely to have t1/2 values that were anti-correlated. We found
that the autocorrelation function fluctuates around zero for t1/2

but is clearly non-zero at the nearest neighbor for trep

(Figure 5B). The former result indicates that the intrinsic
initiation time among origins is independent. The latter result
indicates that the time at which neighboring origin sites are
replicated is correlated. The correlation arises because a fork
from one origin sometimes passively replicates the site of a
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neighboring origin. Thus, the observation that neighboring
origin sites tend to replicate at similar times is consistent with
the inference that neighboring origins initiate independently.

The multiple-initiator model can explain the
correlation between t1/2 and tw

The SM allows for any combination of t1/2 and tw. The
tightness of the trend in Figure 3D is thus remarkable: it
suggests that although local variations in origins lead to
different t1/2 and tw, replication is organized by a global
controlling mechanism that connects the two quantities. In
other words, the trend is that earlier-firing origins have tighter
control of their initiation timing, whereas later-firing origins
show progressively less control. What kind of global and local
mechanism can account for such a trend? Here, we propose
one plausible scenario.

Replication initiates at origins because there are initiator
proteins bound to them. Suppose that every initiator fires
according to a global firing-time distribution fo(t). Then,
origins that have more initiators loaded will be more efficient.
This situation arises because, when multiple initiators bind
near an origin site, it is always the earliest firing that counts.
Other initiators cannot fire to re-replicate the same site
(Sclafani and Holzen, 2007). One can assign an effective firing
distribution feff(t, n) to the initiator cluster at an origin, with n
being the number of initiators in the cluster. This distribution
of the earliest firing times shows the same trend as the curves
extracted from the microarray data: earlier-firing origins have
narrower distributions (Figure 6A and B).

For moderately large n (n\10), the selection of the first
initiation among many causes feff(t, n) to tend to a universal
distribution, the Weibull distribution, regardless of the ‘de-
tails’ of the fo(t) used (Kotz and Nadarajah, 2000). As an
example, the shape of feff(t, n) would differ between using an
increasing and a decreasing fo(t) but would not alter
significantly between a linearly and a quadratically increasing
fo(t). This robustness is an advantage of the model because it
obviates the need for an accurate form of fo(t).

As the firing-time distribution is shaped by the number of
initiators, we call this the ‘multiple-initiator model’ (MIM).
Results of the MIM fits are shown in Figure 2 and
Supplementary Figure 1. The MIM fits are similar to the SM
fits (see Supplementary Material Section B), although the
number of parameters used decreased by nearly 1/3. In the
SM, each origin has three parameters—x, t1/2, and tw. In the
MIM, each origin needs only two—x and n. Furthermore, the
trend for tw versus t1/2 are similar between the SM and MIM
(Figure 3D). The relationship between potential efficiency and
t1/2 is also captured (Figure 4D). We emphasize that these
similarities are biologically significant because the SM and
MIM correspond to two distinct views of replication. The
flexibility of allowing each origin its own t1/2 and tw in the SM
corresponds to the view that the firing of origins is controlled
by an explicit time-counting mechanism, a ‘clock.’ In the MIM,
there is no such mechanism; the order in timing is built from
stochasticity. Thus, the MIM suggests a new, plausible
mechanism for replication timing in S. cerevisiae.

Lastly, following what is done for SM, the MIM gave 337
origins (origin parameters tabulated in Supplementary Table
II). Out of the 337, 234 colocalize with the 275 origins
identified by Alvino et al (2007). Out of the remaining 103
origins, 70% colocalize with known origins from the OriDB
database (Nieduszynski et al, 2007) within 5 kb. Together, the
SM and MIM gave 357 distinct origins. Among these, 116 were
not identified by Alvino et al, and 71% of them colocalize with
known origins from the OriDB database within 5 kb.

Discussion

We have developed a general model of replication kinetics and
applied it to recently published data from a budding-yeast
genome-wide replication time course experiment. We found
that origin firing in budding yeast is best described as a
stochastic process, in which the average firing time of an origin
correlates strongly with its timing precision. The regulation of
the timing of origin firing can be explained by the number of
initiators loaded at each origin. Our model provides a specific,
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plausible, testable mechanism for the regulation of replication
timing in yeast. As the elements of the model are found
generally in eukaryotic organisms, one expects that it may
apply to a broad range of eukaryotes.

We initially fit the data with individual sigmoids at each
origin, in effect giving each origin an independent firing
program. We found that we could replace these empirical firing
programs with a universal firing program that describes the
behavior of each origin by a single parameter n, which
suggests that a fundamental underlying mechanism regulates
firing at all origins. Moreover, n can intuitively be interpreted
as the number of initiators loaded at an origin in this MIM.
Below, we discuss the MIM and propose a plausible initiator
candidate, the MCM complex. We also discuss our models in
relation to the robustness of replication programs. Lastly, we
discuss the limitations of the microarray data analyzed.

A candidate for initiators in the MIM: MCM
complexes

A natural candidate for the initiator is the MCM complex
(Sclafani and Holzen, 2007). MCM complexes are associated
with the unwinding of DNA, one of the initial steps in origin
activation, and are loaded in excess onto the DNA prior to S

phase (Edwards et al, 2002; Hyrien et al, 2003; Bowers et al,
2004). A previous experiment using ChIP-PCR showed that
origin efficiency is strongly correlated with the number of
MCM bind at origins (Wyrick et al, 2001). That data show that,
on average, there are six times more MCM on efficient origins
than on inefficient origins (Wyrick et al, 2001; their Supple-
mentary Figure 1). A similar experiment done using ChIP-chip
on tiling arrays (Xu et al, 2006) does not recapitulate the
ChIP-PCR data (Supplementary Figure 3), possibly because of
lack of sufficient dynamic range in the ChIP-chip data.

The parameter n for the number of initiators does not have
to be an integer, as it represents the average number of
initiators bound to an origin. Also, the absolute value of n is
coupled to fo(t). Thus, relative variations in n between origins
are more significant than absolute values. For the data of
McCune et al (2008), we found a 43-fold range between the
smallest and largest n (n¼2.2 and 96.4, respectively), which is
larger than one might expect for variation in MCM loading at
a single origin. However, the majority of origins falls within
a 20-fold range, between 2 and 40 (Figure 6C), which is con-
sistent with experimentally observed levels of MCM loading
(Edwards et al, 2002; Bowers et al, 2004). The higher values
of n form a fairly sparse tail and may result from multiple
origins located o5 kb from each other. Such origins would not
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be resolved in the microarray data and would appear as a
single origin with a higher n value.

In addition, other factors such as chromatin structure and
origin recognition complex occupancy can influence
the loading of initiators. Previous work has hypothesized
that the time required for an activator to find an origin can
limit the origin-initiation rate (Gauthier and Bechhoefer,
2009). The search times in heterochromatin regions could
be longer than in euchromatin regions if initiators in
heterochromatin are less accessible to activators (Kerem
et al, 1984). This in turn implies that initiation rates should
be ‘scaled down’ in heterochromatin regions (see Equation
10 for the exact relationship between initiation rates and
firing-time distribution). For the same accessibility reasons,
the loading of initiators may also be reduced in the
heterochromatin regions. Put together, variations in chromatin
structure affect fo(t) and the loading of initiators simulta-
neously to increase the range of inferred n values. Thus,
the fit parameter n represents not simply the number of
initiators but rather the combined effects of origin accessibility
and initiator multiplicity. As an illustration, in the simple case
where the structure of chromatin identically affects initiation
loading and origin activation, the number of initiators is

ffiffiffi
n
p

,
and the range of number of initiators would cover a 6.5-fold
difference.

In the MIM, the parameter n has direct implications for the
timing of the replication program. Figure 6A shows the
histogram of all the t1/2 values we extracted. The mode of
the histogram suggests a typical firing time. The MIM suggests
that the typical firing time is related to the average number of
initiators loaded onto the origin sites. The histogram also
shows that there is no t1/2 that is earlier than 15 min. In the
context of the MIM, this arises from an upper limit to the
number of initiators that can bind and remain on an origin site,
which corresponds to the largest n-value found (E43 after
normalizing the smallest n to 1). To evaluate whether such a
value is reasonable, we make a crude estimate of the largest
biologically plausible value of n. The highest value can be
associated with a close packing of the double MCM hexamers.
Each individual hexamer is 30 nm wide (0.1 kb) (Gómez-
Llorente et al, 2005), and we imagine them spreading out from
an ORC loading site while still closely packed around it. If the
hexamers were to spread more than±2.5 kb to either side of
the ORC loading site, we would, in our analysis, assign more
than one origin to that region. The largest value of n for a single
origin is then E5 kb/0.1 kb¼50, which is greater than the
largest value found.

Recently, Wu and Nurse (2009) reported a correlation
between the timing of initiation and the timing of origin
recognition complex (ORC) binding in fission yeast that also
suggests a mechanism for origin-timing control. As ORC
recruits multiple MCM (Hyrien et al, 2003; Bowers et al, 2004),
we speculate that early ORC binding provides more opportu-
nities for MCM to be loaded, implying formation of early-firing
origins. On the other hand, the finding of Wu and Nurse
suggests that MCM loading is just one hypothesis among
several, as protein complexes other than MCM may also affect
the timing of origin initiation. More detailed models and
quantitation of replicative-complex assembly are needed to
make further progress.

Robustness of the DNA replication program

Our results show how the replication program in yeast is
robust. First, we showed in the SM that although the observed
efficiencies varies over a wide range, most of the origins have
high potential efficiencies. This result indicates that there are
more potential origins than needed to replicate the genome
and that many potentially efficient origins appear to be
dormant. Thus, if there are fork stalls, the normally dormant
(yet highly efficient) origins would initiate to replicate the
DNA, safeguarding against replication stress (Blow and Ge,
2009). In this case, the SM reveals that the replication program
has built-in redundancy that makes it robust.

Second, Figure 3C shows that the initiation rate extracted
using the SM increases throughout most of S phase. A similar
result holds in the MIM: the global firing-time distribution
fo(t) has to increase through most of S phase to fit the
experimental data. Biologically, this design allows any large,
unreplicated regions that remain toward the end of S phase to
be increasingly likely to be replicated, ensuring timely
completion of replication (Yang and Bechhoefer, 2008). An
increase in the origin-initiation rate as S phase progresses has
been observed in every data set that has been studied, and
several plausible mechanisms for such an increase have been
suggested (Goldar et al, 2009; Gauthier and Bechhoefer, 2009;
Rhind et al, 2010). In summary, our modeling reveals two types
of robustness: one safeguards against stress, whereas the other
ensures replication completion.

Limitations of the microarray data

Although the microarray experiments analyzed here provide
high-quality data, artifacts and limitations should be ad-
dressed. First, the microarray data analyzed has a temporal
resolution of 5 min and a spatial resolution of E2 kb. Because
of the limits of spatial resolution, we group origins within 5 kb
into a single, more efficient effective origin (see Supplemen-
tary Material Section A). Second, the data does not cover the
entire range of replication fraction (0–100%), perhaps because
of contamination and imperfect signal normalization (see
Supplementary Material Section A). We deal with these
artifacts by introducing a scaling factor for each time point
and a background as fitting parameters (see Materials and
methods). Third, from the flow-cytometry data, we estimated
S phase to be 60±10 min. Uncertainty in the length of S phase
affects the values of the efficiencies extracted but not the
relationships shown in Figure 4C and D. Fourth, there is
starting-time asynchrony in the cell population probed. We
extended the formulation to account for such asynchrony and
found it to be consistent with a normal distribution of s.d.
2 min (see Supplementary Material Section E). Refitting the SM
to part of the microarray data using the estimated asynchrony,
we found that v shifted by E�0.3 kb/min, t1/2 by E�0.5 min,
and tw by E�1 min (Supplementary Figure 8). These changes
are small and do not affect our findings presented above. Fifth,
all the fit parameters have a small systematic uncertainty that
originates from an incomplete knowledge of the likelihood
function (see Supplementary Material Section B; Supplemen-
tary Figure 4). We found that using an alternative form of the
likelihood function leads to shifts in v by E�0.2 kb/min,
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origin positions byE±1 kb, t1/2 byE�3 min, tw byE�2 min,
and n by E�1 (Supplementary Figure 5). Again, these small
uncertainties do not affect our overall conclusions.

In summary, artifacts in the microarray data result in small
uncertainties in the absolute values of the extracted para-
meters that do not alter significantly our findings. In particular,
the relationship that t1/2Etw remains valid. The t1/2–tw trend
clearly reveals that initiation times and the precision of timing
are correlated. This relationship has also been observed by a
recent analysis (de Moura et al, 2010) and is contrary to the
view of replication in which origin initiation is timed in a
nearly deterministic manner. We hypothesize that the correla-
tion emerges from the multiplicity of stochastic initiators, and
we account for it quantitatively via the MIM.

Materials and methods

Methods summary

Our analysis is described in four parts below. First, we fit sigmoids to
the replication fraction of origins from the microarray data and infer
that the timing and the variation in timing of origin initiation are
correlated. Second, we present the SM, which is based on two
elements: origin initiation and fork progression. The model takes into
account the effect of passive replication because of all other origins.
This framework allows one to calculate the potential efficiency of
origins, which is difficult to measure because of passive replication.
Third, we detail the parameters used in the SM fits. These parameters
include the origin positions, the t1/2 and tw of the firing-time
distributions, fork velocity, and factors to deal with experimental
artifacts. Last, we describe the parameters used in the MIM and discuss
its relationship with the firing-time distribution. Analysis codes are
available upon request.

Fitting sigmoids to array data

Let the replication fraction be f(x, t), where x is the genome position
and t is the time elapsed since the start of S phase. For microarray data,
f(x, t) represents the fraction of the population that has replicated locus
x by time t. Looking at the spatial part of the replication fraction, one
expects that an early-firing origin that is rarely passively replicated
would show a peak at the origin position, as the site is almost always
replicated before its surrounding. Thus, peaks in f(x, t) correspond to
origin sites. At a fixed x where an origin resides, the peak height then
scales with the number of initiations of the particular origin in the
population. If an origin fires at a distinct time, the corresponding
f(t) would resemble a step function. By contrast, if an origin fires
stochastically, f(t) would be smooth.

Using 275 previously identified origin sites (Alvino et al, 2007), we
extracted the corresponding 275 f(t) curves from the microarray data.
These f(t) curves are well described by sigmoids with parameters trep

and twidth. We used the Hill equation

fðtÞ ¼ 1

1þ trep

t

� �r ; ð1Þ

where r is related to twidth via

twidth ¼ 31=r � 3�1=r
� �

trep; ð2Þ

to fit the 275 f(t) and extracted 275 pairs of trep and twidth. The result is
plotted in Figure 1C.

There is a distinction between the replication fraction of a locus and
the cumulative firing-time distribution of the origin at the locus. The
complication is that the locus is replicated by all nearby origins and not
just the origin on the site. To untangle these composite effects, we
present a more general theory that accounts for passive replication.

A general formalism describing DNA replication

The replication program is determined by the properties of origins,
which are specified through their positions and ability to initiate
throughout S phase. Following previous work (Jun et al, 2005), we
describe the replication program by an initiation rate I(x, t), defined as
the number of times an origin at x would initiate per time per
unreplicated length (meaning that the origin has not been passively
replicated). Origin positions in budding yeast are well defined and
are associated with autonomous replication sequences (Sclafani and
Holzen, 2007); we denote these positions by xi. An origin is then
described by the initiation rate Ii(x, t)¼d(x�xi)I0(x, t), where d(x) is the
Dirac d function (Boas, 2006) that sets the rate to zero for all xaxi. The
program I(x, t) is the sum of all Ii(x, t).

Given I(x, t), we can calculate the replication fraction f(x, t) of site x
on the genome at a time t after the start of S phase (Kolmogorov, 1937).
The result is

fðx; tÞ ¼ 1�
Y
4

1� Iðx0; t0ÞDx0Dt0½ �; ð3Þ

where the product is over all area elements of DxDt in the shaded
triangle D depicted in Figure 7 (Kolmogorov, 1937). In words, the
fraction of replication at a specific position and time is one minus the
probability that the position has not been replicated before that time. In
the limit Dx-0 and Dt-0, one finds

fðx; tÞ ¼ 1� e
�
R R
4

Iðx0 ; t0 Þdx0dt0

: ð4Þ
To make the double integral explicit, we define a local measure of
origin firing,

gðDxp; tÞ ¼
Zxpþ1

xp

dðx� xiÞdx

Zt
0

I0ðx; t0Þdt0 ð5Þ

for the interval (xp, xpþ 1), where the index p comes from discretizing a
genome of length L:

Dx ¼ L

N
; xp ¼ pðDxÞ; p ¼ 0; 1; . . . ; N � 1: ð6Þ

The function g(Dxp, t)¼0 unless there is an origin contained in the
interval (xp, xpþ 1). Replacing the double integral in Equation (4) by a
sum using Equation (5), we obtain

fðx; tÞ ¼ 1� exp �
XN�1

p¼0

g Dxp; t � jx� xpj
v

� �" #
; ð7Þ

where v is the fork velocity. TheDxp in the first argument of g(x, t) is an
interval, whereas the xp in the second argument is a point. The second
argument, t�|x�xp|/v, is the time along the edge of the triangle. This

Time
Original index i 

2 3 4 5 6 ...

t

Position

xi  = 1

×

Figure 7 Illustration of Kolmogorov’s argument. The replication fraction at (x, t )
equals to ‘1�probability that no origins initiated within the shaded triangle D.’
Vertical lines indicates the positions of discrete origins; initiation can only occur
along these lines.
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equation is used to fit the microarray time course data. Biologically
relevant g(x, t) should satisfy the following constraints:

1. g(Dxp, to0)¼0. This means that the initiation rate is zero
[I(x, to0)¼0] before the start of replication. Applying this con-
straint to Equation (7), we see that the sum is limited to the
domain (x�t/v)pxp(xþ t/v).

2. d
dtgðDxp; tÞX0. As gðDxp; tÞ ¼

R xþDx
x

R t
0 Iðx0; t0Þdt0dx0, this is equiva-

lent to I(x, t)X0, meaning that the initiation rate cannot be
negative.

3. g(Dxp, t)X0. This is a direct consequence of constraints 1 and 2.

We derive a useful quantity, the cumulative initiation probability
F(xp, t), from g(Dxp, t) following a Poisson-process calculation
(Rieke et al, 1999):

Fðxp; tÞ ¼ 1� e�g Dxp ; tð Þ: ð8Þ
As F(xp, t) is only non-zero for xppxipxpþ 1, we introduce

fiðtÞ �
d

dt
Fðxi 2 Dxp; tÞ � d

dt
FiðtÞ ð9Þ

to denote the initiation probability density of each origin i. The xp in
Equation (8) is related to the discretization, whereas the subscript i in
Equation (9) relates to the origin position. Rearranging Equation (8) for
g(Dxp, t) and differentiating, we obtain the relationship between the
initiation rate and the firing-time distribution:

IiðtÞ � Iðxi 2 Dxp; tÞ ¼ fiðtÞ
1� FiðtÞ

: ð10Þ

We note that Equation (10) is also the firing probability density of an
origin given that it has not initiated before time t.

Using the probability distributions in Equation (9), we define
potential efficiency as the probability that an origin would fire by the
end of S phase if there is no passive replication, that is, Fi(t¼tend) with
tend being the time that S phase ends. By contrast, the efficiency of any
origin decreases because of passive replication by neighboring origins.
The observed efficiency of the jth origin thus depends not only on fj(t)
but also with the fk(t) of neighboring origins. Mathematically, the
observed efficiency Ej of the jth origin is then

Ej �
Ztend

0

dtfjðtÞ
Y
k6¼j

1� Fk t � jxk � xjj
v

� �� �
; ð11Þ

where the integrand is an effective initiation probability density that
represents the probability that the jth origin initiates between t and
tþdt times the probability that all the other origins have not initiated
to passively replicate the jth origin before time t.

A group of origins is effectively a more-efficient origin. In light of
this, consider a tightly packed cluster of initiators in the MIM. As it is
always the earliest initiation in the cluster that counts, the effective
initiation probability of the cluster is the extreme (smallest) value
distribution of all the fj(t)s in the cluster. For n initiators near x, the
effective cumulative initiation probability is

Feffðx; t; nÞ ¼ 1�
Yn
j¼1

1� Fj t � jx� xjj
v

� �� �
: ð12Þ

For large n, Equation (12) tends toward the Weibull distribution for
a large class of functions Fj, a feature of extreme-value statistics
(Kotz and Nadarajah, 2000). This is a desirable feature for the MIM
(see Results).

Fitting parameters for the SM

Using the model presented above, we performed least-squares fits to
the time course microarray data in McCune et al (2008). The fit is done
using the Global Fit package in Igor Pro 6.1 (Wavemetrics Inc.; http://
www.wavemetrics.com). We fit to the unsmoothed microarray data
(Supplementary Material Section F; Supplementary Figure 9). To speed
up the code, the fit program calls external C-language code for key
function evaluations. On a personal computer with an Intel Core2 Duo
CPU @ 3.16 GHz, the fit for an average chromosome (E900 points and

E150 parameters) takes about 5 min. The time to fit the entire genome
of S. cerevisiae is about 10 h. All local parameters of the SM are
tabulated in Supplementary Table I. Global ones are in Supplementary
Table III. There are three types of genome-wide parameters:

Fork velocity v
Even though the model allows for variable-fork velocity, we found that
to fit the microarray data, a constant v across the genome and
throughout S phase suffices (see Supplementary Material Section C).

Background bg
The reason for introducing this parameter comes from the observation
that the 10-min time point data do not start close to f¼0 (Supplemen-
tary Material Section A). Although introducing a variable background
is possible, we found that a simple constant background is sufficient
for the global fit. This parameter is also global in space and time.

Normalization factors at
These parameters correct for various artifacts that cause the
microarray data to not cover the entire range of possible fractions,
0–100% (see Supplementary Material Section A). We propose a
normalization factor at for each time point that is genome wide.
Combining the normalization factors with the background parameter,
we generate a modified replication fraction

fmodðx; tÞ ¼ at fðx; tÞ þ bg

	 

ð13Þ

to fit the data. Again, in Equation (13), at is global in space but not
time, whereas bg is global both in time and space.

There are two types of local parameters pertaining to origins. These
parameters are local in space but global in time:

Origin position
Each origin was associated with a unique location xi along the genome.
Initial guesses of the xi include all 732 origins recorded in the OriDB
database (Nieduszynski et al, 2007). We counted origins that were
o5 kb apart as a single origin throughout the fitting process, as the
data (resolution E2 kb) cannot distinguish between a single-efficient
origin and a group of less-efficient origins (see Supplementary Material
Section A). Before the genome-wide fit, we first fit each chromosome
separately to eliminate false origins and origins that do not contribute
enough to the replication fraction. This allowed the genome-wide fit
to run more smoothly. The criteria for elimination were (1) mode
of firing-time distribution o10 min and efficiency o0.5 and (2)
cumulative firing-time probability o0.3 at end of S phase (estimated
to be 60 min). The first criterion aims to identify peaks in microarray
data that originate from contamination instead of origin activity (small
fragments of unreplicated DNA along with A-T rich sequence can be
counted as replicated DNA, as mentioned in the Supplementary
Material Section A). Contamination produces microarray peaks in the
early but not the mid and late time points. In the model, this is
effectively the same as an origin that fires very early (before the first
time point at 10 min) but is inefficient. The second criterion simply
eliminates origins that do not contribute much throughout S phase.

Firing-time-distribution parameters
We used the Hill equation (same form as Equation 1) to describe the
cumulative firing-time distribution F(t). The two parameters are the
median time t1/2 at which F(t¼t1/2)¼0.5 and the width tw, defined as
the difference t0.75–t0.25. This function is a valid cumulative initiation
probability function, satisfying the constraints 0pF(t)p1,F(to0)¼0,
and dF(t)/dtX0.

Fitting parameters for the MIM

The MIM, like SM, is also parameterized with the fork velocity,
background, normalization factors, and origin positions. The two
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firing-time-distribution parameters for each origin in SM are replaced
by a single parameter n in MIM. As discussed in the Discussion, n
represents the number of initiator molecules that is modified by effects
such as chromatin structure and ORC loading. There are additional
parameters (t1/2

* and r*) to describe the global firing-time distribution
of all initiators (see Equation 15 below). These are absent from the SM,
as the SM does not assume that the firing distributions are related. All
local parameters of the MIM are tabulated in Supplementary Table II
and all global parameters in Supplementary Table III.

We still use the Hill equation to describe the global cumulative
distribution Fo(t). Using Equation 12, the Feff(t, n) for a cluster of n
initiators is

Feffðt; nÞ ¼ 1� 1� FoðtÞ½ �n; ð14Þ
where

FoðtÞ ¼
1

1þ t�
1=2

t

� �r� : ð15Þ

The quantity t1/2
* is the median time of the firing-time distribution for a

single initiator, and r* is its rate of increase.
Because of the different form of firing-time distribution used in the

MIM, the criteria for origin elimination are slightly modified from the
SM ones. The MIM predicts strictly that earlier-firing origins are more
efficient; thus, no contamination effects are modeled by the MIM.
We then eliminated origins via a single criterion of Fi(t¼60 min)o0.4.
The change is consistent with the observation that the firing-time
distribution in Equation (14) tends to result in more efficient origins
than the Hill function does. Similar to the SM fits, individual-chromo-
some fits were done first before performing the genome-wide fit.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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