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Abstract: The regulatory and functional roles of non-coding RNAs are increasingly demonstrated as
critical in cancer. Among non-coding RNAs, microRNAs (miRNAs) are the most well-studied with
direct regulation of biological signals through post-transcriptional repression of mRNAs. Like the
transcriptome, which varies between tissue type and disease condition, the miRNA landscape is also
similarly altered and shows disease-specific changes. The importance of individual tumor-promoting
or suppressing miRNAs is well documented in breast cancer; however, the implications of miRNA
networks is less defined. Some evidence suggests that breast cancer subtype-specific cellular effects
are influenced by distinct miRNAs and a comprehensive network of subtype-specific miRNAs and
mRNAs would allow us to better understand breast cancer signaling. In this review, we discuss the
altered miRNA landscape in the context of breast cancer and propose that breast cancer subtypes
have distinct miRNA dysregulation. Further, given that miRNAs can be used as diagnostic and/or
prognostic biomarkers, their impact as novel targets for subtype-specific therapy is also possible and
suggest important implications for subtype-specific miRNAs.

Keywords: microRNA (miRNA); breast cancer; subtype specificity; triple negative breast cancer
(TNBC); human epidermal growth factor receptor 2 (HER2); estrogen receptor (ER); progesterone
receptor (PR); prognosis

1. Introduction

Three decades ago, the first microRNA (miRNA), lin-4, was identified in Caenorhabditis
elegans [1]. The seminal paper was the first to suggest the regulation of a protein (LIN-
14) through complementary sequence interaction of the miRNA with the 3′untranslated
region (UTR) of the lin-14 mRNA. Subsequent research has demonstrated the universal
importance of miRNAs, which is reflected by their ubiquitous presence and abundance
across all genera from viruses to mammals. Calin et al., first described a potential miRNA
role in cancer; miR-15 and miR-16 were deleted in chromosome 13 in chronic lymphocytic
leukaemia [2]. In the past two decades, miRNAs found to play critical roles in the regulation
of cancer pathways have been labelled oncomirs and tumor suppressor mirs based on their
prominent oncogenic and tumor suppressive effect [3]. Notable examples include miR-21,
miR-17~92 and the miR-200 family [4].

Over 2000 miRNAs have been identified in humans [5]. In the genome, miRNA genes
are intragenic or intergenic, and some miRNA genes are clustered into a polycistronic
transcription unit which are expressed together in multiple conditions [6]. Micro RNAs
have an established naming convention where they are named by sequential numbers, and
if the same miRNAs are generated from distinct genetic locations, they are identified by
hyphenated numbers (e.g., miR-10-1), whereas closely related mature miRNAs are indicated
by a letter suffix (e.g., miR-200 family members; miR-200a, miR200b, and miR200c). Mature
miRNAs are labelled with the 5p or 3p suffix to denote their origin arm of the stem loop [7].
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Post-transcription, mature functional miRNAs are generated via a multi-step process.
The primary pri-miRNA transcripts consist of single or multiple loop sections and single-
stranded fragments, which are cleaved by the microprocessor complex involving RNaseIII
Drosha and its cofactor subunit DiGeorge syndrome critical region 8 (DGCR8) in the
nucleus, resulting in pre-miRNAs [6]. The Drosha and DGCR8 microprocessor complex
binds to the stem loop section and cleaves at 11 bp from base of stem loop [8,9]. Post-
export to the cytoplasm through the exportin5, the loop part is cleaved by Dicer to form
duplex RNA, each strand ~20 nucleotide long. Dicer recognizes the single nucleotide
overhangs of the stem loop pri-miRNA, and the Dicer–RNA complex is stabilized by the
trans-activation-responsive RNA binding protein (TARBP2) [3,10]. This duplex RNA is
bound by Argonaute protein AGO to form RNA induced silencing complex (RISC) and
generate the mature miRNAs [11]. One of the mature miRNA strands (passenger strand)
is degraded by the nuclease activity of AGO2, while the other strand (guide strand) is
incorporated into RISC, and subsequently regulates post-transcriptional gene expression
via binding to complementary sequences in mRNA targets. This typically results in the
downregulation of target mRNAs by inhibiting their translation and/or mediating their
degradation via RISC [4,5,7–9]. In specific conditions of serum or amino acid starvation and
in quiescent cells, miRNA mediated upregulation of translation is also observed [12,13].

The process of post-transcriptional gene regulation by miRNAs is essential in the
regulation of all biological processes including development and differentiation, immune
responses, cell cycle progression, cell death, stress responses, and metabolism [14–20].
The essentiality of miRNAs is also reflected in cancer, where dysregulation of miRNAs is
commonly paired with cancer development, progression, and treatment responses [21].
For breast cancer, dysregulation of miRNA happens early in the development of ductal
carcinoma [22]. In the seminal 2005 paper, Iorio et al. described distinct miRNA signatures
between normal and breast cancer cells with significant deregulation of miR-125b, miR-145,
miR-21 and miR-155, which are mostly known for their tumor suppressive function [23].
Further, in breast cancer specifically, the importance of miRNAs is evident not only in the
progression of the disease, but also in the specific breast subtypes which define the disease
clinically and molecularly and is the focus of this review.

2. Breast Cancer Subtypes Defined by Gene and miRNA Expression

Breast cancer is one of the most common malignancies, with multiple subtypes, based
on clinical parameters and molecular profiling. In addition to disease staging, the ex-
pression status of hormone receptors’ estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor 2 (HER2) in tumors define the prognosis
of the cancer and treatment options [24–26]. Hence, clinically, breast cancers are defined
as ER+/PR+, HER+, or triple-negative (i.e., those lacking expression of these three recep-
tors). This classification system allows for the administration of endocrine therapies in
the hormone expressing subtypes. Additionally, breast cancer subtyping is observed via
transcriptome profiling, which has identified four major subtypes (luminal A, luminal B,
HER2, and basal-like). The ER+/PR+ breast cancers are predominately luminal A/B and
TNBCs are predominately basal-like. Clearly gene expression defines breast cancer [27]; it
is then not surprising that the expression of miRNAs also displays subtype-specificity.

With the increasing availability of microarray and small RNA sequencing technolo-
gies, significant advancement has been possible in identifying global changes in miRNA
dysregulation. Meta-analysis of patient sample repositories has also proven a versatile tool
for the identification and study of miRNAs involved in breast cancer. Clustering analysis
of all patient tumors based on miRNA expression show separation based on breast cancer
subtype, demonstrating that miRNAs affect subtype phenotypes [22,28,29].

Most of the studies included in this manuscript are from patient cohorts that identify
important miRNAs among specific patients; these studies compare cancer tissue with
normal tissue to identify the cancer specific miRNAs. By comparing the enriched miRNAs
among different breast cancer subtypes, the subtype specific miRNA signature and com-
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mon breast cancer miRNAs are identified. Direct relative expression of miRNAs among
different subtypes are studied in in vitro experiments, where the controlled environment
allows for the comparison between two cancer subtypes instead of comparing against a
standard control.

This variation in the abundance of specific miRNAs associated with specific subtypes
and the potential influence this has on subtype-associated gene expression, signaling and
clinical outcome is discussed here for each major subtype and summarized in Table 1.

Table 1. Distinct microRNA (miRNA) signatures and individual miRNAs associated with specific
breast cancer subtypes. Breast cancer gene (BRCA), estrogen receptor (ER), progesterone receptor (PR),
triple negative breast cancer (TNBC), human epidermal growth factor receptor 2 (HER2), quantitative
real time polymerase chain reaction (qPCR), The Cancer Genome Atlas (TCGA), gene expression
omnibus (GEO), formalin-fixed paraffin-embedded (FFPE).

Analysis Type Findings miRNA Signature Subtype Reference

microRNA (miRNA)quantitative
real-time polymerase chain reaction
(qPCR) panel on 139 breast cancer

(BRCA) patient
tissues compared against

26 normal tissues

patients with miR-182-5p and
miR-200b-3p expression show

better prognosis

miR-30c-5p,
miR-30b-5p,

miR-182-5p, and
miR-200b-3p

ER/PR + [30]

case control study of estrogen
receptor/progesterone receptor positive

(ER/PR +) patients with tamoxifen
treatment

miR-221 expression is high in
ER/PR + patients and is not
changed by KI67/PR levels

miR-221 ER/PR + [31]

clustering analysis of RNA seq from
patient cohort of 186 patients

miR-99a/let-7c/miR-125b
cluster is high in luminal A

compared to luminal B

miR-99a/let-7c/
miR-125b ER/PR + [32]

qPCR of 54 luminal A type patients
against 56 controls

study identified miRNAs
specifically downregulated in

luminal A type patients

miR-29a, miR-625,
miR-181a ER/PR + [33]

miRNA qPCR of luminal A patients
compared against controls diagnostic markers for luminal A miR-145, miR-195 and

miR-486 ER/PR+ [34]

immunohistochemistry of miR-1290
targets among 256 ER positive

breast cancer

miR-1290 is a prognostic marker
for luminal breast cancers miR-1290 ER/PR+ [35]

meta-analysis of patient datasets

specific miRNA signature
between

luminal A and luminal B breast
cancer subtypes

miR-30b-5p,
miR-30c-5p high in

luminal A,
miR-182-5p,

miR-200b-3p,
miR-15b-3p,
miR-149-5p,

miR-193b-3p and
miR-342-3p, 5p high in

luminal B

ER/PR+ [22]

mimic transfection, luciferase activity
and qPCR

miR-125b functions as a
competitive endogenous RNA

with EPOR and ERBB2
miR-125b HER2+ [36]

in silico and qPCR analysis of
300 miRNAs

upregulated miRNA biomarkers
for human epidermal growth

factor receptor 2 (HER2) subtype
miR-146a-5p HER2+ [37]

in silico and qPCR analysis of
300 miRNAs

downregulated miRNA
biomarkers for HER2 subtype

miR-181d and
miR-195-5p HER2+ [38]
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Table 1. Cont.

Analysis Type Findings miRNA Signature Subtype Reference

miRNA screen (1626) in combination
with targeted treatments lapatinib

and trastuzumab

tumor suppressive miRNA
signature identified, treatment
with mimics sensitize cells to

trastuzumab and lapatinib

miR-101-5p,
mir-518a-5p,

miR-19b-2-5p,
miR-1237-3p,
miR-29a-3p,
miR-29c-3p,

miR-106a-5p, and
miR-744-3p

HER2+ [39]

protein expression and The Cancer
Genome Atlas (TCGA) data analysis

overexpression of miR-4728 in
HER2 minimizes the effect

of laptinib
miR-4728

triple negative breast cancer (TNBC) vs.
non-TNBC patient samples diagnostic markers of TNBCs

hsa-miR-10a,
hsa-miR-18a,

hsa-miR-135b and
hsa-miR-577

TNBC [40]

miR arrays from stored tissues distinct in TNBCs compared to
ER negative patients

miR-10a, miR-18a,
miR-135b and miR-577 TNBC [41]

miR arrays from stored tissues

basal-like subtype has
overexpression of both clusters,

derived from copy number

miR-17-92 and
miR-106b-25 cluster

overexpression

TNBC [42]upregulated in TNBCs,
prognostic signature

miR-455-3p,
miR-107,

miR-146b-5p,
miR-17-5p,
miR-324-5p,

miR-20a-5p and
miR-142-3p,

downregulated in TNBCs
miR-139-5p,
miR-10b-5p,
miR-486-5p

regression analysis of patient data
compared against gene expression

omnibus (GEO) datasets

upregulated in TNBCs

miR-455-3p,
miR-107,

miR-146b-5p,
miR-17-5p,
miR-324-5p,

miR-20a-5p and
miR-142-3p

TNBC [43]

clustering of miRNAs
significantly different between

TNBCs and
HER2+ subtypes

miR-139-5p,
miR-10b-5p,
miR-486-5p

meta-analysis of published
research articles

upregulated in TNBCs,
prognostic signature

miR-10b, miR-21,
miR-29, miR-9,

miR-221/222, miR-373

TNBC [44]

downregulated in TNBCs

miR-145,
miR-199a-5p,

miR-200 family,
miR-203, miR-205

miRNA extraction and microarray from
formalin-fixed paraffin-embedded

(FFPE) tissues

TNBC-specific four miRNA
signature which is reduced in

other subtypes

miR-17-5p,
miR-20a-5p,
miR-92a-3p,
miR-106b-5p

TNBC [45]
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2.1. ER+/PR+ Breast Cancers

Estrogen and progesterone hormones influence normal breast development and in
breast cancer they play important roles in the disease progression, which is governed
by the presence of estrogen and progesterone receptors. The luminal subtypes consist
predominately of ER+/PR+ breast cancers and comprise the majority of breast cancers [25].
ER-associated miRNAs are enriched in the luminal subtypes. A key distinguisher between
the luminal A and B subtypes is the expression of the Ki67 proliferation marker; luminal
A breast cancers have low Ki67, while luminal B breast cancers have high Ki67 [46]. The
subtype-specific expression of Ki67 reflects the better prognosis and low tumor grade
associated with the luminal A subtype, and the comparably worse prognosis and higher
tumor grade associated with the luminal B subtype. Furthermore, in terms of miRNA
dysregulations, we see distinguishing features in the two luminal subtypes. Clustering
analysis including breast cancers of all subtypes showed that luminal A and luminal B
are clustered close to each other but were distinct from one another [22]. Further, there
is more prominent dysregulation in miRNAs in luminal B vs. luminal A breast cancers.
Specifically, 657 miRNAs were found dysregulated in luminal B cancers and 67 miRNAs
were dysregulated in luminal A cancers. Among the luminal-dysregulation miRNAs, miR-
1290 is significantly reduced in luminal A Ki67 low tumors [35]. MiR-1290 is oncogenic in a
context driven nature [47]; its reduction in luminal A correlates with its clinical outcome.

The distinct luminal A-miRNA signature is defined by miR-30c-5p, miR-30b-5p, and
miR-99a/let-7c/miR-125b cluster, while the luminal B subtype is enriched with miR-182-5p,
miR-200b-3p, miR-15b-3p, miR-149-5p, miR-193b-3p and miR-342-3p, 5p [22,30,32–34].
Haakensen et al. linked miR-30b-5p, miR-30c-5p, miR182-5p and miR-200b-3p to better
prognosis in patients with luminal subtype breast cancer [22]. Given the prominence
of miR-30 miRNAs among luminal A breast cancers, it important to note that miR-30
is a cluster of six miRNAs (miR-30a, -30b, 30-c1, -30c-2, -30d, 30e), and as whole the
miR-30 family generally inhibit migration and growth [48] (Figure 1). For example, miR-
29b/miR-30d regulate migration through lysyl oxidase-like 4 (LOXL4) inhibition [49]. Early
evidence demonstrated that miR-30 inhibit cell division through cyclin D2 targeting [50],
and inhibition of c-Myc-induced carcinogenesis [51]. The other prominent luminal A-
associated miRNA cluster, miR-99a (miR-100)/let-7c/miR-125b), is also typically paired
with tumor suppression and reducing growth rate and migration in breast cancer (Figure 1).
This cluster reduces tumor growth by inhibiting proteins involved in important cellular
processes, including homeobox A1 (HOXA1), mammalian target of rapamycin (mTOR),
insulin-like growth factor binding protein 1 (IGFBP1), and fibroblast growth factor receptor
3 (FGFR3) [52–55]. The miR-99a cluster also inhibits oncogenes, including Yamaguchi
sarcoma viral oncogene homolog 1 (YES1), ETS proto-oncogene 1 (ETS1) and ETS variant
transcription factor 6 (ETV6) [23].

The increased expression of miRNAs associated with tumor suppression among
luminal A breast cancers is consistent with the relatively slow growth of luminal A breast
cancers; however, there is also evidence that in advanced cancer stages, miR-30 plays an
oncogenic role. In patients with advanced tumors, miR-30b-5p is highly expressed in tissue
and circulation [38], suggesting a potential change in function towards tumor progression.
This is an important caveat when considering miRNA function in cancers; it is always
context dependent and reliant on the abundance of relative target mRNAs, which is also
shifting during cancer progression. The function of miRNAs is never in isolation and
dependent upon the evolving transcriptome.

Additionally, differences in circulating levels of miR-29a, miR-181a, and miR-652
is also evident in the serum samples of luminal breast cancers. All three miRNAs are
significantly downregulated in both the tumors and serum of patients with luminal A vs.
luminal B breast cancers [33]. Treatment regimens also influence circulating miRNA levels,
with tamoxifen treatment of ER+ tumors resulting in increased miR-221 in serum [31].
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Figure 1. Examples of significant microRNAs (miRNAs) associated with specific breast cancer
subtypes and their effects on cell phenotypes. In estrogen receptor positive/progesterone receptor
positive (ER+/PR+) breast cancers (blue box), we note the role of miR-100 and miR-30 families and
the distinction between the luminal A and luminal B molecular subtypes. In human epidermal
growth factor receptor 2 positive (HER2+) breast cancers (yellow box), we have noted miR-4728-3p,
which is present in the intronic region of HER2 and is co-expressed with HER2. The miRNA is
involved in feedback regulation of HER2 and oncogenic miR-21-5p. This facilitates several oncogenic
processes in later stage tumors. In triple negative breast cancers (TNBCs) (purple box), we have
noted the cMYC oncogene driven miR-17~92 cluster, which is overexpressed in TNBCs, specifically
the BL1 molecular subtype. The miRNA cluster promotes proliferation through its direct targets,
which include phosphate and tensin homolog (PTEN) and inositol polyphosphate-4-phosphatase
type II B (INPP4B) and are inhibitors of the proliferation mediator AKT. The migratory phenotype of
TNBC cell lines that fall within the mesenchymal stem like (MSL) and mesenchymal (M) molecular
subtypes is facilitated by inhibition of the miR-200 family through epigenetic changes that allows
expression of epithelial to mesenchymal transition (EMT) and migration genes, resulting in the
migratory phenotype.

2.2. HER2 Overexpressing Breast Cancers

HER2 is a tyrosine kinase receptor that belongs to the family of epidermal growth
factor receptors (EGFR). HER2 overexpression in breast cancers is present about 15–20%
of breast tumors, and like TNBC, it is associated with worse patient prognosis and sur-
vival [56]. However, unlike TNBCs, HER2+ (i.e., HER2 overexpression) in breast can-
cers can be targeted. Paired with chemotherapy, the monoclonal antibody against HER2,
trastuzumab, is used to treat HER2+ breast cancers. However, resistance and recurrence
are common, so other drugs have been developed such as the tyrosine kinase inhibitor
lapatinib and the monoclonal antibody pertuzumab, which prevents HER2 dimerization
and signaling [57]. HER2 overexpression results in specific gene signatures in breast cancer,
especially in the cancer-promoting pathways. The increased mitogen-activated protein
kinase (MAPK), phosphatidyl-inositol-3 kinase (PI3K)/AKT and HER3 receptor signal-
ing [58,59], characteristic of HER2+ breast cancers, result in the downstream effects on
enhanced cell proliferation and the observed aggressive clinical phenotype.
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HER2+ breast cancers also have a distinct miRNA expression profile. Lowery et al.
profiled 453 miRNAs in 29 tumors and found that that the HER2+ subtype is associated
with a number of miRNAs, including miR-302c, miR-520d, miR-181c, miR-376b and miR-
30e [37]. Additionally, in a study that evaluated 221 breast cancer tumors and 49 normal
tissue controls, miR-125b is reportedly upregulated in HER2+ breast cancers [36]. MiR-4728-
3p expression is also associated with HER2+ breast cancers and its gene is encoded within a
HER2 intron [60]. Other miRNAs identified in HER2+ breast cancers include upregulation
of miR-21 and miR-146a-5p, while miR-181d and miR-195-5p are downregulated [61].
These altered miRNA expression profiles are specific to the HER2+ subtype and could be
exploited in diagnostic/prognostic tools.

In terms of a connection with cancer phenotypes associated with the HER2+ breast
cancer subtype, these miRNAs also have function beyond just expression associations. For
example, miR-125b is specifically connected to metastasis of HER2+ breast cancers [62]
and with worse patient outcomes [39]. However, the effects of the miRNA in cancer are
again context dependent, as miR-125 has also been reported to have tumor suppressive
effects in various cancers [63]. For HER2+ associated miR-4728-3p, its mRNA targets
include downstream targets of HER2 signal transduction and the estrogen receptor alpha
(ESR1) [64]. Recent investigation into miR-4728 indicate that when it is overexpressed in
HER2-postive tumors, the efficacy of HER2 inhibitor laptinib is minimized (Figure 1) [65].
This was linked to decreased expression of pro-apoptotic NOXA59. Further, miR-4728-3p
mediates stabilization of miR-21-5p in HER2+ breast cancer (Figure 1) [66], facilitating
miR-21-5p mediated oncogenesis [67,68].

As demonstrated with miR-4728 [65], the effect of miRNA on drug treatments are
not uncommon, likely because miRNAs are expressed in a context dependent manner.
Identifying changes to the miRNA landscape before and after treatment will aid in the
development of improved treatments for HER2+ breast cancers. Normann et al. utilized
four HER2+ breast cancer cell lines to assess whether treatment with trastuzumab and
lapatinib together or separately change the miRNA landscape [57]. Levels of miRNAs hsa-
let-7b, miR-1236, miR-134, miR-25, miR-3656, miR-3663-3p, miR-3940 and miR-885-5p were
significantly altered following drug treatment [57]. Importantly, treatment with miRNA
mimics (e.g., miR-101-5p mimic) sensitized cells to treatment with the drugs. Additionally,
miR-101-5p downregulates HER2 and MAPK1; its expression is associated with higher
survival rates in HER2+ tumors. These findings together indicate that miR-101-5p acts as a
tumor suppressor in HER2+ cancers.

2.3. TNBC

TNBC is one of the major contributors of breast cancer mortality; nearly 25% of the
overall breast cancer-related deaths are among patients with TNBC, despite representing
only 10–15% of breast cancers [40]. TNBCs are aggressive in terms of proliferation, with a
high mitotic index and high Ki67 staining in histology. They also recur more frequently
than other breast cancer subtypes. Like the other above reviewed subtypes, TNBC also
has reported correlations with specific miRNAs. For example, survival analysis of patients
reveal correlation with multiple miRNAs in TNBC. Specifically, miR-27a/b, miR-210 and
miR-30e are associated with worse survival, and miR-155 and miR-493 are associated with
better survival in TNBC [41–43]. Further, miR-374a/b and miR-454 are associated with
disease free survival [64]. Some miRNAs are reported to be associated with metabolic
processes in TNBC; miR-210, miR-105-5p and miR-767-5p are essential for the Warburg
effect, with miR-210 involved in glucose uptake, lactate production and extracellular
acidification rate in TNBC [43].

TNBCs exhibit significant heterogeneity, both phenotypically and genotypically [44,69].
Hence, TNBCs can be further subdivided into multiple subtypes. Based on gene expression
profiling, TNBC is divided into six major subtypes; basal-like 1 (BL1), basal-like 2 (BL2)
immunomodulatory (IM), claudin-low mesenchymal (M), mesenchymal-stem like (MSL)
and luminal androgen receptor positive (LAR), and each of these have unique clinical
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outcomes, phenotypes and drug sensitivities. For example, the two mesenchymal TNBC
subtypes are associated with epithelial–mesenchymal–transition (EMT) gene signatures
and pronounced migratory capacity. The individual miRNA signature for molecular
subtypes has not been studied in detail for most of the TNBC molecular subtypes. However,
significant information on basal-like TNBC are achieved through in silico analysis of patient
cohort studies with miRNA studies. The molecular influences of some of the miRNAs are
studied in detail in in vitro experiments detailing its function in TNBC.

For example, Rinaldis et al. identified a distinct four miRNA signature in TNBC and
demonstrated that the miR-17~92 and miR-106b-25 clusters are significantly overexpressed
in basal-like TNBCs [70]. It is noteworthy that the miR-17~92 cluster is of particular impor-
tance in the TNBC transcriptome and are among the most well-studied miRNAs (Figure 1).
The miR-17~92 cluster comprises of miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and
miR-92a-1; together these miRNAs regulate expression of transcription factor E2F1, throm-
bospondin1 (THBS1), connective tissue growth factor (CTGF) and phosphate and tensin
homolog (PTEN) [71–73]. Earlier, O’Donnell et al. showed that the proto-oncogene cMYC
modulates the critical transcription factor E2F1 by regulating the miR-17~92 cluster, result-
ing in cancer proliferation [74]. This intricate oncogene signaling regulation has earned the
miR-17~92 cluster the moniker oncomiR-1. Apart from involvement in cMYC oncogene
signaling, the oncomiR-1 cluster also inhibits inositol polyphosphate-4-phosphatase type II
B (INPP4B) and is distinctly associated with the BL1TNBC subtype [75]. Notably, INPP4B
is a known inhibitor of the PI3K/AKT mediated growth pathway; knockdown experiments
clearly showed the tumor suppressive role of INPP4B [76]. Further, Kalecky et al. found
distinct differences between BL1 and BL2; miR17~92 cluster, miR-17, miR-18a and miR-19a
were high in BL1 tumors, but not as high in BL2 tumors [75].

The BL1 subtype of TNBC is associated with low PTEN and overall decreased miRNA
expression [77]. This group is also associated with worst survival among TNBCs. Recent
evidence on structural mapping of miR-17~92 cluster showed a sub-optimal micro process-
ing of primary miRNAs, resulting in unequal expression of the constituent miRNAs of the
cluster [78]. This highlights the potential role of regulatory molecules of miRNA processing
in the regulation of the miR-17~92 cluster [79,80]. This cluster may play a crucial role in
the subtype characteristics associated with BL1-TNBCs and the distinction of TNBCs from
ER+/PR+ and HER2+ breast cancers.

Like the miR-17~92 cluster, miR-135b shows molecular subtype specificity among
TNBCs; miR-135b is upregulated in TNBCs in general but is most overexpressed in BL1 and
BL2 TNBC subtypes [81]. Importantly, miR-135b regulates expression of the ER, androgen
receptor (AR) and hypoxia inducible factor 1 alpha subunit inhibitor (HIF1AN) [82]; thereby,
its expression in TNBCs may directly affect hormone receptor loss and contribute to this
distinguishing feature of TNBCs. Interestingly, the AR significantly reduces miR-135b
expression [81]. Further, miR-135-b also targets large tumor suppressor kinase 2 (LATS2),
a intermediator of Hippo signaling, and promotes cell proliferation in unstratified breast
cancer patient tumors [83]. In TNBC, miR-135-b targets adenomatosus polyposis coli (APC),
a WNT signaling regulator [84]. Both these targets are important regulators of migratory
process. These studies observed increased proliferation and migration in the cells treated
with miR-135b mimics. However, in early-stage breast cancer, miR-135b-5p repression
resulted in migration through the syndecan-binding protein (SDCBP) [85]. These findings
strongly suggest that miR-135-5p has a role in the regulation of migration processes in breast
cancer, with functional difference among different subtypes arising from context-specific
signaling networks.

Currently, most of the TNBC molecular subtype data with respect to miRNA associa-
tions is predominately with the BL1 and BL2 subtypes. Given the importance of miRNA
in gene expression regulation, it is likely that there are specific miRNAs associated with
the other molecular subtypes; however, they just remain unstudied. The MSL and M
molecular subtypes exhibit migratory phenotypes with pronounced expression of EMT
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genes. These genes are repressed in the basal-like cells; hence, the likelihood of a role for
miRNA-mediated regulation is high in distinguishing these phenotypes.

Although the associations with specific molecular subtypes was not addressed in a
study that compared miRNA expression among different breast cancer cell lines, Adams
et al. reported downregulation of miR-34a and miR-200 in TNBCs compared to ER+ breast
cancer and non-tumorigenic breast cell lines (Figure 1) [86,87]. These specific miRNAs are
connected with EMT regulation in breast and other tumors, with effects in migration [88–91].
Inhibition of miR-34a promotes the migratory phenotype in MDA-MB-231 cells through
the IL6 pathway [88]. Notably, MDA-MB-231 is classified as a mesenchymal TNBC cell line,
and miR-34a is downregulated in the cell line [88].

The miR-200 family consists of miR-141, miR-200a, 200b, 200c and miR-429 [92]. It
is one of the most well-studied miRNA families with extensive effects in the regulation
of migration, via its multiple members and targets. Notably, inhibitors or antagomirs of
miR-200a inhibited critical EMT genes N-cadherin, Snail and Twist [93], and other genes
involved in migration, like proto-oncogene Jun, ETS1, brain-specific homeobox/POU
domain protein 3A (BRN3) and zinc finger E-box binding homeobox 1 (ZEB1), were
regulated by all miR-200 family members [93]. The miR-200 family associations with
some TNBC cell lines may be DNA methylation dependent. Interestingly, TNBC cell lines
with mesenchymal phenotypes, like MDA-MB-231 cells and lung metastasis sub-clones of
MDA-MB-468 cells (MDA-MB-468 LN), have hypermethylated promoters of the miR-200
family [94,95]. Demethylation of the miR-200c promoter site induced its expression and
reduced cell migration [96]. ZEB1 facilitates this epigenetic regulation of the miR-200
family [97].

2.4. Therapeutics of miRNA in Breast Cancer

The importance of miRNAs in breast cancer suggests they have therapeutic potential,
and this could be achieved by either depleting oncogenic miRNAs or enriching tumor
suppressive miRNAs [98,99]. Elimination of oncogenic miRNAs is possible by deliver-
ing an oligomer complementary to the target miRNA. These antagomirs bind to mature
miRNAs, resulting in inhibition and degradation of the target miRNAs [98]. Enriching
tumor suppressive miRNAs is done by delivering miRNA mimics (double stranded RNA
sequences that have the same sequence as the miRNA) in cells; importantly, with mimics
they are considered native to the cell [100]. By comparing published work on miRNA-based
therapeutics, Krützfeldt et al. shortlisted twelve miRNAs being studied with therapeutic
interest in breast cancers [98]. Three miRNAs in particular, miR-21, miR-10-b and miR-34a,
have been extensively studied with profound preclinical therapeutic potential, with both
antimetastatic and anti-proliferative properties. Reintroduction of miR-34a in TNBCs re-
duces both migration and proliferation in cell culture [86] and in vivo [101]. Combination
therapy of doxorubicin and miR-34a delivered using nanoparticles was effective in TNBCs
models [102]. Among antagomir studies on breast cancer, miR-21 and miR-10 antagomirs
has shown promise in breast cancer [103–105]. It is important to note that both miR-21 and
miR-34a appear to have critical influence on cancer signaling in specific breast cancer sub-
types; hence, it is prudent to test the therapeutic or diagnostic/prognostic role of miRNAs
in cell lines that have been clearly subtyped. Cell line classifications based on breast cancer
subtypes have been summarized and should be carefully considered [106,107].

3. Conclusions

In this review, we have highlighted both the seminal papers in the field and the recent
findings demonstrating miRNAs associations among certain breast cancer subtypes. We
have focused our discussion on the miRNA examples that have functional consequences
in the breast cancer subtypes. We have delineated important miRNA-initiated regulation
of gene expression that leads to cancer phenotypes that are prominent within specific
breast cancer subtypes. Importantly, the transcriptome network can be “enriched” in
certain tumor-promoting or tumor suppressive phenotypes based on the abundance of
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certain miRNAs and their targets. Eventually these dynamics lead to effects on clinical
fates. Furthermore, it is not one miRNA in isolation but the intricate signaling network of
multiple miRNAs and their many gene targets that will result in specific tumor or subtype
characteristics. We also reviewed the emerging evidence for a role in miRNAs in the
molecular subtypes of TNBCs; this area needs further investigation.

Clearly, miRNAs play a role in the progression of breast cancer and the eventual patient
outcomes. This can be exploited or intervened in new therapeutic strategies for breast
cancer. Further analysis on the role of specific miRNAs and novel agents for manipulation
of tumor-specific miRNAs is required. Likely, any effective intervention may require
the consideration of multiple miRNAs or miRNA networks and be specifically targeted
towards patients with tumors expressing the required miRNA-target profile. This review
adds value to the importance of miRNAs in breast cancer subtypes and has showcased the
need for further study.
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