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Abstract: Inflammatory bowel diseases (IBDs), which include Crohn’s disease (CD) and ulcerative
colitis (UC), are driven by an abnormal immune response to commensal microbiota in genetically
susceptible hosts. In addition to epithelial and stromal cells, innate and adaptive immune systems are
both involved in IBD immunopathogenesis. Given the advances driven by single-cell technologies,
we here reviewed the immune landscape and function of mononuclear phagocytes in inflamed
non-lymphoid and lymphoid tissues of CD and UC patients. Immune cell profiling of IBD tissues
using scRNA sequencing combined with multi-color cytometry analysis identifies unique clusters of
monocyte-like cells, macrophages, and dendritic cells. These clusters reflect either distinct cell lineages
(nature), or distinct or intermediate cell types with identical ontogeny, adapting their phenotype and
function to the surrounding milieu (nurture and tissue imprinting). These advanced technologies
will provide an unprecedented view of immune cell networks in health and disease, and thus may
offer a personalized medicine approach to patients with IBD.

Keywords: mononuclear phagocytes; inflammatory bowel disease; Crohn’s disease; ulcerative colitis;
single cell RNA sequencing; flow cytometry

1. Mononuclear Phagocytes in Intestinal Mucosa

Genomic, transcriptomic, and proteomic analyses have provided insights into redefining
mononuclear phagocyte (MNP) classification and understanding the functional diversity of MNP
subsets in tissue at homeostasis and during inflammation. MNPs are now stratified into conventional
dendritic cells (cDCs), embryonically-derived macrophages (Mφ), and monocyte-derived cells (MDC),
an entity that regroups monocyte-derived DCs, monocyte-derived Mφ, and inflammatory monocyte-like
cells [1–4] (Figure 1).

1.1. MNPs in Intestinal Mucosa at Steady State

In the gut mucosa, cDCs (cDC1 and cDC2) are relatively conserved between mice and
humans [5–9]. Intestinal SIRPα−CD103+ cDC1 is molecularly related to circulating cross-presenting
CD141+CLEC9A+CADM1+ cDC1 and exists as a minor population in the human intestine (5% to
10% of cDCs) [5,8]. cDC2 is classically divided into SIRPα+CD103+ cDC2, which is the main subset
in the small intestine in mice [9] and humans [5,10], and SIRPα+CD103− cDC2, which predominates
in the colon [5,8] (Figure 2). In mice, at steady state, cDCs ensure tolerance to dietary antigens and
enforce a symbiotic relationship with the microbiota [9–12]. In humans, cDCs isolated from jejunum
prime naïve allogenic T cells. However, their ability to polarize T cell responses appears contradictory.
Watchmaker et al. showed that SIRPα−CD103+ cDC1, SIRPα+CD103+ cDC2 and SIRPα+CD103− cDC2
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induce Th17, regulatory T cells (Tregs) and Th1 responses, respectively [5]. In contrast, Richter et al.
reported that SIRPα+CD103+ cDC2 promotes Th1 and Th17 responses, SIRPα+CD103− cDC2 favours
Th1 responses while SIRPα−CD103+ cDC1 does not induce naive T cell proliferation [13]. Finally, cDCs
are more prone to display a regulatory function in distal relative to proximal gut (distal colon versus
proximal colon versus ileum) [8,14].
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Human jejunal cDCs prime allogenic naive CD4+ T cells and promote differential T cell responses.
The proportion of human cDC subsets according to their gut location is depicted in the pie charts
(Literature cited in blue).
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In addition to DCs, all layers of the small and large intestine have a large population of Mφ (Figure 3).
In mice, the main pool of gut Mφ originates from a constant influx of bone-marrow-derived CCR2+

monocytes at steady state [15,16]. Interestingly, colonic and ileal Mφ express a tissue-specific gene
signature using models of adoptive monocyte transfers into Mφ-depleted recipients [17]. When infiltrating
the tissue, recruited monocytes progressively acquire phenotypic and functional characteristics of resident
tissue Mφ. Briefly, CX3CR1intLy6ChiCD11c−MHCII−CD64low monocytes (P1) increase their expression
of MHCII, CX3CR1, CD64, and CD11c while decreasing Ly6C expression to gradually progress from
CX3CR1intLy6C+CD11c−MHCII+CD64+ (P2) to CX3CR1intLy6C−CD11c−/lowMHCII+CD64+ (P3) cells.
Finally, P3 cells differentiate into CX3CR1hiLy6C−CD11clow/+MHCIIhiCD64hi mature Mφ (P4) [15,18].
The latter display potent phagocytic and bactericidal activities and are detected in the lamina propria in
close contact with the epithelium, thus favouring interactions with luminal bacteria. Although expressing
similar levels of TLRs and CD14 (the co-receptor of LPS) to CX3CR1int Mφ [15], P4 cells do not produce
pro-inflammatory cytokines nor reactive oxygen species under stimulation [3,15], but constitutively
secrete IL-10 and low levels of TNF-α and IL-1β. IL-10 produced by CX3CR1hi Mφ promotes the survival
and expansion of FoxP3+ regulatory T cells, which are essential for establishing and maintaining oral
tolerance [3]. Through chemokine secretion, including the CCR2 ligand CCL2, mature Mφ participate in
the recruitment of their own precursors [19]. Recently, a fraction of this mature Mφpool (~35% of Mφ in P3
and P4 populations) was reported to be maintained locally in the small intestine and colon, independently
of monocyte influx [20,21]. These embryonically derived CX3CR1hiMHCIIhiLy6C−TIM-4+CD4+ Mφ
coexist with TIM-4−CD4+ and TIM-4−CD4− Mφ that are replenished by circulating monocytes at a slow
and fast rate, respectively [20]. TIM-4+CD4+ Mφ, deriving first from the yolk sac and next fetal liver
progenitors, settle in the deepest layers of the mucosa (sub-mucosa, muscularis externa, and Peyer
patches) [21]. scRNAseq analysis further revealed two distinct embryo-Mφ populations, which both
participate in maintaining gut homeostasis. One population cooperates with neurons of the myenteric
and submucosal plexus, contributing to intestinal motility, whereas the other subset interacts with blood
vessels in the sub-mucosa to ensure vascular integrity [21]. Ginhoux et al. confirmed that gut Mφ include
approximately 20% of embryo-derived Mφ, which are distinct from the major pool of CD88+CD89+

monocyte-derived Mφ, using fate mapping model via Ms4a3-expression history [22].
In humans (Figure 3), a population of anergic HLA-DR+ Mφ , which do not express cell

surface markers classically displayed by Mφ (CD14, CD64, CD32, CD16, CD11b, and CD11c), has
been detected in the jejunal mucosa at steady state [23,24]. These cells are highly phagocytic with
a potent bacterial killing activity but do not produce inflammatory cytokines in response to LPS
stimulation or phagocytosis. Gonzalez-Dominguez et al. showed that 98% of colonic Mφ are
CD14loCD163+CD163L1+CD209+CD11c−CD11b+ and constitutively produce IL-10 in the mucosa of
healthy controls [25]. Other studies reported the presence of CD14+ cells in the gut mucosa at steady
state. CD14+CD33+ [26] and CD14+HLA-DR+ cells [15,27] reside in the ileum of healthy donors.
Four Mφ subsets are settled in the jejunal mucosa, two of them expressing CD11c (CD14+HLA-DRint

and CD14dullHLA-DRhi), while the other two CD11c− subsets display a more mature morphology
(CD11b−CD14dullHLA-DRhi and CD11b+CD14hiHLA-DRhi) [28]. Notably, bulk RNA sequencing
analysis demonstrated that recently recruited MNPs have a molecular signature closer to circulating
monocytes than the three other Mφ subsets present in the tissue, suggesting a distinct functional nature
compared with more mature Mφ. The mature jejunal Mφ, like anergic Mφ, do not secrete IL-10 [24,28].
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Figure 3. Intestinal monocyte/macrophage populations at steady state in mice and humans. In mice
(left panel), the majority of Mφ derive from circulating monocytes. Once recruited in tissue, monocytes
undergo a maturation process into anergic Mφ (P1 to P4), producing and responding to IL-10 and
ensuring diverse functions in the lamina propria. Embryonic Mφ are located in the submucosa.
In humans (right panel), monocyte derived-Mφ (M1 to M4), the potential counterparts of murine
mononuclear phagocytes (MNPs) and several anergic Mφ subsets have been reported in the lamina
propria. (Literature cited in blue along with gut location).

1.2. MNPs in Intestinal Mucosa during Inflammation

Because studying MNPs in human IBD tissue is challenging, MNPs have been largely investigated
in mice in T-cell transfer or Dextran Sodium Sulfate (DSS)-induced colitis models. Although no unique
experimental animal model of IBD entirely replicates human disease, during colitis, the sequential
maturation process of monocytes into anti-inflammatory Mφ (P4) is interrupted. This arrest of
maturation process, in combination with massive recruitment of circulating monocytes, promotes
the accumulation of CX3CR1int (P1, P2, and P3) subsets that secrete pro-inflammatory cytokines
in inflamed gut [15,18]. Monocytes recruited into inflamed or non-inflamed small intestine were
proposed to undergo a distinct maturation program [16]. Several studies provided evidence for
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similarities between mice and humans regarding MNP nature and function in the gut mucosa.
However, some markers broadly used for murine MNP characterization, like Ly6C or CX3CR1, are
absent or non-discriminative on monocyte-derived human populations, respectively, limiting the
extent of mice–human comparison [29]. CD11c, whose expression level progressively increases on
murine MNPs during monocyte maturation cascade [15,18], is elevated in recently recruited human
intestinal Mφ at homeostasis [28] and remains stable during inflammation [15,25,30,31].

CD14, a hallmark of monocytes, is expressed at each step of monocyte differentiation in the murine
and human intestine [15,19]. CD14+ cells detected in the mucosa of IBD patients were suggested
to originate from circulating monocytes [26]. A proof of concept was provided by experiments
conducted in 1995 by Grimm et al. showing that radiolabelled-circulating monocytes, isolated from
IBD patients and reinfused into the same individual, were retraced as CD14+ cells in the inflammatory
mucosa [32]. CD14+ cells accumulating in the mucosa of patients with CD expressed CD68 [26] and
CD68+INOS+ cells accumulating massively in the subepithelial areas in CD and UC are thought to
damage the intestinal barrier by deregulating the cell junction proteins and inducing the apoptosis
of epithelial cells [33,34]. Several studies confirmed the presence of CD14+ MNPs in the inflamed
mucosa of CD and UC patients, both in the small intestine and colon [15,25–27,35–38]. CD14+ MNPs
include HLA-DRhighCD163+ Mφ, HLA-DRdim MNPs, HLA-DR+CD64+ cells, and HLA-DR+SIRPα+

cells. The latter, which comprises more than 95% of CD14+ cells, was shown to accumulate in the
inflamed colon in large cohorts of CD and UC patients compared to paired non-inflamed colon, healed
mucosa of IBD patients in endoscopic remission, healthy colon of control donors, or inflamed colons
of non-IBD patients [31,39]. Stratification of colonic CD14+ MNPs according to CD64 and CD163
expression allowed the discrimination of two phenotypically, morphologically, and functionally distinct
populations in IBD patients. Only CD14+CD64+CD163−/dim, and more particularly CD163− but not
CD163+ cells, accumulated in inflamed mucosa of IBD patients in proportions that correlate with
endoscopic disease severity in CD, regardless treatment history, demographics and disease behavior
or location [31,39]. CD14+CD64+CD163− MNPs displayed monocyte morphology, whereas CD163+

MNPs resembled Mφ with cytoplasmic vacuoles [31]. In CD and UC patients, both CD163− and
CD163+ MNPs produced pro-inflammatory cytokines (IL-1β, IL-6, IL-12p40, and IL-23). CD163+ MNPs
expressed more TNF-α and IL-10 than CD163− MNPs, which are the major contributors to IL-23 and
IL1β [31,39]. The CD163−, but not CD163+, MNPs promoted Th17 and Th17/Th1 memory responses in
an IL-1β-dependent manner [31,39], which have been suggested to be pathogenic in IBD [40–43].

Unsupervised and unbiased scRNAseq analysis, using the Smart-seq2 protocol, which
captured the entire HLA-DR+SIRPα+ population in inflamed colonic mucosa of three CD patients,
identified six distinct clusters, two of which were significantly enriched in CD14+CD163−

and CD14hiCD163hi cells. One CD14+ cluster that expressed a TREM1/FCAR/FPR1/S100A9
/C5AR1/SLC11A1/CD300E gene signature was enriched in CD163− cells, whereas the second one
expressing CD209/MERTK/MRC1/CD163L1 was enriched in CD163hi Mφ [31]. The four remaining
clusters were enriched in cells bearing the gene signature of pDCs (e.g., TCF4, IL3R, and IRF8), DC
precursors (e.g., SPIB and LTB), cDC2 (e.g., CD1c, CLEC10A, and SLC38A1) and uncharacterized
CD14dim cells, which express myeloid markers (e.g., CCD88B and NRP12). As expected, conventional
HLA-DR+SIRPα− cDC1s were not captured in this analysis. Other authors examined an unfractionated
LPMC population in the ileal mucosa of 11 CD patients using 10 genomic scRNAseq and high
dimensional protein (CyTOF) profiling and stratified the Mφ population into two subsets: inflammatory
and resident Mφ [34]. The inflammatory Mφ accumulate in inflamed ileal mucosa of CD patients.
Zooming at the latter allowed the segregation of two subsets, defined as program 1 and 2, with program 1
cells displaying a gene signature (S100A9/S100A8/VCAN/TIMP1/C5AR1/IL1b) close to that of circulating
monocytes [44] and colonic CD14+CD163− MNPs reported in CD [31]. In UC patients, scRNAseq
analysis of LPMC extracted from inflamed mucosa indicated the presence of CD14+ Mφ and CD14+

inflammatory monocytes (FPR1/S100A12/SLC11A1/CD300E), with higher frequency of the latter in the
inflamed relative to non-inflamed colon [45]. In that regard, unsupervised phenotypic analysis of colonic
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CD14+ MNPs in UC patients was used to discriminate CD14+CD163− from CD14+CD163+ subsets that
were best characterized by TREM-1, CCR2, CD11b with or without CLEC5A expression, and CD163,
MERTK, CD209, CD206, and CD16, respectively [39]. Finally, mucosal profiling of pediatric-onset
IBD further revealed two CD68+CD14+CD64hi Mφ subsets with S100A8+IL-1β+TNFα+/− cells sharing
their gene signature (TREM1/S100A9/S100A8/ SLC11A1/CD300E/FPR1/VCAN) [46] with inflammatory
CD14+CD163− MNPs in adult IBD [31].

Collectively, inflamed IBD mucosa is predominantly infiltrated by a swarm of pro-inflammatory
CD14+CD163− MNPs that cohabit with CD14+CD163+ Mφ and cDCs and potentially drive T cell
intestinal inflammation in IBD (Figure 4 and Table 1).
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Figure 4. Proposed schematic model for mononuclear phagocytes diversity in inflamed colon of
inflammatory bowel disease (IBD) patients. In inflamed IBD gut mucosa, the accumulation of
HLADRdimCD14+CD163−CD89+TREM+ inflammatory monocyte-like subset (Inf Mo-like) (in red)
secreting pro-inflammatory cytokines, could result from the increase recruitment of circulating CD14hi

monocytes (in gold) that differentiate into Inf Mo-like cells in concert with the potential arrest in the
maturation program towards HLADRhiCD14hiCD209+MERTK+ post-inflammatory Mφ (in green)
that likely contribute to tissue repair. Transitioning cells (in orange) are generated during this
maturation process. Post-inflammatory Mφ coexist with resident Mφ (in yellow–green) that represent
the predominant Mφ population at steady state. Mφ expressing TIM-4+ and CD4+ (in mint green), like
embryonic Mφ reported in mice, have been identified in the inflamed colon of IBD patients. Besides Inf
Mo-like cells and Mφ, conventional dendritic cells that include cDC1 (in khaki), DC2 (in blue), and
plasmacytoid DC (in black) are seeded in the inflamed mucosa. Inflammatory monocyte-derived DC
(in gold) and inflamed DC3 (in dark pink) may infiltrate inflamed lamina propria in IBD patients.
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Table 1. Gene and protein expression on intestinal monocytes, inflammatory monocyte-like and
macrophages (function as referenced at https://www.ncbi.nlm.nih.gov/gene).

Gene Protein Name: Function Expressed on

CD14 CD14 Co-receptor for bacterial lipopolysaccharide Monocyte/ Infl.
Monocyte/ Mφ

FCGR1A CD64 Fc Fragment of IgG Receptor Ia Monocyte/ Infl.
Monocyte/ Mφ

SIRPA SIRPalpha/CD172a

Signal regulatory protein alpha: receptor-type
transmembrane glycoproteins known to be involved

in the negative regulation of receptor tyrosine
kinase-coupled signaling processes

Monocyte/ Infl.
Monocyte/ Mφ

ITGAX CD11c Integrin subunit alpha X: encodes the integrin alpha
X chain protein

Monocyte/ Infl.
Monocyte/ Mφ

ITGAM CD11b Integrin subunit alpha M: encodes the integrin alpha
M chain

Monocyte/ Infl.
Monocyte/ Mφ

CCR2 CCR2
C-C motif chemokine receptor 2: receptor for

monocyte chemoattractant protein-1, a chemokine
which specifically mediates monocyte chemotaxis

Monocyte/ Infl.
Monocyte

TREM1 TREM1
Triggering receptor expressed on myeloid cells 1:

encodes a receptor belonging to the Ig superfamily
that is expressed on myeloid cells

Monocyte/ Infl.
Monocyte

C5AR1 C5AR1/CD88 complement C5a receptor 1 Monocyte/ Infl.
Monocyte

FCAR CD89 Fc Fragment of IgA Receptor Monocyte/ Infl.
Monocyte

FPR1 FPR1 Formyl Peptide Receptor: G protein-coupled
receptor of mammalian phagocytic cells

Monocyte/ Infl.
Monocyte

S100A9 S100A9 S100 Calcium Binding Protein A9 (Calprotectin) Monocyte/ Infl.
Monocyte

CD300E CD300E Probably acts as an activating receptor Monocyte/ Infl.
Monocyte

SLC11A1 SLC11A1

Solute carrier family 11 member 1: member of the
solute carrier family 11 (proton-coupled divalent

metal ion transporters) family encoding a multi-pass
membrane protein

Monocyte/ Infl.
Monocyte

VCAN VCAN

Versican: large chondroitin sulfate proteoglycan,
major component of the extracellular matrix.

Involved in cell adhesion, proliferation, migration
and angiogenesis; plays a central role in tissue

morphogenesis and maintenance

Monocyte/ Infl.
Monocyte

CD68 CD68
Member of the lysosomal/endosomal-associated

membrane glycoprotein (LAMP) family and
scavenger family

Mφ

CD163 CD163 Member of the scavenger receptor cysteine rich
(SRCR) superfamily Mφ

CD163L1 CD163L1 Scavenger receptor cysteine-rich type 1 protein M160 Mφ

MERTK MERTK MER proto-oncogene, tyrosine kinase: member of
the MER/AXL/TYRO3 receptor kinase family Mφ

CD209 CD209
Encoded a transmembrane receptor involved in the

innate immune system and recognizes numerous
evolutionarily divergent pathogens

Mφ

https://www.ncbi.nlm.nih.gov/gene
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Table 1. Cont.

Gene Protein Name: Function Expressed on

MRC1 CD206
Mannose receptor C-type 1: membrane receptor that

mediates the endocytosis of glycoproteins by
macrophages

Mφ

MAFB MAFB Basic leucine zipper (bZIP) transcription factor Mφ

STAB1 STAB1

Stabilin-1: encodes a large, transmembrane receptor
protein which may function in angiogenesis,

lymphocyte homing, cell adhesion, or receptor
scavenging

Mφ

SLCO2B1 SLCO2B1

Solute carrier organic anion transporter family
member 2B1: member of the organic

anion-transporting polypeptide family of membrane
proteins

Mφ

C1QA C1QA
Complement C1q A chain: associates with C1r and

C1s to yield the first component of the serum
complement system

Mφ

C1QB C1QB
Complement C1q B chain: associates with C1r and

C1s to yield the first component of the serum
complement system

Mφ

C1Qc C1Qc
Complement C1q C chain: associates with C1r and

C1s to yield the first component of the serum
complement system

Mφ

MMP12 MMP12 Matrix metallopeptidase 12: encodes a member of the
peptidase M10 family of matrix metalloproteinases Mφ

MMP14 MMP14 Matrix metallopeptidase 14: encodes a member of the
peptidase M10 family of matrix metalloproteinases Mφ

TIMD4 TIM4 T cell immunoglobulin and mucin domain
containing 4 Embryonic Mφ

1.3. CD163− MNPs in Inflamed Intestinal Mucosa: which Monocyte-Derived Cell Types?

Although a consensus appears to have been reached regarding the monocyte origin of intestinal
pro-inflammatory CD14+ MNPs, debate is ongoing about the monocyte-derived cell type to which
CD14+CD163− MNPs belong. Furthermore, the identification of the murine counterpart of intestinal
pro-inflammatory CD14+CD163− MNPs remains unclear.

Single-cell phenotypic and transcriptomic profile of intestinal MNPs suggests that human
CD14+CD163− cells are related to the murine CX3CR1int subset. Both murine CX3CR1int and human
CD14+CD163− MNP subsets express high levels of TREM-1 and FCAR (encoding CD89) [31,47].
During inflammation, in DSS-induced and T cell-mediated colitis, CX3CR1int cells are either defined as
inflammatory Mφ [15,18], which are sessile cells unable to migrate, Mo-DCs, or even cDCs, capable of
migration and antigen presentation [9,48,49].

The classification of CD14+CD163− MNPs infiltrating CD and UC colon into inflammatory
monocyte-derived-DCs (Inf Mo-DCs), monocyte-derived Mφ (Inf Mφ), monocyte-like cells (Inf Mo-like),
or DCs (Inf DCs) remains challenging. Inf Mo-DCs have been described in skin, synovial fluid of patients
with rheumatoid arthritis, and tumor ascites [50,51]. The latter are CD14+/dim cells, best characterized by
the CD1c/IRF4/FcER1/ZBTB46/CCR7 gene signature; they secrete pro-inflammatory cytokines, augment
memory Th cell responses and favour naïve T cell polarization [51]. However, three recent separate
studies, using scRNAseq, defined human “CD14+/dim DCs”, a cell type that belongs to CD1c+ cDC2
subsets and thus distinct from CD14+CD88+CD89+ monocytes. Firstly, Villani et al. described
two distinct cDC2 subsets in the blood of healthy subjects: DC2 (CD14−FcεR+CLEC10A+CD1c+

cells) and DC3 (CD14dimCD163+CD36+S100A8+S100A9+CLEC10A+ cells) [52]. Secondly, Dutertre
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et al. further subdivided DC3 into three subsets: CD14-CD163−, CD14-CD163+, and CD14+CD163+

cells. The circulating CD14+CD163+ cells represent the Inf DCs, whose proportion is correlated with
disease activity index in SLE patients [44]. Brown et al. identified two murine cDC2 subsets in
spleen: pro-inflammatory RORγt+CLEC10A+CLEC12A+ “cDC2B” resembling circulating DC2 in
healthy subjects as well as colonic CD14 negative CD1c/ CLEC10A cluster in CD patients [31], and
anti-inflammatory Tbet+ “cDC2A”, with the human counterpart detected in spleen and melanoma [53].
Because intestinal CD14+CD163− MNPs do not share synovial fluid Inf Mo-DCs or circulating Inf DCs
gene signature and are unable to polarize naïve T cell differentiation [54], these cells are not fulfilling
DC criteria.

Rather, the colonic CD14+CD163− MNPs display Mo-like morphology, share gene expression
with monocytes (FCAR/CD89 and C5AR1/CD88), and are molecularly and functionally distinct from
the CD14brightCD163+ Mφ subset detected in inflamed IBD mucosa [31], RA synovial fluid, and
tumor ascites [51]. CD14+CD163− MNPs also share a phenotypic and molecular signature with
monocyte-derived cells that increase in inflamed human small intestine, which are best characterized
as CD14dimTREM1+S100A8/9+ cells using flow cytometry and bulk RNAseq [13]. Finally, increased
frequencies of CD14+ cells in ileal tissue of CD patients are associated with depletion of circulating
monocytes in matched blood cells; the two CD14+ cells express similar transcriptomic profile in blood
and intestine using scRNAseq [34].

Collectively, the CD14+ subpopulation that accumulates in the inflamed mucosa of IBD patients
can be qualified as Inf Mo-like cells, i.e., monocytes that have experienced a limited differentiation
in the gut, are able to secrete pro-inflammatory cytokines, and do not display the function or gene
signature of Inf Mo-DCs, Inf DCs (DC3) or Inf Mφ (Figure 4).

1.4. Plasticity of Monocyte-Derived Cells in Human Inflamed Gut Mucosa

The precise nature of CD163+ Mφdetected in inflamed IBD tissue also warrants further clarification.
Are these cells embryo-derived, anergic, resident, or post-inflammatory Mφ? In mice, recruited
monocytes in gut mucosa were found to undergo a maturation process with a pro-inflammatory phase,
followed by a second step that leads to resolution of inflammation with CD14+ Mφ that have escaped
inflammation and survived, actively participating in tissue repair. Notably, CD163+ cells have been
localized around ulcers and vessels in IBD patients [55]. The sequential maturation process of CD14+

monocytes remains unresolved in the inflamed gut of IBD patients.
Colonic CD14brightCD163+ MNPs are best characterized by the MAFB/SLCO2B1/STAB1/CD163L1

Mφ gene signature in CD [31]. These tissue CD163+ Mφ express several genes of late-differentiated
Mφ, a signature shared by the murine CX3CR1hi Mφ population (MERTK/CD163L1/MRC1/
C1qa/C1qb/C1qc/Mmp12/Mmp14) [47,56]. CD209 expression on CD14brightCD163+ Mφ population
corroborates with a high level of expression observed on the most mature Mφ in the human jejunal
mucosa at homeostasis [28]. The regulatory nature of human CD163+ Mφ is highlighted by CD206
expression. Hence, CD206+ Mφ are induced in IBD patients with anti-TNFα-responsiveness when
compared with non-responders [57,58]. However, CD14+CD163+ Mφ are still prone to secrete large
quantities of TNFα, IL-23, along with IL-10, in inflamed CD and UC colon [31,39], not meeting the
criteria for anergic Mφ.

Do CD14brightCD163+ Mφ arise from CD14+CD163− Inf-Mo-like cells via a transitional CD163dim

population? In support of this hypothesis, CD14+ populations with variable levels of CD163 expression,
as well as two distinct programs of Inf Mφ, are detected within the inflammatory tissue in IBD
patients [31,34]. CD14brightCD163+ Mφ in IBD mucosa display a common gene signature with
in-vitro-generated monocyte-derived Mφ in the presence of M-CSF(MAFB/MERTK/CD163/CD169/
CD11c/CD14/SLCO2B1/FCGRT/STAB1) [59]. Goudot et al. showed that monocytes cultured with either
M-CSF alone or a mixture of known pro- or anti-inflammatory cytokines (M-CSF, IL-4, TNF-α, and AHR)
differentiate into Mφ or DCs, whose molecular profiles are close to Inf Mφ and Mo-DCs found in tumor
ascites, respectively [60]. Although monocyte differentiation into Mφwas suggested to be a default
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pathway, a recent study favoured the concept of monocyte plasticity by showing that differentiated
monocytes modulate their nature with M-CSF or GM-CSF present in the environment, with cross-talk
between these two pathways [61]. Tissue monocytes and Mφ at different stages of maturation [3]
likely coexist with rare embryo-derived Mφ in inflamed tissue in vivo. Hence, CD14+CD163+ Mφ in
inflamed UC mucosa can be further subdivided into TIM4−CD4- and TIM4+CD4+CD169+ subsets [39],
the latter phenotype being reminiscent of embryo-derived Mφ detected in the deep layer of jejunal
wall at steady state [20].

Thus, CD14brightCD163+ Mφ in IBD colon might be a population of post-inflammatory Mφ, whose
molecular profile indicates a repair function, while these cells simultaneously secrete pro- (TNF-α and
IL-1β) and anti-inflammatory (IL-10) cytokines, thus not resembling anergic or embryo-derived Mφ
(Figure 4).

2. MNPs in MLNs of CD and UC patients

Mesenteric lymph nodes (MLNs) are a major site of naive T cell priming and education of
memory T cells that home to gut tissue, through interactions with MNPs. In contrast with gut
mucosa, few studies have examined the landscape and function of MNPs in the MLNs of IBD patients.
Immunohistochemistry studies revealed the presence of conventional DC, cDC1, and cDC2 in MLNs
of UC, CD, and non-IBD patients [62]. High-dimensional phenotypic mapping and transcriptional
studies of MNPs, and more particularly CD14+ MNPs, are limited in MLNs in humans at steady
state and during colitis. How these MNPs subsets are related to gut MNPs remains to be clarified.
MLNs that drain the small and large intestine are anatomically and functionally segregated [63–65],
highlighting the importance of studying MLNs at similar anatomical sites when comparing UC and
CD patients (Figure 5).

Single-cell phenotypic analysis revealed that resident and migratory (CCR7+) CD11c+HLA-DRhi

cDCs are found in comparable numbers in both types of IBD, whereas CD11c−HLA-DRdim plasmacytoid
DCs (pDCs), which represent the main cDC population in MLNs, are detected in larger proportion
in CD than UC [66]. These data apparently contradict the results reported by Granot et al. about
a predominant cDC2 population in MLNs using CD11c+ as the parent gate [67]. A shift from
HLA-DRhi to HLA-DRdim expression was found in CD11c+CD1c+/− in MLN of IBD relative to healthy
donors [35]. In that regard, CD14−CD64dimCD11b+CD36+CD11c+ that were CD1c− were identified in
both diseases [66]. These cells share some characteristics with circulating CD11cdimCD36+CD1cdim DC3,
which are identified as a separate cDC2 subset in human blood [52]. Several CD14+ Mφ subsets that
occupy distinct niches cohabit with DCs in MLNs. CD14+ cells are subdivided into CD68+HLA-DRhi

Mφ that either express CD163, MARCO, or CD169 [66]. CD169 expression defines subcapsular (SSM)
and medullary (MSM) sinus Mφ as opposed to paracortex Mφ that express CD68 but not CD169 [68,69].
The frequency of CD14+CD163+ MNPs is higher in UC relative to CD or non-IBD patients in MLNs and
enriched in bona fide MERTK+MARCOhighCD169−HLA-DRhi Mφ and CD11b+TREM1+HLA-DRdim

cells [66]. Although CD14+CD163+HLA-DRhi cells in MLNs are unlikely to originate from mucosal
resident CD14brightCD163+ Mφ, two non-mutually exclusive hypotheses underscore the presence of
CD14+CD64+HLA-DRdim cells expressing CD163 in MLNs. The latter might be derived either from
circulating monocytes directly recruited into the MLNs or from colonic CD14+CD163− Infl Mo-like
cells that acquire migratory capacities, as suggested in mice [19,70], and progressively upregulate
CD163 expression upon entrance into lymph nodes. Murine Mφ in MLNs are thought to arise from
circulating monocytes in colitis. During adoptive transfer of Ly6Chi monocytes in mice with colitis,
the kinetics of monocyte waterfall are similar in the colon and MLNs, suggesting a direct recruitment
of Ly6Chi monocytes in lymph nodes rather than a migration of cells from the mucosa [18]. These
massively recruited monocytes in MLN differentiate into Mφ that contribute to colitis independent of
migratory DCs. In contrast, CD MLNs are enriched in CD11b+CD209−TREM-1+HLA-DRdimCD163−

cells when compared to UC, which could reflect a differential and massive recruitment of mucosal
CD163− Inf Mo-like cells expressing TREM and FCAR/CD89 [66].
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Figure 5. MNPs in human mesenteric lymph nodes in Crohn’s disease and ulcerative colitis. Rare SIRPα−

cDC1 (in khaki) and four CD14−CD64−CD163− DCs subsets: (1) pDCs (in black), the major DC subset
found at higher frequency in CD compared to UC; (2) resident CD11chiCD1c+CD33+ DC2 (in light blue);
(3) rare migratory HLADRhiCDR7+ DC2 (in dark blue) and (4) CD163intCD11b+CD36+CD1c− cDCs (in
pink), reported in similar proportion in CD and UC. A higher proportion of HLADRdimCD68dimCD169+

monocyte-like cells (in purple) and HLADRhiCD68+MERTK+CD169− Mφ (in dark green) contributes to
increased frequency of CD14+CD64+CD163+ cells in UC compared to CD. The former (purple) could
derive from circulating monocytes (in gold) directly entering MLN, or mucosal monocyte-like cells (in
red) that have acquired CD163 and migratory capacities. CD169+ Mφ (2 subsets depicted in light green)
display a sinusoidal-like Mφ phenotype. HLADRdimCD14+CD64+CD163− monocyte/monocyte-like
cells (brown, burgundy and navy blue).

The transcriptomic profile of the monocyte/ Mφ -like cells (CD14+CD64+CD163+) and enriched
DCs (CD14−CD64−CD163−) have been compared in colonic draining MLNs of UC and CD
patients using bulk RNAseq [66]. The CD14+CD64+CD163+ population over-expresses, relative
to DCs, a mixed gene signature that best characterizes colonic CD163+ Mφ (MAFB/CSFR1/
C1QA/C1QB/ C1QC/MRC1/MAF/STAB1/SLCO2B1/FOLR2/FCGR3A/C2/VSIG4) and Infl Mo-like cells
(CD300E/ SERPINA1/FCN1/FPR1/S100A9/SLC11A1/THBS1/ IL1RN/PLAUR/ CCRL2/OLR1) in CD
patients [31]. Notably, the CD14+CD64+CD163+ subset did not display the gene signature of circulating
monocytes (SELL/CLEC4D/CD48 expression), whereas they shared molecular features with in vitro
human monocyte derived Mφ [59].

Taken together, examining the immune landscape of MNPs in MLNs revealed differences
between UC and CD (Figure 5). Future studies that combine scRNAseq, imaging and functional
studies are warranted to define the mechanisms that regulate the preferential expansion of CD163+

monocyte/Mφ-like cells in UC.

3. Contribution of Single-Cell Analysis in Establishment of Cell Networks and
Therapeutic Implications

Single-cell technologies have contributed to accurately redefining the nature of the cells present
in inflamed tissues. An additional interest lies in metadata-driven analysis that can be used to
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generate a comprehensive overview of cell networks potentially implicated in disease pathogenesis
(Figure 6). Using scRNAseq and multicolor mass cytometry, Martin et al. showed that the inflamed
ileal mucosa of a subset of CD patients displays a specific module defined by a group of cell subtypes,
whose frequencies are highly correlated across patients [34]. This module, i.e., GIMATS, comprises
IgG plasma cells, inflammatory Mφ/Mo-like cells, activated cDCs, highly activated T cells, and
activated stromal cells (fibroblast and ACKR1+ activated endothelial cells). Examining accessible
gene expression data using bulk RNA sequencing analysis obtained with a large cohort of pediatric
ileal CD patients (RISK), the GIMATS signature is able to predict a lower response to anti-TNFα
therapy. Using an algorithm predicting specific ligand–receptor pairs’ RNA expression, the authors
defined a ligand-receptor activity network in patients enriched or lacking the GIMATS module. It was
consequently inferred that this cellular network is possibly implicated in vivo in the inflammatory
process and resistance to therapy [34]. Similarly, using scRNAseq of inflamed mucosa in UC patients,
Smillie et al. reported an increase in several cell types, notably inflammatory monocytes, cDC2,
CD8+IL-17+ T cells, TNF-α+ T regulatory cells, IgG plasma cells, follicular cells, microfold M cells,
BEST4+ enterocytes, and IL13RA2+IL-11+ inflammation-associated fibroblasts (IAF) [45]. Comparing
their data with a meta-analysis of bulk expression data from responders and non-responders to
anti-TNFα therapy, the drug resistance signature was associated with enrichment in inflammatory
monocytes, cDC2, and IAF [45]. Since IAF was enriched in patients resistant to anti-TNFα therapies,
the authors concluded that IAF, which expresses the oncostatin M (OSM) receptor, may be implicated
in the OSM-mediated resistance to anti-TNFα reported by West et al. [71]. In an independent cohort
of UC patients, a disease core gene signature identified in rectal biopsies at baseline can predict
corticoid response and, overlap with gene signature previously associated with anti-TNFα and α4β7
response [72].
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(patients characteristics, investigation techniques combined with molecular and functional analysis
of biological samples) can potentially establish a comprehensive score that might ultimately offer
clinicians therapeutic perspectives for individual IBD patient.
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4. Conclusion and Future Perspectives

Single-cell technologies are revolutionizing tools that provide an unprecedented view of
nonimmune and immune cell networks implicated in health and disease. These technologies might
help to decipher the individual contribution of the different players potentially implicated in the
pathophysiology of complex diseases like IBD. They provide the potential to predict response to
therapy and offer a personalized medicine approach to a heterogeneous group of patients with IBD.
Advances in the development of novel therapeutic approaches, prediction of therapeutic responses,
optimization of individualized medicine, and ultimately disease prevention will highlight the relevance
of performing single-cell analysis for understanding the molecular basis of IBD. Before using this
information in clinics, we should be cautious to not draw early conclusions of data mainly driven by
powerful algorithms. Hence, mathematical modeling that proposes novel hypotheses (bottom-up) will
require functional validation and therefore should remain complementary to hypothesis-driven models
that lead to molecular data validation (top-down) to unravel IBD pathogenesis and offer translational
therapeutic perspectives [73] (Figure 6).
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