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The third dimension in river 
restoration: how anthropogenic 
disturbance changes boundary 
conditions for ecological mitigation
Martin Guzelj1*, Christoph Hauer2 & Gregory Egger3

The goals of the European Water Framework Directive changed the perspective on rivers from 
human to ecosystem-based river management. After decades of channelizing and damming rivers, 
restoration projects are applied with more or less successful outcomes. The anthropogenic influence 
put on rivers can change their physical parameters and result in a different morphological type of 
river. Using the Ammer River as an example, a comparison between applied systems of corridor 
determination based on historical maps and data; calculation of regime width; and the change in 
parameters and river typology are pointed out. The results showed (a) a change in stream power 
and morphology (b) great difference between the historical and the predicted river type and (c) that 
regulated rivers can have a near-natural morphology.

More than two thirds of rivers worldwide are highly impacted by human interference1.The impact of urbaniza-
tion on rivers has been described and identified as the “urban stream syndrome”2. Some of the main impacts 
during the last decades are protection and mitigation measures against flooding or land erosion3–5. As a result, 
rivers were channelized and/or straightened to be able to “control” water discharge in case of flooding1,6 with the 
highest priority being the creation of dams and levees7. For example, in Germany or in the USA, only about 2[%] 
of water bodies are still in a natural state8,9. Additionally, rivers have been used for water supply; transforming 
kinetic energy to electrical power10; transportation; and drainage of former wetlands for use for agriculture or 
settlements. All these factors have significant impacts on river morphology and ecological integrity of rivers10–13. 
However, when planning the use of water bodies for human needs ecological impacts were rarely considered8.

With the introduction of the European Water Framework Directive (WFD) a need to focus on a broader spec-
trum of functions of rivers is given as a good ecological status (GES) for rivers14 is requested with a basin wide 
approach15–17. As a higher level of water quality is required by 2021 (or 2027 at the latest15), restoration projects 
are taking place all through Europe. Despite EU directives, cultural differences in restoration trends have been 
observed throughout Europe18. Different restoration approaches19 had been developed on reach-scale or small-
scale basis, and established in the past19–23, with most following the theory that habitat heterogeneity leads to a 
higher biodiversity. However, this theory was rarely a consideration in the short or mid-term perspective10,24,25.

According to Shields26, small-scale restorations have a higher social acceptance than large-scale restorations, 
and are more cost effective, while reach-scaled projects show better ecological results related to river reha-
bilitation. Monitoring showed that not every rehabilitation method is suitable for every morphological type of 
river24,26–28. Measures being successful in the trout region may have not the same effect in lowland rivers. Pretty 
et al.24 pointed out that large scale restoration or habitat heterogeneity can have negative impacts (e.g. increase in 
bank erosion, change in water depth, incised channels, loss of flat water habitats) on fish habitats and local popu-
lations whereas morphologically-suitable measures can lead to an increase in species and populations23. Other 
approaches, such as re-meandering of straightened rivers, showed short-term increase in macro-invertebrates 
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but as the meanders were stabilized with boulders, the morphological effects of erosion and deposition were 
so limited that this effect faded after a few years10. The most sustainable biodiversity increase was derived from 
large-scale projects where morphological processes have been enhanced, rather than from small-scale, short-
term creation of in-stream habitats29,30.

Different methods to restore natural diversity in rivers are utilized depending on the aim of the projects 
(creating habitats for certain species, restoring the historical river pattern to reintroduce historical fauna, etc.)31. 
In most cases these projects attempt to utilise historical status (using two dimensional maps) to determine the 
space needed. Even though a lot of effort can be put into those projects, including construction work, excavating 
of former river shapes and beds26.

Some projects, such as the restoration of the Skjern river in Denmark22, focus on the re-installation of the 
historical riverbed. In this case, the entire riverbed was reverted to the historical flow path (by excavation). Pro-
jects like this require major re-construction and therefore have high costs, and take a long time to recover from 
construction work to full ecological functionality. Even if outcomes are successful, long-term disruption of the 
ecological functionality from the construction work need to be considered. Alternatively, this disturbance in the 
system can also be seen as part of the dynamic change to a river system and can lead to succession processes in 
vegetation and therefore enhance the entire ecological situation32.

In France, a process-based approach has proved to be successful on a larger scale. The “espace de liberté”33 
is based on the historical range of river transition. In this river restoration approach, a chosen section of the 
river is given a specific corridor where self-forming processes are responsible for channel formation and turn-
overs34,35. The concept is based on several parameters, including (1) the historical corridor, which is described by 
the width of the morphologically active river bed or bandwidth of the meandering sector and (2) the functional 
corridor width, which is the minimum corridor in which morphological processes can naturally establish. For 
the functional corridor, restrictions, due to buildings, settlements and infrastructure35,36, which have been built 
in the former riparian area, are subtracted from the historical area and added to the other (non-impacted) side 
of the river. For the concept of the “espace de liberté”, little anthropogenic mitigation is required, with only space 
for the self-forming processes requested.

The “espace de liberté” is not the only concept of its kind, nor is it the oldest in application. There are similar 
approaches in setting up corridors for river transitions throughout the world, including in northern India (which 
was already described in 190337), in the USA38 and in Europe39. In most of these cases, the river catchment and 
reaches were previously undisturbed. This implies that the river has retained basically the same morphological 
type for the last few decades.

As mentioned before, only about 2[%] of rivers in Germany are still in a “natural” condition. Therefore, 
approximately 98[%] are impacted or strongly affected by human alteration such as straightening, lowering of 
the riverbed, alteration of banks (in meander bends) and other factors. One question arising is the impact of 
anthropogenic pressures on riverine landscapes and floodplains. For example the Tagliamento River in northern 
Italy shows a local difference in morphological patterns where pressure is applied to the riverbed by gravel min-
ing and a forced narrowing by levees39.

The classifications of morphological river patterns40 are based on characteristic physical parameters including 
e.g. (1) channel width and depth, (2) flow velocity, (3) slope and parameters concerning, (4) bed material and (5) 
sediment load. If one or more of these parameters change, the river morphology response will change as well.

Various studies regarding river restoration projects have assessed that most restoration projects throughout 
the world have had little success (or have failed) due to too little understanding of the geomorphological and 
hydraulic processes, of changed conditions in riverbeds or discharge patterns, or of ecological interaction between 
biota-fauna and the mentioned processes19. Even though maps can be used to determine both the width of the 
riparian area and historical river types, very little information about the parameters used for river morphology 
is given by these26,41. Maps usually show only the two-dimensional spatial location of the riverbed, but lack 
information about grain size, erodible material, changes in slope or channel discharge capacity42.

There has been a call for scientific assessment of project areas that shows the current state of the site and 
helps practitioners to choose the right approach based on the actual situation on site rather than on historical 
approaches27,30,43–45. However, this has not yet been implemented in a reliable or practical way. Thus based on 
the lack of knowledge regarding various concepts in river restoration, the following research question has been 
formulated for this article:

How important are changes in the physical variables of high flows (e.g. flow velocity, stream power, bed shear 
stress) due to channel modification for a successful prediction and implementation of river restoration concepts? 
As side-effects the uncertainties in state-of-the-art concepts for corridor determination were highlighted and 
targets for future research suggested.

The research questions were tested at the Ammer River/Germany. At this river (1) historical data is well 
known, and (2) significant human alterations are evidenced along the river section. This makes the river an 
interesting case study to test both research questions. Different restoration concepts like the “espace de liberté”33 
and development corridor46 were applied, in which the required hydraulic parameters for flood dynamics were 
derived by hydrodynamic-numerical modelling. For the determination of the river type, remaining oxbows and 
the actual riverbed were measured and compared to see if there is a difference in parameters47,48.

Site description.  The Ammer River drains a catchment of 600[km2]49. Starting as Linder at the border 
between Austria and Germany (47°33′50″N 10°56′10″E) the river seeps into the karst and surfaces southeast 
of Oberammergau as Ammer springs. Over a length of 80[km], the Ammer River crosses various zones of the 
limestone Alps and the northern alpine foodhills before it flows into Lake Ammersee49. The research area is situ-
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ated between Peißenberg (47°46′34.2″N 11°03′15.5″E) at the end of the Ammer Gorge and the Ammer Delta 
(47°56′52.2″N 11°08′02.0″E) (Fig. 1). 

Based in the middle of the South German Molasse Basin (SGMB)50, the Lake Ammersee basin was formed 
by glacial movement. The main waterbody in this area is the name-giving Lake Ammersee, which is a pre-alpine 
lake. The Ammer River is the main river in the investigated catchment. It has alpine characteristics, with high 
amounts of sediments. The lake was already partially naturally filled by gravel, sand and clay as alluvial parts, as 
well as lake sediments and turf51–55. The Ammer valley is dominated by kalkpaternia soiltype on top of limestone 
sands and gravel. According to the Bavarian Institute for Agriculture, the gravel layer starts at about 0.5 to 1[m] 
depth56. According to the data provided by Copernicus Land Monitoring Service (CLMS) the research area is 
dominantly of agricultural land use (grassland 50.1[%], forest areas 23.1[%] and cropland 13.7[%]) and urban 
areas (13.0[%]).

The nival and sub-alpine characteristic of the runoff regime is described as mainly rainfall-induced high flood 
events in summer, and low water levels in winter (see Table 1)46. The permanent gauging station of Weilheim59 

Figure 1.   Location of the Ammer River catchment with research area marked and the channelized river-section 
indicated by levees along the research section on Ammer River (Sources:57, edited with ArcMap 10.458).

Table 1.   Average discharge and calculated flood annuities with correlating discharge values for the gauging 
station Weilheim for the period from 1925 to 2018. NQ low flow discharge, MNQ mean low flow discharge, 
MQ mean discharge, MHQ mean highflow event, HQmax maximum discharge60.

Gauging station Weilheim Discharge values HQT

NQ = 26 m3 s−1 HQ1 = 120 m3 s−1

MNQ = 56 m3 s−1 HQ2 = 150 m3 s−1

MQ = 153 m3 s−1 HQ5 = 205 m3 s−1

MHQ = 164 m3 s−1 HQ10 = 255 m3 s−1

HQmax = 649 m3 s−1 HQ20 = 315 m3 s−1

HQ50 = 410 m3 s−1

HQ100 = 480 m3 s−1

HQ1000 = 750 m3 s−1
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is situated in the section chosen for the analysis. The mean daily discharge records of the station go back to 
192560. The average discharge and the annuity values derived from the WWA Weilheim are presented in Table 1.

The first recorded modifications (e.g. outlets for mills) in the Ammer catchment took place in the early six-
teenth century. The first morphological modifications of river bends were undertaken in mid-nineteenth century 
to ease the transport of wood logs. However, the main engineering measures took place between 1920 and 1937, 
e.g. straightening and the construction of levees. Between 1920 and 1924, the river mouth into Lake Ammersee 
was “reconstructed” as part of the straightening program for flood protection. At the time, the location was 
changed from the western part of the bay (47°56′24.2″N 11°07′05.6″E) to the village of Fischen (47°56′13.9″N 
11°08′31.7″E). The main goal of the construction work in the late 1930s was to create work for the people and 
was not really based on flood control issues. This had special impact on the flood protection scheme upstream 
of Weilheim. The entire flow path between the city of Weilheim and Lake Ammersee was reduced from 25[km] 
to about 13[km] by channel rectification. Alongside the main channel, the swamp and turf areas were drained 
to gain more agricultural land and to be able to harvest the turf. The river bed was lowered to ensure drainage 
throughout the year49.

According to the GIS platform of the Bavarian Ministry for Digitalisation, Broadband and Surveying, and 
the WWA Weilheim, almost the whole section is channelized with levees57 (as shown in Fig. 1). The levees are 
part of the applied flood protection scheme which is constructed to the extension of HQ300 highflood event 
according to the WWA Weilheim.

Methodology
The methods applied in this study are based on: (1) analysis of historical maps to derive the former riparian area, 
followed by (2) analyses of the physical parameters described earlier. Additionally, (3) hydrodynamic-numerical 
modelling has been used to assess changes of the in-stream parameters such as stream power, flow depth and 
bankfull discharge. This was later compared to the historical channel characteristics and the straightened, regu-
lated river section. As a final step (4) the morphological type of the river was determined using DaSilva’s and 
Jäggi’s classification based on the data derived from the comparison.

Analysis of historical corridors.  The aim of the presented study was to investigate the range of complex-
ity needed for the determination of river corridors in terms of restoration based on self-forming processes. 
The study increases in complexity of analysis from the “traditional” analysis of historical maps, to methods, 
which included the “third-dimension” of channel characterisation, including hydrodynamic-numerical mod-
elling (Fig. 2). In the following section, the methods of the determination of the various corridors (graphical 
and calculated) are presented. First, (1) the graphical approach has been used as defined in the concept of the 

Figure 2.   Work flow diagram with input data needed for (1) graphical approaches (historical corridor and 
historical maps used as basis) (2) development corridor approach (riverbed width and classification of rivers53) 
and (3) the 3 dimensional approach with morphological type characterization.
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“espace de liberté” suggested to define the historical corridor, while (2) the calculated development corridor 
from governmental suggestions for practitioners has been used to derive the functional corridor. Next (3) the 
hydraulic-geometry-based approaches were used to include the third-dimension for the first time in the analysis 
to determine first and second order erosional corridors, and finally (4) channel patterns are predicted based on 
the results of (3), which may evolve due to the erosional width of the first and second order channel changes.

Graphical analysis: two dimensional approach.  The concept of “espace de liberté” is based on the idea 
that the river should restore itself with very little human interference within the limits of the historically active 
channel and floodplains (compare Fig. 2)35. To address the questions mentioned before, historical maps of the 
river section between Peißenberg and the river mouth into Lake Ammersee have been gathered and analysed. 
Maps available from the State Library of Bavaria61 were used to assess the flowpath of the historical Ammer 
River. The maps were geo-referenced with ArcGIS on a multipoint basis to each other in a first step and later on 
with the actual digital elevation model (DEM). To be able to reference the maps, intersections on roads as well as 
landmarks and building structures were taken into account. Special focus was set on maps in which the river was 
shown in a way which represents the morphological patterns along its flow path. With this restriction, the result-
ing maps chosen for further analysis (Fig. 3) were from the years (1) 184261 as the earliest map, (2) 190261 as the 
map before the first straightening, (3) 193062 and (4) 194163 as last historical map due to the highly changed flow 
path. Examples of the maps are shown in Fig. 3. The centreline of the historical river path was used in combina-
tion with the measured width of the remaining undisturbed oxbows. The centrelines were buffered in ArcGIS 
and the outer parts of the river bends connected with a polygon. Those maps are crucial for the definition of 
the historic morphological corridor Chist which defines the maximum extension for the “espace de liberté”, the 
former river shape and the morphological processes. It also is an indicator of the riparian area which previously 
surrounded the river.

Developing corridor: two dimensional approach.  In 2014, the German Ministry for Environment 
published a guideline (as part of the WFD goals), in which each river in Germany is assigned into one of 21 
classes53. For each class, typical characteristics, morphological shapes and cross-sectional appearance of a natu-

Figure 3.   Historical maps of Ammer region 190261, 193062, 194163 (12.11.2019) used for determination of 
the historical shift of the riverbed showing the alteration by human interference due to regulation and flood 
protection schemes.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:13106  | https://doi.org/10.1038/s41598-020-69796-0

www.nature.com/scientificreports/

ral state river are explained and defined. According to Dahm et  al.46 the Ammer River is part of the Lime-
stone Alps rivers. For the minimum and maximum developing corridor (Wdev_min and Wdev_max) the average 
constructed riverbed width Wconstr had to be calculated by using geometrical data from observations of current 
anthropogenically-modified status (Fig. 2). According to the advice of the German Ministry for Environment, 
for rivers in the limestone alps region46 the single steps are:

whereas Wnat_pot stands for the potential natural riverbed width which is calculated from Wconstr. Charrier (2012) 
suggests to use ten times the bankfull width as an equilibrium width for the “espace de liberté”, which equals 
Wdev_min

64. This calculated width was applied as a buffer zone in ArcGIS to the actual river line to define the 
corridors.

By overlaying the (1) historical corridor, (2) the actual waterbody (including main channel and remaining 
oxbows) and the Wdev_min and Wdev_max corridors, the functional corridor is defined as the intersected area. Going 
on from the resulting polygon, industrial and settlement areas as well as infrastructure were subtracted in ArcGIS 
and the resulting area is the theoretical corridor the river would need for its natural development.

Hydraulic: geometry equations: three dimensional approach.  Deriving from the regime theory, 
which is based on the idea that a morphologically active flood erodes in all directions up to a natural equilibrium 
width, various authors set up empiric formulas to calculate the final extension of the riverbed (Fig. 2). For the 
presented study it was necessary to apply these formulas from opening up a regulated channel to the status of the 
full development of a riverbed which can be divided into primary and secondary erosion. The later explained 
formulas after Yalin (1992) and Ashmore (2001) were chosen due to the fact that the parameters for the setup 
best suit the existing data from field research. Values used for calculating derived from: (1) flood statistics for 
HQ1; (2) the numerical model for the bank full discharge HQbf and the slope J; and (3) sampling data for the 
median diameter of the top layer of the bed material.

Corridor of primary erosion.  After the removal of stabilizing elements, the river channel widens but remains 
“straight” meaning the morphological type of river remains. This process is known as primary erosion. The main 
factors are the discharge (Q) and the grain size (e.g. d50). The resulting width is the equilibrium width (beql) in 
meters65.

Ackers and Charlton66 discovered that depending on the discharge, rivers with lesser slopes (J < 0.3%) have 
a higher tendency to stop side erosion than rivers with greater slopes (J > 0.5%).

Corridor for secondary erosion.  As soon as the process of primary erosion has reached its maximum width, 
secondary erosion processes may occur. These processes are responsible for the formation of riverbed structures 
(ripples, banks, etc.) as well as for changes in the river profile (e.g. braiding, shifting islands). In literature, dif-
ferent formula can be found67–71. For this study, the formula after Ashmore (2001) was chosen due to the best 
accordance for the empirical setup of the formula and the onsite data.

with ρ [kg m−3] is the water density, g [m s−2] is gravity and Q [m3 s−1] equals the morphological active discharge 
(HQ1, HQ2).

The result shows the width of the eroded corridor and therefore the morphological active channel. This width 
has been used as input for the morphological type characterisation.

Morphological type characterisation: three dimensional approach.  It was necessary to evaluate 
if present boundary conditions of channel formation fit with the historical channel characteristics. Bathymetric 
data have been collected for the years 2004 and 2009. These data of the regulated river were further compared to 
the historical (unregulated) situation by measuring the bathymetry of the historic river bed (see Fig. 3) derived 
from remaining oxbows. Therefore, irregular distanced cross-sections (n = 7,384 including interpolated cross-
sections) were placed in the Digital Elevation Model (DEM) and were cut through the channelized river section 
and the remaining oxbows along the research area. The average degradation for 3 sections was determined by 
measuring the height difference between the lowest points. The 3 sections are geographically based: (1) Peißen-
berg (47°46′45.6″N 11°04′27.9″E), (2) Unterhausen (47°51′44.8″N 11°08′32.1″E), and (3) Vorderfischen at the 
outlet to the former river bed (47°55′30.7″N 11°08′44.9″E). The data from the DEM (derived from the high flood 
model) had been edited from LIDAR data, but did not reflect the historical situation in an adequate way. At the 
sections of Unterhausen (47°51′36.5″N 11°08′45.6″E) and around Pähl (47°91′35.1″N 11°14′97.9″E), additional 
cross sections (n = 23) were gathered with nine cross-sections in the first section and 14 along three oxbows 

(1)Wnat_pot = 5Wconstr

(2)Wdev_min = 2Wnat_pot

(3)Wdev_max = 5Wnatpot

(4)beql = 1.42 ·

√

Q

u∗
= 1.5 ·

Q0.5

d0.25m

(5)beq,sec = 0.0098 ·
(

ρ · g · Q · J
)0.7777

· d−0.7
50
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further downstream. This was necessary as the oxbows had been prone to siltation over the last decades due to 
material input from small tributaries72. To be able to determine the historical slope and other relevant param-
eters, it was important that the data gathered reflect the situation before the river regulation. Therefore the points 
collected were measured from the former gravel bed though the layers of accumulated fine materials73,74. The 
siltation layers were not part of the research for this paper.

In a second step (Fig. 2), and for the definition of the morphological channel types, the measured and pre-
dicted parameters were analysed according to Jäggi (1983) and DaSilva (1991) to be able to compare the historical 
river type and resulting river pattern due to the onsite measured parameters resulting in X, Y, Z and the slope J. 
For the regime width, a substitutional cross-section was calculated by linear extrapolation:

where b represents the water surface width and h is the flow depth.
The correlation between X, Y, Z and J, and the resulting morphological type of rivers are shown in Figs. 4 

and 5. While the definition after Zarn and DaSilva was used to define the pattern with the current parameters, 
Jäggi’s diagram was used to analyse the resulting pattern in more detail. This diagram defines the threshold 
level between a straight river with no banks, single channel river with alternating banks, and a multi-channel or 
braided river as shown in the graph (Fig. 5). According to Jäggi (1983) there is a correlation between the slope 
J, the grain size, and the width of the wetted area (X)47.

Hydraulic modelling.  Hydrodynamic-numerical modelling was applied for the characterisation of channel 
development (approaches 3 and 4) and for analysing the impact of hydro-morphological parameters on river 
forming processes for the selected river section. Here, a one-dimensional hydrodynamic-numerical model was 
applied. One-dimensional interpretation of governing equations has found a widespread application in hydrau-
lic and environmental engineering76,77. The main equations on which 1D models are based are the principles of 
(1) mass balance (Eq. 9) and (2) the balance of momentum continuity (Eq. 10)78,79.

(6)X =
b

dm

(7)Y =
b

h

(8)Z =
h

dm

(9)
δAT

δt
+

δQ

δx
− ql = 0

Figure 4.   Modified morphological river pattern diagram after DaSilva (1991) and Zarn for determining river 
characterization on behalf of discharge, flow depth and the width of the wetted area (compare75).
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where Q(x,t) = discharge [m3 s−1], AT = cross-sectional area [m2], ql = lateral inflow per unit length [m2 s−1].

where Sf = friction slope [−], z = water surface [m] (equal to z0 + h (water depth of control volume)), V = control 
volume [m3], g = gravitational acceleration [ms−2].

For the analysis, the one-dimensional unsteady flow model HEC-RAS was used. The model was chosen 
because of its capabilities for sub-/supercritical modelling80 and multifunctional parameter analysis for chan-
nel flow. The modelling package HEC-RAS uses the 1D St. Venant equation to calculate open channel flow, 
based on a four-point implicit finite difference scheme, allowing modelling over larger time steps than explicit 
numerical schemes 80. For the applied one-dimensional approach, phenomena such as the Coriolis force have 
been neglected.

Using software bankfull discharge capacity [m3 s−1], flow velocity [ms−1], the specific stream power [Nm−1 s−1], 
as well as the slope of the riverbed [-] on the reach-scale were calculated. For modelling, a representative section 
close to Unterhausen was chosen (47°51′33.2″N 11°08′31.1″E upstream–47°51′48.8″N 11°08′34.6″E downstream) 
including both, the historical bathymetry and the regulated existing one.

Bed material.  Grain size distribution is one of the controlling factors in river morphology81. Samples to 
determine the grain size distribution were collected at four stations (Peißenberg, Oderding, Unterhausen, 
Vorderfischen) and one sample was taken out of the oxbow at Unterhausen. To receive representative data, the 
material was collected in a low water period in early spring (2017). On all sections, a surface layer and a sub-
surface layer sample was collected. The samples were taken from gravel bars in the river and analysed at the lab 
of the University for Life Science, Vienna. The resulting grain size distributions were used to determine the d50 or 
dm, which is used for the calculations as well for the corridors as the river type pattern. In combination with the 
samples of bed material taken in each of the modelling sections, the actual situation on the river can be properly 
described. The grain size distribution of the samples and the hydraulic characterization by various parameters in 
the section were also the basis for the determination of the evolving river type.

Hydrology.  The gauging station of Weilheim is situated within the research area. The discharge has been 
recorded since 1925. To define the current situation and to analyse possible trends in discharge, the available 
dataset (1926–2017) was taken into account for the hydrological situation. The method of the cumulative devia-
tion of the mean was applied to compare single years and seasons82. The average of the whole time series as a 
constant (c) is subtracted from each value (xj). The results are accumulated for the timescale to be analysed 
(seasonal, yearly or for decades) and plotted on the original time scale82.

(10)
δQ

δt
+

δQV

δx
+ gA

(

δz

δx
+ Sf

)

= 0

Figure 5.   Diagram after Jäggi (1983) for the determination of river types between straight river, single channel 
and multi-channel rivers47.
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Based on mean daily discharge values, analyses were performed for the yearly period as well as for the seasonal 
discharge behaviour. The results of the analysis were used to investigate possible trends for the future extrapola-
tion of discharge patterns for the evolving river morphology in the simulation.

The discharge values applied to the hydrodynamic-numerical model are the main characteristic discharges 
(1) NQ, (2) MQ, (3) HQ1 (Table 1) and (4) bankfull discharge, which has also to be determined from the HN-
model in combination with the data collected from the oxbow (historic situation). The bankfull capacity for the 
main channel has been defined at the height of the surrounding overbank areas and not the full capacity of the 
regulated section with levees.

Results
Analysis of historical corridor.  Changes of the Ammer River and the morphological constraint due to 
anthropogenic interference over the decades are shown in Fig. 3a. Displayed in the map are two main stages of 
river history—which are: (1) 1,840 river course as a “near natural” state and (2) 1937 after the main construction 
work was done and the river had its present shape. Our analysis enabled us to identify three river sections with 
different characteristics. Stretch one is from Peißenberg to Polling. Here a relatively straight, smoothly bending 
river form can be seen. For the next section downstream from Polling to Wielenbach, the river shows a pattern 
of meandering/bending with stretched meanders. Further downstream the meandering type dominates, with a 
high winding rate along the flow path to the river mouth.

The 1937 river course is similar to the 1,840 path for the first section (Peißenberg to Polling). Here the river-
bed remained mostly unchanged and seems to be stabilized. Further downstream, all bends were cut off and the 
river became a mostly-straight smoothly winding river along the old river bed. The final change can be seen at 
Fischen, where the river channel has been constructed straight into the lake. As result of the historical analysis, 
the corridor definition can be seen as the simplest form of determining boundaries for self-forming channel 
development. The corridor was defined by the 1,840 river path and the remaining oxbows. While being relatively 
narrow for the first section (150–200 m), it widens to its maximum width around Weilheim (750–850 m) and 
narrows again at the beginning of the strongly winding part (200–250 m). As shown in Fig. 6a, the new entrance 

(11)Si =

i
∑

j=1

(xj − c)

Figure 6.   (a) Displaying the two main steps in changes of the river’s course (1840/1937) and the historical 
corridor; (b) functional developing corridors (min. 320 m/max. 800 m) calculated after Dahm et. al.46 for the 
river bed of 2012 with settlement areas as restrictions. The winding part, found in both pictures, is the historic 
flow-path while the corrected path is rather straight. The maps were created with ArcMap 10.4 (https​://www.
esri.de/landi​ngpag​es/arcgi​s-10-4).

https://www.esri.de/landingpages/arcgis-10-4
https://www.esri.de/landingpages/arcgis-10-4
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into the lake is completely out of this corridor. It can be seen that even though it is in an almost natural state, the 
river corridors vary by a factor of about 3 to 4 and at least 3 sections have to be defined.

Developing corridor: two dimensional approach.  The basis of the developing corridor (after Dahm 
et. al.46) is the constructed riverbed width Wconstr. The result of the analysis of 15 cross sections along the whole 
research area derived from the 1D hydrodynamic-numerical model showed an average value of Wconstr = 32[m] 
(Standard Deviation = 39[m]) between the levees. Following the formula (Eqs. 1–3) the three buffering zones are: 
(1) Wnat_pot = 160[m]; (2) Wdev_min = 320[m]; and (3) Wdev_max = 800[m]. As can be seen in Fig. 6b, main restric-
tions are found at the areas of Peißenberg, Oderding and Weilheim, with the highest impact given by settlement 
areas on both sides of the river.

Hydraulic: geometry equations: three dimensional approach.  Assuming a natural discharge 
capacity of around the annual flood event HQ1 = 120 [m3 s−1] as the in-bed structure forming flood event has 
been chosen. For the main channel, the bankfull discharge was set to HQbf = 280[m3 s−1], the simulation with 
the historic riverbed showed a maximum discharge of HQbf_hist = 125[m3 s−1] and therefore this value has been 
used. The remaining input values for the modelling and analysis of the main channel are described in Table 2.

The results show that the slopes vary only by 0.32[‰] comparing the channel parameters between Peißenberg 
and Weilheim. The d50 decreases from 78 to 12[mm] in downstream direction (Fig. 2). However, the slope of 
the historic riverbed in the area of Unterhausen steepened by about 600[%]. This increase of gradient is partly 
due to the correction of the river, and partly due to excavation to drain the land. A direct effect on the riverbed 
change due to increased shear stress as following up effect with this increase cannot be reported. This might be 
due to weirs and similar constructions.

Calculating the corridors for the assumed historical bed forming discharge (HQ1) and for the maximum 
morphologically active discharge (Qbf), the resulting corridors for the primary erosion at Peißenberg are 31[m] 
for bHQ1 and 47.5[m] for the bankfull discharge (bHQbf). At Unterhausen, further downstream, the bHQ1 is cal-
culated 49.6[m] and bHQbf has a predicted value of 75.8[m]. It can be seen that the variation in discharge by the 
factor of fdischarge = 2.3 leads to increase of the width by the factor of fwidth_Q = 1.53 for both sections. The change 
in slope (fslope = 1.1) and bed material from 0.078[m] to 0.012[m] (fsediment = 6.5) results in a wider corridor by the 
factor of fwidth_bed = 1.6 at the same discharge.

For the resulting width of the channel (beq,sec) after the river type forming processes, the formula for secondary 
erosion after Ashmore (2001) was used. The same discharges as for the primary processes were applied. Using 
Eq. (5) for the upstream section at Peißenberg, the resulting widths are beq,secHQ1 = 36.4[m] and beq,secHQbf = 70.3[m] 
whereas for the part downstream of Weilheim beq,secHQ1 = 124.7[m] and beq,secHQbf = 241[m] are calculated. For 
the secondary equilibrium width, results showed that the influence given by bed material and slope is much 
higher than the influence given through the change in discharge. The discharge factor changes to fwidth_Q = 1.9 
and the factor for riverbed parameters to fwidth_bed = 3.4. The comparison between the initial erosion and the result 
shows that the maximum difference between bHQbf and beq,secHQbf can be found in Unterhausen with a predicted 
ΔbQbf = 165.2[m], while for the Peißenberg it is ΔbQbf = 22.8[m]. A similar result can be seen for ΔbHQ1 with its 
maximum value of ΔbHQ1 = 75.1[m] in Unterhausen and the lower value of ΔbHQ1 = 5.4[m] at Peißenberg.

Morphological type characterisation: three dimensional approach.  The morphological results 
can be divided into three pattern clusters as there are: (1) straight channel/slightly meandering, (2) alternating 
bars and (3) braided river (Fig. 7). In cluster (1), four river stretches with similar behaviour can be found. All 
of them are results of the morphological typisation at the area of Unterhausen. Two of them describe the on-
site situation, while the other two result from the analysis of the historical pattern. This means that without any 
changes in cross-section (such as widening), this would be the river’s “natural” form with the given boundary 
conditions. Thus, the Ammer River would be a straight river in this area with the parameters of today. For the 
historic riverbed, a straight to meandering river form is predicted. The resulting parameters X, Y and Z can be 
seen in Table 3 at the end of this chapter.

All of the points of the upstream section at Peißenberg are found in cluster (2). While the on-site parameters 
lead to results close to the threshold between straight and alternating bars, the regime width parameters lead to 
the result of an alternating bar river type. The diagram shows that even though the river is channelized in this 
area, the results for the equilibrium width and the on-site riverbed are similar.

In cluster (3) the results for the equilibrium width river for the section in Unterhausen are found in the 
braided river area. As opposed to the section close to Peißenberg, in Unterhausen the river types are different 
between the on-site situation and the forecast for the river type occurring in case of allowed erosion processes 
and unsecured riverbanks. While the results for the on-site parameters show a straight single channel form, 
the pattern for a river with equilibrium width shows a river form with a braided multichannel riverbed. For 

Table 2.   Input data for the calculation of the regime theory width derived from statistics (yearly flood event 
discharge (HQ1)); modeling approach (Bankfull Discharge (HQbf) and the slope J) and field samples (Sediment 
diameter (D)).

HQ1 [m3 s−1] HQbf [m3 s−1] HQbf_hist [m3 s−1] JUnterh [–] JPeißenb [–] Jhist [–] D50Unterh [m] D50Peißenb [m] D50hist [m]

120 280 125 0.00303 0.00335 0.00051 0.012 0.078 0.024
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discharges higher than HQ1, it demonstrates that the braided river system will be formed. At HQ1 or below, the 
probability for braiding systems is high, since the result for the river type at this discharge is at the threshold 
between alternating benches and braided system.

Similar to the morphological classification after DaSilva, the results for the in-bed structure analysis after 
Jäggi (Fig. 8) shows a single-channel with bank-forming processes for the Peißenberg section. This is valid for 
the actual situation given as well as for the forecast for a channel with equilibrium width. For both discharges, 
the results show great correlation with each other. The results for the main channel are on the border between 
a single thread riverbed and a riverbed with two active channels. This means that the channelled river shows 
a tendency to in-stream bars and islands. For the regime-width calculated, the results from DaSilva/Zarn are 
confirmed. While the channel structure for the bankfull discharge predicts a braided/multi-channel riverbed, 
the lower discharges (HQ1) are on the threshold level between the two channel system (river with alternating 
bars/islands) and a braided river area. For the historic river, the diagram shows a river with a single channel and 
no mentionable bars. The main factor for achieving this result is the low slope, whereas for the steeper sections, 
a variation in X has more impact on the result.

The results show that the calculated stream power for the sections and for the historical river reached only 
a maximum value of 625[W m−1] for the section north of Weilheim to Lake Ammersee, while the channelized 
river has now a maximum stream power of 9211[W m−1] at Peißenberg section and 8320[W m−1] at the area of 
Unterhausen. For the sector at Peißenberg, however, the stream power remained the same as if there had been no 
major changes in the river course. Thus, the stream power in the area of Unterhausen is now 13.3 times higher 
than it was historically, due to the increase in slope and discharge capacity of the river channel.

Bed material.  The sediment samples from the main channel showed a downstream fining of grain size 
related to bed stability, which allows the assumption of a continuing transport (Fig. 9). Moreover, the degrada-

Figure 7.   DaSilva-Diagram including the results for Peißenberg and Unterhausen main channel, and 
equilibrium width, historical.

Table 3.   X–Y–Z values calculated for HQ1 = 120[m3 s−1] and HQbf = 280[m3 s−1].

Scenario

Peißenberg Unterhausen

X Y Z X Y Z

Q = 120 m3 s−1

On-site 538.5 17.5 30.8 2,478 18.47 134

Equilibrium 468 21.11 22.1 10,333 109 95

Q = 280 m3 s−1

On-site 718 18.1 39 2,610 12.43 134

Equilibrium 897 33.3 27 20,000 174.9 115
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tion analysis showed that even though side erosion is prevented, the riverbed remained on a stable level over 
recent years, meaning that a balance in sediment supply and transport is given even without the additional input 
of side erosion.

Hydrology.  The discharge values since 1926 vary between 2.6 and 535[m2 s−1] as maximum daily average 
(peak discharge was 649[m2 s−1]). The average discharge used as constant value for c (Eq. 11) was calculated as 
15.51[m2 s−1]. The cumulative deviations from the mean for the seasonal patterns also vary on an almost yearly 
basis in discharges and show no definite trend (Fig. 10).

Discussion
River restoration is a highly complex field for planners, which is shown by the high rate of failure in projects 
throughout the world10,26. For restoring self-forming processes of a river, however, available space is the main 
criteria83. In literature and governmental guidelines, various ways are found to determine the corridor which is 
necessary for a river to be able to develop a natural morpho-dynamic status6,34,46. While Dahm et al.46 in Germany 
determines the development corridor based on the present (mostly anthropogenic changed) river width and 
factors depending on the geological and geographical area, the French approach with the “espace de liberté”34 
is based on the historically active channel and riparian area of the river, the width of the active riverbed and 

Figure 8.   Diagram after Jäggi for in-stream morphology including results of calculations for Peißenberg and 
Unterhausen main channel, and equilibrium width.

Figure 9.   Grain size distribution along the research site at Ammer River (Bavaria/Germany) sampling sides 
(n = 5) from upstream (SL 1/SSL 1) to downstream (SL 4/SSL 4) and from the oxbow at Unterhausen (SL OB/
SSL OB); x-axis shows grain size in [mm] y-axis the percentage in the samples.
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the determination of a minimum functional corridor. Dahm et al.46 also shows a high variation between the 
minimum value of 320[m] and the maximum of 800[m] width for the corridor.

While the “espace de liberté” shows a variation in spatial distribution according to the historical shape, the 
functional corridor after Dahm is calculated for the areas with similar bed width. In case of channelized rivers, as 
the Ammer is, this applied approach can be used for the whole reach without any differentiation along the river’s 
course. As can be seen from the historical corridor, in a natural state the river width changes over the length of 
a river course and therefore two values which are applied on the whole stretch of a reach are not representative 
of the natural variation in spatial demand.

Moreover, neither system takes the on-site parameters into account. Alterations in the surrounding areas 
or human impacts made such as (1) increase in slope by straightening or (2) an increase in stream power due 
to higher maximum discharge are not considered. Even though a river needs space to develop, in settlement 
areas and areas with intensive agricultural use, available areas are scarce13,84 and former riparian areas are under 
human use37,84. Due to this limitation, the calculation of the active channel based on the 2-D data, and the 3-D 
analysis of river morphology and hydraulics, was compared in the presented study. The results show that under 
certain circumstances (section Peißenberg) the river with its actual shape in the channelized bed is close to the 
morphological type based on unregulated free-flowing processes. The comparison between the actual width 
of the channel and the theoretical value shows that rather than the suggested minimum of 320[m] (e.g. after 
Dahm), a channel width of about 31[m] would be sufficient for an annual flooding (HQ1) to have enough space 
for the river to be morphologically active in a natural way. A 70[m] corridor (Ashmore formula) should provide 
enough space for a morphologically active system. Further downstream the situation changes slightly but it can 
also be seen that the equilibrium width is below the calculated width after Dahm et al.46. Here, it is predicted 
that the river would form a bed with a wetted area between 125 and 241[m] corridor width, while the results 
for the functional corridor is between 320 and 800[m]. However, the results have to be taken with care. There 
are also other factors to consider. Vegetation85,86 and erodible bank material69, which are important drivers, are 
not taken into account for the calculations. Eaton and Millar (2004) pointed out that rivers with erodible bank 
material have a strong tendency to be under-predicted by the regime theory approach. In areas with higher bank 
stability, the prediction is more suitable87.This means that if applying corridors on the river, an analysis of the 
erodible material in the overbank area should be done first, especially as the corridor may also be limited by 
constructional measurements in the overbank area.

Eaton and Millar (2004) also question the approach that predictions be made for one certain discharge value. 
The climate area (arid/humid) and related formative discharge (Qbf) can strongly vary in their re-occurrence 
interval88. There is also the given influence by climate change to discharge regimes. While changes in flow are 
reported throughout Europe (e.g.89), the CuSUM-Analysis for the Ammer catchment, however, shows no trend 
in either direction as shown in Fig. 9. This can be said for yearly changes in discharge as well as for seasonal dis-
charge patterns. This can be explained by the fact that besides the large weather systems (and probably changes), 
each smaller catchment can have its own local water cycle90. Thus, it can be stated that no trend can be determined 
on a long-term basis using historical time series for either changes in the past, and for forecasting purposes.

As pointed out in Kleinhans and van den Berg42 the river morphology depends on a high number of fac-
tors and the interactions between them. Therefore, simplifications to measurable parameters have to be taken 

Figure 10.   CuSUM yearly average, standardized to the yearly average the discharge series analysed showing no 
trend in long-term trend in discharge for the Ammer River catchment.
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into account when it comes to determination and prediction of river patterns. The analysis with two different 
approaches (DaSilva and Jäggi) was used for this paper as they slightly vary in their parameters. Comparing the 
scenarios, all results in the diagrams show good correlation for the predictions between the approaches. For the 
Peißenberg section, the scenarios show that the actual situation and the equilibrium width after secondary ero-
sion are almost the same. This means that this section is, even though highly impacted with bank stabilisation 
and levees, still in a near-nature status concerning riverbed morphology. In this area the geological boundaries 
also allow the estimation of an area with high bank stability and therefore the channel width calculated can be 
seen as accurate87.

The analysis of the actual stream power pointed out that the energy within the river at a bankfull discharge 
is currently 13.3 times higher than it was historically. These are important findings for the boundaries in river 
restoration, which can only be determined due the 3-D analysis of river bathymetry and the related flow hydrau-
lics. These results underline the importance of the ´third dimension in river restoration´. The increase in energy 
is given by (1) the increase in slope from historically 0.000510[m/m] to 0.00303[m/m]—and (2) the increase in 
discharge from Qbf = 125[m3 s−1] to Qbf = 280[m3 s−1]. Here, the discharge of 280[m3 s−1] was already a reduced 
value as it should be comparable with the former natural state of the river. According to this data, it can be said 
that the energy potential in the research area in Unterhausen has changed its characteristics from a lowland 
river to a highly active system. Such analysis is missing or can´t be derived in a 2-D analysis. The high values of 
the main channel indicate that depending on bank stability, the erosion potential is also 13.3 times larger than it 
used to be in the historic river, and is too high for the development of a meandering system (e.g.91). Xu points out 
that the threshold level between braiding and meandering depends on stream power and D50 along with other 
factors. The historical maps show that before the straightening and regulation, the Ammer River had a strong 
tendency for meandering along most of its reach downstream of Weilheim (2D-analysis).

The analysis of the remaining structures in the landscape and the DEM showed the same result, but the 
on-site parameters lead to the result of a straight to slightly bending type confirmed by the diagram after Jäggi 
(3D-analysis including riverbed incision over decades). Sensitivity analyses showed that changes in D50 to a 
smaller grain size, however, are resulting in a meandering characterisation. As transport capacity is too high and 
hydraulic boundary conditions have been changed this is not possible. The formation of a predicted braided river 
reach in parts of the study sites, however, implies the availability of sediment and the continuity of the transport 
which applies to the research site92–95.

According to the aims of the WFD, it is discussed that the river should be set back to its historic “reference 
condition”, which would mean to revert the Ammer River back to the historic bed. Studies about the changes 
in river morphology on a long-term basis show that this static approach should be reconsidered as rivers are a 
highly dynamic system, which changes depending on the supply of water and sediment96–98. In this case it has 
been proved that partial restoration to a meandering river would not be successful due to the changes in the 
system. Rather than putting high effort into construction work to restore the historic situation, the chance should 
be taken to morphologically reactivate. As well as being more cost-effective, this would also bring an advantage 
to the whole ecological system. New succession areas for pioneer vegetation can be created, there may be avail-
able habitat for gravel-breeding birds above the water level and gravel spawning fish, which need highly active 
areas, can be improved, with new habitats created99. Therefore, the approach of “reconstruction of historical 
rivers” should be questioned and reconsidered. Morphologically-active channels lead to high habitat diversity 
and therefore a larger bio-diversity on one site, while also having possible positive impacts on the flood situation.

Conclusion
Rivers in industrialized countries are under anthropogenic pressure and there is a high demand for restoration 
projects to reach the aims of the WFD. A high percentage of the restoration throughout the world shows little 
or no success from an eco-morphological point of view. According to literature, the high rate of failure is based 
on a shortcoming of knowledge of hydro-morphological dynamic processes and a “2-dimensional” planning. 
Many re-meandering projects are based on historical maps, while not taking into account that the parameters 
on-site have changed due to human interference. There are slope, grain size, maximum or bankfull discharge 
factors and therefore changes to flow depth and width of the channel and the stream power. Using the exam-
ple of the Ammer River, changes in the parameters have been analysed and compared between the historical 
and the current situation. To derive the historical riverbed, maps from 1,840 to 2017 were geo-referenced and 
overlaid and additional data in the remaining sections collected. Concepts to determine the necessary corridor 
for morphological development for the river were compared. Systems like the “espace de liberté” from France 
or the development corridor from Germany are based on historical patterns and have a great variety in their 
values and are hard to apply in populated areas. The calculation of the regime width showed that less space for 
a functional riverbed would be needed and is based on the actual parameters. Therefore it is more suitable for 
highly impacted river systems but requires more effort on-site. Analysis of a DEM and the data collected in the 
main channel was used to determine the situation given, and further processed in a 1D numerical model. The 
comparison of the parameters showed, that for one part of the research area, parameters strongly changed and 
therefore the morphological type of the river changed. Especially, changes in slope, discharge capacity and stream 
power are crucial. While still in a near-nature state (even though regulated and channelized in the upstream part), 
the Ammer River would change from a single-channel meandering type to a braiding river further downstream 
if it were given enough space to reach equilibrium width. The example also showed that parameters can change 
along a river stretch and restoration concepts for one section might not be suitable for another section (especially 
when they change in morphological type).
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These results are valid for this specific case at this one river. The methodology applied only focuses on the river 
morphology and does not take into account the space needed for a fully-functional riparian zone, even though 
the riverbed is not fully covered with water all the time and creates space for primary succession.
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