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Laura Bortolotti‡ and Antonio Nanetti‡

CREA Research Centre for Agriculture and Environment, Bologna, Italy

Diseases contribute to the decline of pollinator populations, which may be aggravated by
the interspecific transmission of honey bee pests and pathogens. Flowers increase the
risk of transmission, as they expose the pollinators to infections during the foraging
activity. In this study, both the prevalence and abundance of 21 honey bee pathogens (11
viruses, 4 bacteria, 3 fungi, and 3 trypanosomatids) were assessed in the flower-visiting
entomofauna sampled from March to September 2021 in seven sites in the two North-
Italian regions, Emilia-Romagna and Piedmont. A total of 1,028 specimens were collected,
identified, and analysed. Of the twenty-one pathogens that were searched for, only
thirteen were detected. Altogether, the prevalence of the positive individuals reached
63.9%, withNosema ceranae, deformed wing virus (DWV), and chronic bee paralysis virus
(CBPV) as the most prevalent pathogens. In general, the pathogen abundance averaged
5.15 * 106 copies, with CBPV, N. ceranae, and black queen cell virus (BQCV) as the most
abundant pathogens, with 8.63, 1.58, and 0.48 * 107 copies, respectively. All the detected
viruses were found to be replicative. The sequence analysis indicated that the same
genetic variant was circulating in a specific site or region, suggesting that interspecific
transmission events among honey bees and wild pollinators are possible. Frequently, N.
ceranae and DWV were found to co-infect the same individual. The circulation of honey
bee pathogens in wild pollinators was never investigated before in Italy. Our study resulted
in the unprecedented detection of 72 wild pollinator species as potential hosts of honey
bee pathogens. Those results encourage the implementation of monitoring actions aiming
to improve our understanding of the environmental implications of such interspecific
transmission events, which is pivotal to embracing a One Health approach to
pollinators’ welfare.

Keywords: wild bees, pollinators, pathogen transmission, managed honey bees, honey bee pathogens, Hymenoptera,
biodiversity, spillover
INTRODUCTION

Pollination is a pivotal ecosystem service to both natural and agricultural environments. Its global
economic value is estimated to be on the order of hundreds of billions of dollars per year (Porto
et al., 2020). That adds to an invaluable intrinsic contribution to biodiversity (Senapathi et al., 2015).
Thus, the decline of pollinator populations is receiving increased attention, with a focus on the role
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played by pesticides (O’Neal et al., 2018; Siviter et al., 2018;
Hrynko et al., 2021), habitat fragmentation (Hung et al., 2021;
Librán-Embid et al., 2021), climatic change (Schenk et al., 2018;
Duchenne et al., 2020; Cane, 2021), and urbanisation (Fortel,
2014; Choate et al., 2018; Hofmann and Renner, 2020; Wenzel
et al., 2020). While the occurrence of interspecific food
competition events between wild species and managed honey
bee (Apis mellifera) colonies are still debated (Tscharntke and
Steffan-Dewenter, 2000; Wojcik et al., 2018; Rasmussen et al.,
2021), little is known about the interspecific transmission of
pathogens between honey bees and wild pollinators (Nanetti
et al., 2021a). This last point is crucial, as the welfare of A.
mellifera colonies depends on apicultural management, the
associated economic value of apiculture (Ballantyne et al.,
2017; Khalifa et al., 2021), and the equilibrium of the
ecosystem in which honey bees live.

Interspecific pathogen transmission may occur with
arthropods sharing the same environment as the honey bees.
The main routes between established and new hosts include direct
contact, orofecal exchanges, and the ingestion of pollen
contaminated with pathogens (Singh et al., 2010; Cilia et al.,
2021; Tehel et al., 2022). The infection may also occur during
foraging via contact with pathogen-contaminated pollen, nectar,
and floral organs (Chen et al., 2006a; Mazzei et al., 2014; Graystock
et al., 2015; Alger et al., 2019b; Schittny et al., 2020). Wasps and
hornets predating infected bees (Yañez et al., 2012; Forzan et al.,
2017; Mazzei et al., 2018; Mazzei et al., 2019) and ants
cannibalising their corpses (Sébastien et al., 2015; Cooling et al.,
2017; Gruber et al., 2017) are likely to get infected. Interspecific
transmission may affect also organisms that are not expected to
come into direct contact with the honey bees, like spiders and
beetles (Yue et al., 2007; Erler et al., 2012; Levitt et al., 2013).

Several studies have aimed at elucidating pathogen dynamics
beyond interspecific transmission. Bees are considered the most
efficient pollinators (Ballantyne et al., 2017). As many pollinators
exploit the same floral resources as honey bees, horizontal
transmission of pathogens, especially honey bee pathogens
(Dalmon et al. , 2021), becomes possible with other
Hymenoptera species (Santamaria et al., 2018; Purkiss and
Lach, 2019; Gusachenko et al., 2020; Ocepek et al., 2021), other
pollinators (Bailes et al., 2018), and other arthropods (Nanetti
et al., 2021a). Considering the importance of wild pollinators and
the adaptive plasticity of pathogens transmitted via regular
flower visits (Burnham et al., 2021; Cohen et al., 2022; Manley
et al., 2019), our understanding of both ecosystem health and its
impact on pollinator decline requires increased research on the
interspecific interactions occurring in these ecosystems. The
increasing number of studies reporting honey bee pathogens in
other host species portrays a scenario consisting of one reservoir
species and multiple spillover events.

Population studies might elucidate those aspects (Benjamin-
Chung et al., 2018) that, in the case of wild bees, are complicated
by those species’ peculiar biological and ecological characteristics
(Koh et al., 2016; Drossart and Gérard, 2020; Prendergast et al.,
2020). This makes spillover routes generally unknown and
undetermined (Yañez et al., 2020).
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This study was conducted within a nationwide Italian
monitoring project on wild bees (BeeNet project). We aimed to
investigate both the occurrence and circulation of the main
honey bee pathogens in the wild pollinators of two North-
Italian regions, contributing to assessing the risk of possible
interspecific transmission and spillover.
MATERIAL AND METHODS

Sampling
Seven sites were chosen (Figure 1) for this study on the occurrence
of honey bee pathogens in northern Italy. The geographical and
environmental characteristics of each site are reported in Table 1.
This study is part of a wider project to monitor wild bees, which
aims to compare the communities of these pollinators in different
agroecosystems; therefore, the locations were chosen a priori by the
project. Two Land Cover Categories were identified based on the
management of the agricultural areas: intensive (category 2.1.1—
Agricultural areas, non-irrigated arable land) and semi-natural
land (category 2.4.3—Heterogeneous agricultural areas, land
principally occupied by agriculture, with significant areas of
natural vegetation). Finally, a site in the urban area
corresponding to the CREA-AA research centre was added and
included in category 1.2.1.3 (Industrial, commercial, and
transport units).

Sampling sites were located in agricultural agroecosystems
with different management practices; both intensively farmed
areas and cultivated ones fragmented by natural elements were
investigated. All sampling was carried out in field margins, or
other landscape elements such as hedges and meadows, but
always contiguous to cultivated areas.

Sampling was carried out once a month, from March to
September 2021. At each site, an area with a high abundance of
entomophilous plant species in anthesis was chosen to ensure
that floral resources were sufficient and in high enough
abundance to support a pollinator community with high
species diversity. The sampling was conducted on sunny and
non-windy days, with an average temperature above 15°C.

Sampling focused on wild bees, but honey bees, hoverflies,
flies, wasps, and beetles were also collected when caught in the
same sweep net action because they were on the same flowers as
the targeted bees.

Pollinators were collected by one collector using the sweep net
technique during one effective hour of sampling, stopping the
timer at each catch. Each specimen was placed, depending on its
size, in a sterile single 2-ml microtube or 15-ml tube. The tubes
containing captured individuals were then placed in a cooler bag
with freezer packs until arrival at the laboratory, where all the
specimens were identified.

Taxonomic Identification
On each sampling day, captured flower visitors were placed at −80°C
for 30min, after which they were identified to species level whenever
possible, otherwise at the genus level. Identification was performed
under a stereomicroscope, placing the individual in a Styrofoam
June 2022 | Volume 12 | Article 907489
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container with dry ice to not degrade the RNA. After identification,
samples were stored at −80°C until the analysis.

Extraction of Nucleic Acids
Before extraction, all samples were washed with 95% ethanol to
remove external microbial contaminations, and each sample was
analysed individually. The sample was placed in a 2-ml
microtube with 500 µl of DNA/RNA Shield (Zymo Research,
Irvine, CA, USA) and crushed with a TissueLyser II (Qiagen,
Hilden, Germany) for 3 min at 30 Hz, as previously reported
(Cilia et al., 2019; Nanetti et al., 2021b). The obtained
suspensions were split into two aliquots from which DNA and
RNA were separately extracted.
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The above-described procedures were accomplished by using
a Quick DNA Microprep Plus Kit (Zymo Research) and Quick
RNA Microprep Plus Kit (Zymo Research), respectively,
following the modified manufacturer’s instructions for solid
tissue processing (Mazzei et al., 2019; Nanetti et al., 2021c).

The obtained nucleic acids were eluted in 50 µl of DNAase-
Rnase-free water, and the extracts were stored at −80°C until the
qPCR assays.

Real-Time Quantitative Assays to Detect
DNA Pathogens
The extracted DNAwas analysed using Real-Time PCR to quantify
the abundance of detected bacteria and trypanosomatids in the
TABLE 1 | Geographical and environmental characterisation of the sites included in the study.

Site Agroecosystem Region City Coordinates WGS84 CLC a.s.l.

PIAI Intensive Piedmont Cherasco (CN) 44°40′24.64″N; 7°48′44.93″E 2.1.1.1 293
m

PIES Semi-natural Piedmont Zona di Salvaguardia dei Boschi e Rocche del Roero, Baroli (CN) 44°46′32.88″N; 7°51′10.84″E 2.4.3 346
m

CREA Urban Emilia-
Romagna

Bologna (BO) 44°31′26.31”N; 11°21′3.23”E 1.2.1.3 36 m

ERAI Intensive Emilia-
Romagna

Massa Castello (RA); 44°15′51.21”N; 12°8′13.52”E 2.1.1.1 14 m

ERMO Semi-natural Emilia-
Romagna

Monzuno (BO) 44°16′51.05”N; 11°16′
56.23”E

2.4.3 630
m

ERESP Semi-natural Emilia-
Romagna

Parco Regionale dei Gessi Bolognesi e Calanchi dell’Abbadessa
(BO)

44°25′39.08″N; 11°23′58.62″
E

2.4.3 93 m

ERES Semi-natural Emilia-
Romagna

Rocca San Casciano (FC) 44°05′00.52″N; 11°51′00.18″
E

2.4.3 183
m

June 2022 | Volume 12
 | Article 9
CLC, CORINE Land Cover category; a.s.l., above sea level.
FIGURE 1 | Geographical localisation of the investigated sampling sites.
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samples, using the primers reported in Table 2. For each target, a
total reaction volume of 15 µl was prepared as previously described
(Cilia et al., 2020) using PowerUp™ SYBR™ Green Master Mix
(Thermo Fisher, Waltham, MA, USA) with forward and reverse
primers (2 µM) and 3 µl of DNA extract. The Real-Time PCR assay
was performed on a QuantStudio™ 3 Real-Time PCR System
(Thermo Fisher Scientific), following the protocols for all gene
sequences (Dobbelaere et al., 2001; James and Skinner, 2005;
Martin-Hernandez et al., 2007; Roetschi et al., 2008; Meeus et al.,
2012; Huang et al., 2015; Arismendi et al., 2016; Cilia et al., 2018;
Xu et al., 2018). DNA previously extracted from positive honey bee
samples was used as positive controls. Sterile water was used as a
negative control in all analytical steps. All the analyses were
conducted in duplicate.

For each target, a standard curve was generated by amplifying
serially diluted recombinant plasmids containing the pathogen-
specific DNA fragment from 1 * 101 to 1 * 109 copies in a qPCR
assay on a QuantStudio™ 3 Real-Time PCR System (Thermo
Fisher Scientific), as previously reported (Cilia et al., 2020;
Nanetti et al., 2021c), following the amplification and
quantification protocols (Dobbelaere et al., 2001; Martin-
Hernandez et al., 2007; Roetschi et al., 2008; Arismendi et al.,
2016; Cilia et al., 2018; Xu et al., 2018).

Real-Time Quantitative Assays to Detect
Viral RNA
To quantify the virus abundance in the samples, all RNA extracts
were analysed through Real-Time PCR using Power SYBR™

Green Cells-to-CT™ Kit (Thermo Fisher Scientific), as
previously reported (Cilia et al., 2021). The primers used to
amplify the target honey bee viruses considered here are reported
in Table 3. The Real-Time PCR assay was performed on a
QuantStudio™ 3 Real-Time PCR System (Thermo Fisher
Scientific), following the protocols for each gene sequence.
RNA previously extracted from positive honey bees was used
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
as the positive control for each investigated virus. All the analyses
were conducted in duplicates.

For each target, a standard curve was generated by amplifying
the serially diluted recombinant plasmids containing the
pathogen-specific RNA fragment from 1 * 101 to 1 * 109 copies
in a qPCR assay on a QuantStudio™ 3 Real-Time PCR System
(Thermo Fisher Scientific), as previously reported (Mazzei et al.,
2019; Cilia et al., 2021), following the amplification and
quantification protocols (Chantawannakul et al., 2006; de
Miranda et al., 2010; Kajobe et al., 2010; Martin et al., 2012;
Hartmann et al., 2015; Garigliany et al., 2017; Mazzei et al., 2018).

Strand-Specific RT-PCR
The active replication of viruses was evaluated by performing
strand-specific RT-PCRs using specific primers, as previously
described (Mazzei et al., 2018; Nanetti et al., 2021b). Positive and
negative strands previously obtained from positive honey bees were
used as positive controls. The obtained cDNAs were amplified by
PCR for the viral targets, and the amplicons were visualised on a
2% agarose gel. Subsequently, the amplicons were sequenced (BMR
Genomics, Padua, Italy) and analysed using BLAST (Altschul
et al., 1990).

A phylogenetical analysis was performed on each viral
sequence deposited in GenBank using the maximum likelihood
method and Tamura–Nei model (Tamura et al., 2004) (Saitou
and Nei, 1987) associating taxa clustered together in the
bootstrap test (500 replicates) (Felsenstein, 1985). Evolutionary
analyses were conducted in MEGA X (Kumar et al., 2018).

Statistical Analysis
Pathogen prevalence among months, sites, and pollinator taxon
were analysed by a chi-square independence test. Since
contingency tables contained values <5 and were wider than 2
× 2, Fisher’s exact test could not be applied. A simulated p-value
was calculated based on 2,000 replicates.
TABLE 2 | List of primers used to detect fungi, bacteria, and trypanosomatids.

Target Primer name Sequence (5′–3′) Reference

Nosema ceranae Hsp70_F GGGATTACAAGTGCTTAGAGTGATT (Cilia et al., 2018)
Hsp70_R TGTCAAGCCCATAAGCAAGTG

Nosema apis 321APIS_F GGGGGCATGTCTTTGACGTACTATGTA (Martin-Hernandez et al., 2007)
321APIS_R GGGGGGCGTTTAAAATGTGAAACAACTATG

Paenibacillus larvae AFB-F CTTGTGTTTCTTTCGGGAGACGCCA (Dobbelaere et al., 2001)
AFB-R TCTTAGAGTGCCCACCTCTGCG

Melissococcus plutonius MelissoF CAGCTAGTCGGTTTGGTTCC (Roetschi et al., 2008)
MelissoR TTGGCTGTAGATAGAATTGACAAT

Crithidia mellificae Cmel_Cyt_b_F TAAATTCACTACCTCAAATTCAATAACATAATCAT (Xu et al., 2018)
Cmel_Cyt_b_R ATTTATTGTTGTAATCGGTTTTATTGGATATGT

Lotmaria passim Lp2F 459 AGGGATATTTAAACCCATCGAA (Arismendi et al., 2016)
Lp2R 459 ACCACAAGAGTACGGAATGC

Crithidia bombi C.bombi_119Fw CCAACGGTGAGCCGCATTCAGT (Huang et al., 2015)
C.bombi_119Rv CGCGTGTCGCCCAGAACATTGA

Ascosphaera apis A_apis_3-F1 TGTCTGTGCGGCTAGGTG (James and Skinner, 2005)
A_apis_3-R1 CCACTAGAAGTAAATGATGGTTAGA

Spiroplasma apis FW As-636F CGGGAGAATTTGTCCTATCG (Meeus et al., 2012)
REV As-636R CCCACTTTAACAATCGGGATG

Spiroplasma melliferum FW Ms-160F TTGCAAAAGCTGTTTTAGATGC (Meeus et al., 2012)
REV Ms-160R TGACCAGAAATGTTTGCTGAA
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The pathogen abundance was determined at the individual
level by averaging the two technical replicates of each PCR assay.
The results are reported in terms of average ± SD. The
abundance of 13 pathogens in wild bees and other pollinators
was also compared among months, sites, and taxa. Data were
tested first for normality using the Shapiro–Wilk test. Since the
normality check failed, data were analysed by a Kruskal–Wallis
test, followed by a pairwise Wilcoxon test with Bonferroni
correction as a post-hoc test. The significance threshold was set
at p = 0.05. All the analyses were performed with R version 4.1.2
(R Core Team, 2021).
RESULTS

A total of 1,028 flower-visiting insects were captured and analysed
altogether in the two considered Italian regions. The samples
included the following: Apoidea (N = 835), non-Apoidea
Hymenoptera (N = 68), Diptera (N = 107), and pollinators
belonging to other taxa (N = 18) (Table S1). The bee specimens
were recognised as follows: Halictus spp. (N = 166), Lasioglossum
spp. (N = 142), Bombus spp. (N = 134), Andrena spp. (N = 121),
Megachile spp. (N = 43), Anthidium spp. (N = 42), Eucera spp. (N =
34), Osmia spp. (N = 27), Chelostoma spp. (N = 20), Ceratina spp.
(N = 19), Hylaeus spp. (N = 14), Nomiapis diversipes (N = 13),
Heriades spp. (N = 12), A. mellifera (N = 12), Lithurgus cornutus (N
= 6), Xylocopa spp. (N = 4), Anthophora spp. (N = 3), Colletes spp.
(N = 3), Melitturga clavicornis (N = 3), Stelis breviscula (N = 3),
Systropha curvicornis (N = 3), Hoplitis spp. (N = 2), Habropoda
tarsata (N = 2), Icteranthidium laterale (N = 2), Epeolus spp. (N =
2), Pseudoanthidium scapulare (N = 1), Sphecodes alternatus (N =
1), and Dasypoda hirtipes (N = 1) (Table S1). The collected wasps
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
and hornets were found to belong to the following: Cerceris spp.
(N = 14), Polistes spp. (N = 12), and Vespula spp. (N = 4), plus a
number of other specimens belonging to other genera (N = 28). The
Diptera were classifies as Syrphus spp. (N = 16), Epistrphus spp.
(N = 18),Melanostoma spp. (N = 13), Sphaerophoria spp. (N = 11),
Eristalis spp. (N = 9), Bombylius spp. (N = 8), Chloromyia spp.
(N = 7),Villa spp. (N = 4), andVolucella spp. (N = 3), plus a number
other specimens belonging to other genera (N = 18) (Table S1).

Pathogen Prevalence
All the samples were negative for Israeli acute bee paralysis virus
(IAPV), Apis iridescent virus (AIV), slow paralysis virus (SBPV),
Moku virus, Nosema apis, Crithidia mellificae, Paenibacillus
larvae, and Melissococcus plutonius. Except for the viruses
mentioned above, all the other viruses were found to be
present in the analysed samples in their replicative form (i.e.,
negative strand) (Figure 2).

A total of 712 of the sampled individuals were positive for at
least one pathogen (69.3%). Altogether, Nosema ceranae,
deformed wing virus (DWV), and chronic bee paralysis virus
(CBPV) were the three most prevalent pathogens (16.1%, 15.7%,
and 9.5%, respectively). Lower prevalence was observed for black
queen cell virus (BQCV), acute bee paralysis virus (ABPV), sac
brood virus (SBV), Crithidia bombi, Spiroplasma melliferum,
Spiroplasma apis, AmFV, Kashmir bee virus (KBV), Lotmaria
passim, and Ascosphaera apis (6.7%, 5.5%, 5.4%, 3.0%, 2.7%,
2.1%, 1.5%, 0.7%, 0.2%, and 0.2%, respectively) (Table 4).

Considering all the sampling sites, Chelostoma spp. was found
to be frequently infected by DWV (50.0%) and L. passim (5.0%),
Episyrphus spp. by KBV (30.8%) and AmFV (7.7%), Anthidium
spp. by ABPV (11.9%),Heriades spp. and Ceratina spp. by CBPV
(25.0% and 21.1%, respectively), Polistes spp. by AmFV and SBV
TABLE 3 | List of primers used to detect viruses.

Target Primer name Sequence (5′–3′) Reference

KBV KBV 83F ACCAGGAAGTATTCCCATGGTAAG (Chantawannakul et al., 2006)
KBV 161R TGGAGCTATGGTTCCGTTCAG

DWV DWV Fw 8450 TGGCATGCCTTGTTCACCGT (Mazzei et al., 2018)
DWV Rev 8953 CGTGCAGCTCGATAGGATGCCA

ABPV APV 95F TCCTATATCGACGACGAAAGACAA (Chantawannakul et al., 2006)
APV 159R GCGCTTTAATTCCATCCAATTGA

IAPV IAPV B4S0427_R130M RCRTCAGTCGTCTTCCAGGT (Kajobe et al., 2010)
IAPV B4S0427_L17M CGAACTTGGTGACTTGARGG

BQCV BQCV 9195F GGTGCGGGAGATGATATGGA (Chantawannakul et al., 2006)
BQCV 8265R GCCGTCTGAGATGCATGAATAC

SBV SBV 311F 79 AAGTTGGAGGCGCGyAATTG (Chantawannakul et al., 2006)
SBV 380R CAAATGTCTTCTTACdAGAGGyAAGGATTG

CBPV CPV 304F 79 TCTGGCTCTGTCTTCGCAAA (Chantawannakul et al., 2006)
CPV 371R GATACCGTCGTCACCCTCATG

SBPV SPV 8383F 81 TGATTGGACTCGGCTTGCTA (de Miranda et al., 2010)
SPV 8456R CAAAATTTGCATAATCCCCAGTT

AmFV AmFV2-F ACCCAACCTTTTGCGAAGCGTT (Hartmann et al., 2015)
AmFV2-R ATGGGGCGTCTCGGGTAACCA

AIV AIV12F GGCTAGTAAACGTAGTGGATATGACAAT (Chantawannakul et al., 2006)
AIV106R CACCTGGTGGTCCAAGAGAAG

Moku virus MKVqF CTACAACGCACGCGAGTAGA (Garigliany et al., 2017)
MKVqR CCTTTCAAAGCAACGCTACC
June 2022
KBV, Kashmir bee virus; DWV, deformed wing virus; ABPV, acute bee paralysis virus; IAPV, Israeli acute bee paralysis virus; BQCV, black queen cell virus; SBV, sac brood virus; CBPV,
chronic bee paralysis virus; SBPV, slow paralysis virus; AmFV, Apis mellifera filamentous virus; AIV, Apis iridescent virus.
| Volume 12 | Article 907489

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Cilia et al. Bee Pathogen Spillover in North of Italy
(8.3% and 25.0%), Osmia spp. by SBV (18.5%), Bombus spp. by
BQCV (29.9%) and C. bombi (20.9%), Andrena spp. by BQCV
(22.3%) and S. melliferum (10.7%), Eristalis spp. by N. ceranae
(66.7%), and Melanostoma spp. by S. melliferum (7.7%)
(Table S2).

The pathogen prevalence statistically differed with sampling
site (c2 = 246.35, p < 0.001), genus (c2 = 615.48, p = 0.026), and
month (c2 = 237.81, p < 0.001).

Pathogen Abundance
In general, CBPV was the most abundant pathogen (8.63 * 107 ±
2.72 * 109), followed by N. ceranae (1.58 * 107 ± 3.56 * 108),
BQCV (4.84 * 106 ± 1.52 * 108), and DWV (8.40 * 105 ± 1.54 *
107) (Table S3). The same abundance trends were recorded in
each region and site (Table S3).

The highest abundance was found in Halictus scabiosae for
DWV (10 * 108), in Anthidium loti and Episyrphus balteatus for
KBV (10 * 105); in Halictus fulvipes, Andrena hattorfiana, and
Osmia bicornis for ABPV (10 * 106); in Eucera eucnemidea for
CBPV and SBV (10 * 1010 and 10 * 107, respectively); in Bombus
sylvarum for BQCV (10 * 109); in Anthidium florentinum and
Lasioglossum villosulum for AmFV (10 * 105); in H. fulvipes and
Bombus terrestris forN. ceranae (10 * 109); in Bombus pascuorum
and B. terrestris for C. bombi (10 * 107); in A. florentinum and E.
eucnemidea for S. apis (10 * 105); and in Halictus simplex and
Andrena distinguenda for S. melliferum (10 * 106) (Table S1).
Two individuals (Chelostoma rapunculi and Lasioglossum
malachurum) sampled in July in ERMO were positive for L.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
passim (10 * 103) (Table S1), while two individuals sampled in
July, H. simplex and Halictus cochlearitarsis, respectively, from
PIAI and ERES were found positive for A. apis (10 * 105)
(Table S1).

For all pathogens except CBPV, L. passim, and S. apis, the
host taxon, sampling site, and month were significant predictors
of abundance (Table 5). All three factors mentioned above were
significantly correlated with the abundance of DWV, BQCV, N.
ceranae, and C. bombi.

Virus abundance is shown in Figure S1. The results of a post-
hoc analysis are reported in Table S4. Briefly, the abundance of
DWV was significantly higher in A. mellifera, Megachile spp.
Chelostoma spp., Dasypoda spp., and Pseudoanthidium spp.
compared to Andrena spp. (p < 0.005). PIES and PIAI reported
the highest DWV abundance compared to ERESP (p < 0.005).
Episirphus spp. showed higher KBV abundance compared to
Halictus spp., Bombus spp., and Andrena spp. (p < 0.000),
whereas KBV abundance was higher in PIAI compared to ERES,
CREA, and PIES (p < 0.005). ABPV abundance was higher in
ERAI related to ERESP (p < 0.001). SBV abundance was
s ignificant ly lower in Andrena spp . compared to
Pseudoanthidium spp., Polistes spp., Osmia spp., Lithurgus spp.,
and Nomiapis spp. (p < 0.01). BQCV was significantly higher in
Bombus spp. than inAndrena spp.,Halictus spp., and Lasioglossum
spp. (p < 0.005), whereas in ERESP, a lower BQCV abundance was
detected compared to ERAI and ERMO (p < 0.05). Host genus,
sampling site, and month were not significant predictors of CBPV
and AmFV abundance (p > 0.05).
FIGURE 2 | Evidence of genomic and replicative DWV strands. Gel electrophoresis of strand-specific RT-PCR of the cDNA from 8 individuals: genomic strand (+)
and replicative strand (−). Positive control (C+): cDNA from replicative DWV of Apis mellifera workers. Negative control (C−): non-replicative DWV of A. mellifera
workers. N: DNA- and Rnase-free water. DWV, deformed wing virus.
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The abundance of DNA pathogens is shown in Figure S2.
The results of a post-hoc analysis are reported in Table S4.
Briefly, a higher N. ceranae abundance was recorded in Eristalis
spp. compared to Lasioglossum spp. and A. mellifera (p < 0.005),
while in PIES, its abundance was higher than that in ERESP and
ERMO (p < 0.05). The abundance of C. bombi was higher in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Bombus spp. than Halictus spp., Lasioglossum spp., and Andrena
spp. (p < 0.001), with significantly higher values in ERMO
compared to ERES and PIES (p < 0.005). S. melliferum was
significantly less abundant in ERMO than in ERESP (p < 0.005).
Host genus, sampling site, and month were not significant
predictors of L. passim and S. apis abundance (p > 0.05).
TABLE 4 | Prevalence of the positive samples per order or genus (ranked in alphabetical order) for the investigated pathogens (complete data are provided in Table S1).

Order/genus No.
samples

DWV KBV ABPV CBPV AmFV SBV BQCV Nosema
ceranae

Lotmaria
passim

Crithidia
bombi

Spiroplasma
apis

Spiroplasma
melliferum

Ascosph
api

Bees

Andrena spp. 121 3.3% 9.9% 3.3% 0.8% 0 2.4% 22.3% 0 0 0 0 10.7% 0

Anthidium spp. 42 21.4% 2.4% 11.9% 19.1% 2.4% 4.8% 4.8% 26.2% 0 2.4% 7.1% 2.4% 0

Anthophora spp. 3 0 0 33.3% 0 0 0 0 0 0 0 0 0 0

Apis mellifera 12 50.0% 0 16.7% 16.7% 0 8.3% 0 50.0% 0 0 0 0 0

Bombus spp. 134 13.4% 0 4.8% 11.2% 1.5% 4.5% 26.9% 15.7% 0 20.9% 0 0.7% 0

Ceratina spp. 19 15.8% 0 0 21.1% 0 5.3% 10.5% 5.3% 0 0 0 0 0

Chelostoma spp. 20 50.0% 5.0% 0 0 0 0 0 5.0% 5.0% 0 0 0 0

Dasypoda spp. 1 100% 0 0 0 0 0 0 0 0 0 0 0 0

Epeolus spp. 2 0 0 0 0 0 0 0 100% 0 0 50.0% 0 0

Eucera spp. 34 17.6% 0 2.9% 17.6% 0 14.7% 11.8% 11.8% 0 5.9% 2.9& 0 0

Halictus spp. 166 18.7% 0 6.6% 13.9% 3.0% 7.8% 4.8% 21.1% 0 0 3.6% 4.2% 1.2%

Heriades spp. 12 16.7% 0 0 25.0% 0 8.3% 0 8.3% 0 0 0 0 0

Hoplitis spp. 2 50.0% 0 0 0 0 0 0 0 0 0 0 0 0

Hylaeus spp. 14 21.4% 0 0 7.14% 0 7.14% 0 7.14% 0 0 0 0 0

Lasioglossum
spp.

142 11.3% 0.7% 2.1% 7.0% 0.7% 4.9% 5.6% 7.7% 0.7% 0 5.6% 2.1% 0

Lithurgus spp. 6 0 0 16.7% 0 0 16.7% 16.7% 33.3% 0 0 0 0 0

Megachile spp. 43 27.9% 0 7.0% 11.6% 2.3% 4.7% 2.3% 11.6% 0 0 4.7% 2.3 0

Melitturga spp. 3 33.3% 0 0 33.3% 0 0 0 0 0 0 0 0 0

Nomiapis spp. 13 15.4% 0 7.7% 15.4% 0 15.4% 7.7% 38.5% 0 0 0 0 0

Osmia spp. 27 7.4% 0 7.4% 7.4% 0 18.5% 3.7% 11.1% 0 0 0 0 0

Pseudoanthidium
spp.

1 100% 0 0 0 0 100% 0 0 0 0 0 0 0

Stelis spp. 3 33.3% 0 33.3% 0 0 0 0 0 0 0 0 0 0

Systropha spp. 3 33.3% 0 0 0 0 0 0 0 0 0 0 0 0

Xylocopa spp. 4 25.0% 0 0 25.0% 0 0 0 0 0 0 0 0 0

Wasp

Cerceris spp. 14 25.7% 0 7.1% 0 0 7.1% 0 0 0 0 0 0 0

Polistes spp. 12 16.7% 0 8.3% 16.7% 8.3% 25.0% 0 16.7% 0 0 0 0 0

Vespula spp. 4 0 0 0 0 0 0 0 25.0% 0 0 0 0 0

Other wasps 35 14.3% 0 5.7% 2.9% 0 5.7% 0 14.3% 0 0 0 0 0

Flies

Bombylius spp. 8 0 0 0 0 0 12.5% 12.5% 12.5% 0 0 0 0 0

Episyrphus spp. 18 30.8% 30.8% 7.7% 0 7.7% 0 7.7% 38.5% 0 0 0 0 0

Eristalis spp. 9 22.2% 0 0 11.1% 0 0 0 66.7% 0 0 0 0 0

Melanostoma
spp.

13 23.1% 0 0 7.7% 0 0 0 0 0 0 0 7.7% 0

Syrphus spp. 16 25.0% 0 0 0 6.3% 0 0 18.6% 0 0 0 0 0

Other flies 42 16.7% 0 2.4% 14.3% 2.4% 2.4% 2.4% 9.5% 0 0 2.4% 2.4% 0

Other pollinators
Hymenoptera 11 0 0 18.2 0 0 0 0 9.1% 0 0 0 0 0

Coleoptera 18 11.1% 0 0 0 0 0 0 5.6% 0 0 0 0 0

Total 1,028 15.7% 0.7% 5.5% 9.5% 1.5% 5.4% 6.7% 16.1% 0.2% 3.0% 2.1% 2.7% 0.2%
J
une 2022 | Volu
me 12 | Article
aera
s

907489
In bold the total number of collected individual for each order/genus.
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Seasonal Trends
In March, a high prevalence of pathogens was detected, mainly
due to the frequent occurrence of both N. ceranae and DWV.
After a steep decrease, both N. ceranae and DWV resumed
increasing, reaching a peak in September. However, the overall
pathogen abundance peaked in July, after a steady increase
during the previous seasons (Figure 3).

Detailed post-hoc comparisons are reported in Table S4.
Statistical differences in pathogen abundance are shown in
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Figures S1, S2. Briefly, in March, a significantly higher
abundance of ABPV and N. ceranae was detected, whereas
the abundance of S. melliferum was significantly higher in
May. Also, the abundance of BQCV and C. bombi was
significantly higher in June, the abundance of DWV and SBV
was significantly higher in August, and the abundance of AmFV
was significantly higher in September. No significant differences
were observed for KBV, CBPV, L. passim, S. apis, and A. apis
(p > 0.05).
TABLE 5 | Significativity of the sampling site, taxon, and month of the collection as predictors of pathogen abundance (Kruskal–Wallis analysis).

Pathogen Site Taxon Month

DWV Chi-squared = 29.92, df = 6, p < 0.001 Chi-squared = 79.289, df = 34, p < 0.001 Chi-squared = 31.83, df = 7, p < 0.001
KBV Chi-squared = 41.68, df = 6, p < 0.001 Chi-squared = 121.58, df = 34, p < 0.001 Chi-squared = 11.613, df = 7, p > 0.05
ABPV Chi-squared = 17.112, df = 6, p = 0.008 Chi-squared = 32.524, df = 34, p > 0.05 Chi-squared = 27.903, df = 7 p < 0.001
CBPV Chi-squared = 6.6937, df = 6, p > 0.05 Chi-squared = 38.232, df = 34, p > 0.05 Chi-squared = 11.416, df = 7, p > 0.05
AmFV Chi-squared = 11.208, df = 6, p > 0.05 Chi-squared = 15.536, df = 34, p > 0.05 Chi-squared = 20.12, df = 7, p = 0.005
SBV Chi-squared = 12.328, df = 6, p > 0.05 Chi-squared = 59.843, df = 34, p < 0.001 Chi-squared = 35.073, df = 7, p < 0.001
BQCV Chi-squared = 41.245, df = 6, p < 0.001 Chi-squared = 98.875, df = 34, p < 0.001 Chi-squared = 39.953, df = 7, p < 0.001
Lotmaria passim Chi-squared = 7.7031, df = 6, p > 0.05 Chi-squared = 24.337, df = 34, p > 0.05 Chi-squared = 4.9827, df = 7, p > 0.05
Nosema ceranae Chi-squared = 26.165, df = 6, p < 0.001 Chi-squared = 77.389, df = 34, p < 0.001 Chi-squared = 28.383, df = 7, p < 0.001
Crithidia bombi Chi-squared = 40.988, df = 6, p < 0.001 Chi-squared = 152.09, df = 34, p < 0.001 Chi-squared = 37.703, df = 7, p < 0.001
Spiroplasma apis Chi-squared = 11.47, df = 6, p > 0.05 Chi-squared = 45.525, df = 34, p > 0.05 Chi-squared = 9.0193, df = 7, p > 0.05
Spiroplasma melliferum Chi-squared = 21.919, df = 6, p < 0.001 Chi-squared = 38.255, df = 34, p > 0.05 Chi-squared = 29.07, df = 7, p < 0.001
Ascosphaera apis Chi-squared = 13.894, df = 6, p = 0.03 Chi-squared = 9.1063, df = 34, p > 0.05 Chi-squared = 4.9827, df = 7, p > 0.05
Significant values are shown in bold.
FIGURE 3 | Pathogen prevalence (top) and abundance (bottom) throughout the sampling season (March–October) in wild species (left) and Apis mellifera (right).
Abundance is shown as a decimal logarithm.
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Virus Phylogenesis
The viral sequences were studied to elucidate possible structural
spatial and/or temporal similarities. All the sequenced viruses
isolated from the different pollinator species belonged to the
same strains. Comparing the positive individuals for each viral
sequence resulted in perfect homology. Therefore, the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
subsequent analyses were conducted at the level of the host
species rather than individually. All the viral sequences
were similar to the European virus sequences available
in GenBank.

All the sequences belonging to ABPV (n = 33) (Figure 4) and
AmFV (n = 14) (Figure 5) that were recognised in this study
FIGURE 4 | Maximum likelihood nucleotide phylogeny of ABPV capsid protein gene. This analysis involved 57 nucleotide sequences. There were a total of 879
positions in the final dataset. Only those with bootstrap > 50% are reported. Species and sampling sites are reported for the sequences identified in this study.
ABPV, acute bee paralysis virus.
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clustered in a large single clade. The sequences did not differ
among the various host species and sampling sites.

Two separate clades were identified for the KBV sequences (n =
4). One of them was associated with three isolates from ERMO
sites and the remaining with one PIAI site (Figure 6).

The detected CBPV sequences (n = 65) (Figure 7) and SBV
sequences (n = 37) (Figure 8) clustered in 6 clades each,
which were associated with different sampling sites. Both
CBPV and SBV sequences had complete homology for the
CREA and ERESP isolates.
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All DWV sequences (n = 86) belonged to the DWV-A strain,
which is the most frequent and the least virulent variant strain in
honey bees, and split into two regional clades (Emilia-Romagna
and Piedmont) (Figure 9). Exceptions to this observation were
two sequences from PIES (Melanostoma mellinum and L.
villosulum; bootstrap = 93%), H. simplex from CREA, and
Lasioglossum discum from ERESP (bootstrap = 97%).

The BQCV sequences (n = 34) clustered in 4 different clades
(Figure 10), including the isolates from ERES and ERAI, the sites
in the Piedmont region, CREA and ERESP, and ERMO.
FIGURE 5 | Maximum likelihood nucleotide phylogeny of AmFV BroN gene. This analysis involved 25 nucleotide sequences. There were a total of 896 positions in
the final dataset. Only those with bootstrap > 50% are reported. Species and sampling sites are reported for the sequences identified in this study.
FIGURE 6 | Maximum likelihood nucleotide phylogeny of KBV RNA polymerase gene. This analysis involved 11 nucleotide sequences. There were a total of 421
positions in the final dataset. Only those with bootstrap > 50% are reported. Species and sampling sites are reported for the sequences identified in this study. KBV,
Kashmir bee virus.
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FIGURE 7 | Maximum likelihood nucleotide phylogeny of CBPV RNA-dependent RNA-polymerase gene. This analysis involved 74 nucleotide sequences. There were
a total of 583 positions in the final dataset. Only those with bootstrap > 50% are reported. Species and sampling sites are reported for the sequences identified in
this study. CBPV, chronic bee paralysis virus.
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Co-Infections
Forty-five sampled specimens were found to be co-infected with
two or more pathogens. The most complex co-infections were
detected in two B. pascuorum individuals that were sampled in
PIES. One of them was positive for DWV, SBV, N. ceranae, and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
C. bombi, and the other was positive for CBPV, SBV, BQCV, and
N. ceranae (Table S1).

As reported in Figure 11, the most frequent co-infections
included N. ceranae, DWV, CBPV, SBV, and BQCV. Bombus
spp. and Halictus spp. were the two genera in which the highest
number of multiple infections was found.
FIGURE 8 | Maximum likelihood nucleotide phylogeny of SBV polyprotein gene. This analysis involved 63 nucleotide sequences. There were a total of 581 positions in the
final dataset. Only those with bootstrap > 50% are reported. Species and sampling sites are reported for the sequences identified in this study. SBV, sac brood virus.
June 2022 | Volume 12 | Article 907489
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FIGURE 9 | Maximum likelihood nucleotide phylogeny of DWV-A RNA-dependent RNA-polymerase gene. This involved 109 nucleotide sequences. There were a
total of 562 positions in the final dataset. Only those with bootstrap > 50% are reported. Species and sampling sites are reported for the sequences identified in this
study. DWV, deformed wing virus.
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DISCUSSION

This study was conducted in Italy and confirms that interspecific
transmission of pathogens between honey bees and wild
pollinators may occur, as reported previously for other
countries (Graystock et al., 2013b; Ravoet et al., 2014; Ngor
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
et al., 2020; Pritchard et al., 2021). To the best of our knowledge,
this topic has never before been approached in Italian surveys.

Table S6 shows the unprecedented detection of honey bee
pathogens in 72 wild bee species, which have shown the potential
to act as alternative hosts (Nanetti et al., 2021a). These findings
confirm that the considered pathogens show sufficient plasticity
FIGURE 10 | Maximum likelihood nucleotide phylogeny of BQCV polyprotein gene. This analysis involved 45 nucleotide sequences. There were a total of 701
positions in the final dataset. Only those with bootstrap > 50% are reported. Species and sampling sites are reported for the sequences identified in this study.
BQCV, black queen cell virus.
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to adapt to multiple hosts in nature and the potential to impact
the ecosystems involved. The viruses considered were found to
be replicative in positive individuals, confirming that their
adaptability to alternative host species may result in active
infections (Celle et al., 2008; Bailes et al., 2018).

However, our understanding of the pathogenicity of those
microorganisms in the alternative hosts is far from complete.
Unlike the wing deformations associated with DWV infections
in bumblebees, Vespa crabro and Vespa velutina (Genersch et al.,
2006; Forzan et al., 2017; Dalmon et al., 2019a; Cilia et al., 2021),
the examination of these insects sampled in this study did not
show known clinical symptoms that could be ascribed to the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
pathogens under consideration. This observation is not
astounding, as previous attempts to artificially infect
bumblebee individuals and other wild bees have resulted in
asymptomatic infections (Gusachenko et al . , 2020).
Nevertheless, artificial inoculations with viruses of the AKI
complex group (ABPV, KBV, and IAPV) have reduced the
reproductive success of bumblebees and increased the
mortality rate in the populations studied (Meeus et al., 2014;
Piot et al., 2015). For the time being, the available picture of
symptomatic, asymptomatic, and subclinical infections makes it
challenging to assess the real impact of honey bee pathogens on
the individual wild pollinator species and their communities.
FIGURE 11 | A visual schematisation of the subsample of pathogens that were involved in multiple infections related to their hosts. The arrow thickness denotes the
number of co-infections observed within the same host species.
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Overall, 69.3% of the individuals sampled in our study were
positive for at least one pathogen. That proportion is in line with
the prevalence observed in studies conducted in the United States
(66% and 80.4%) (Levitt et al., 2013; Dolezal et al., 2016) and in
France (79%) where overestimation may have occurred due to
pooled sample analysis (Dalmon et al., 2021).

The pathogens that were considered in our study have been
reported as transmissible by flowers and pollen (Alger et al.,
2019a; Yañez et al., 2020; Nanetti et al., 2021a). Pathogens born
by infected foragers (namely, A. mellifera) may persist on
flowers, where susceptible pollinators of other species may be
infected, with risk dependent on the number of floral visits
(Graystock et al., 2013a; Mazzei et al., 2014; Alger et al., 2019b;
Burnham et al., 2021).

In this study, DWV, N. ceranae, and CBPV were the
pathogens detected with the highest frequency. Likewise, both
DWV and microsporidia have been found in a broad range of
pollinators (Nanetti et al., 2021a), which implies adaptability to
the alternative hosts. As reported in other non-Apis hosts
(Forzan et al., 2017; Mazzei et al., 2018; Cilia et al., 2021;
Nanetti et al., 2021b), all the detected DWV sequences were
type A, which is known as a common and weakly virulent genetic
variant in honey bees (McMahon et al., 2016; Mordecai et al.,
2016). The frequent occurrence of CBPV could be related to an
increased prevalence of this virus in honey bees, which justifies
concerns about its agricultural and environmental consequences
(Vargas et al., 2017; Budge et al., 2020).

We consider of particular interest our results on L. passim and
KBV. Presently, scant information about the spread of
trypanosomatid infections in bees is available in Italy.
However, in northern Italy, L. passim has been recently found
both in apiary conditions of the Veneto region (Bordin et al.,
2022) and as e-DNA in honey samples from the Emilia-
Romagna region (Ribani et al., 2021). The epidemiological
picture is still incomplete; nonetheless, the detection of L.
passim in two of our wild bee samples collected in ERMO
corroborates the effective circulation of this trypanosomatid in
the environment. Similarly, the limited Italian reports about
KBV refer to central regions (one case in the Tuscany region
and two in the Latium region) (Cersini et al., 2013). Active
infections in our wild bee samples from ERMO and PIAI suggest
a broader spread of this honey bee virus. This finding
recommends the use of non-Apis species as potential
“sentinels” providing early epidemiological information about
the environmental KBV presence.

The average pathogen abundance measured in the wild
species considered in this study was lower than the threshold
(>1 * 106 copies) generally considered necessary for symptomatic
infection in honey bees (Chen et al., 2006b; Mazzei et al., 2014;
Martıń-Hernández et al., 2018; Cilia et al., 2020), though various
individuals exceeded this limit, and some of them reached 1 *
1010 genic copies. However, abundance does not provide
definitive epidemiological information, as the symptomatic
threshold is unknown yet for most pathogens and host species.

In general, the prevalence of the pathogens in this study
showed a seasonal peak in March, followed by a quick decrease
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16
and a subsequent gradual increase until late summer. The
cumulative abundance had a different trend, as it gradually
increased monthly to peak in July when a decrease proceeded
to reach a minimum in October. These results are in line with the
seasonal pattern the same pathogens show in the A. mellifera
colonies, where they often peak in spring/summer with a possible
return in the late season (Tentcheva et al., 2004; D’Alvise et al.,
2019; Dalmon et al., 2019b; Loeza-Concha et al., 2020; Chen
et al., 2021).

In March, the comparatively high prevalence of positive
samples was influenced by the frequent cases of N. ceranae. This
finding agrees with the infection dynamics often occurring in the
honey bees, where that pathogen may have an acute development
in early spring depending on the colony development (Ptaszyńska
et al., 2021; Ugolini et al., 2021; Formato et al., 2022). The
subsequent decrease in nosemosis suggests a dilution due to the
increased species richness, as previously reported for some viruses
(Fearon and Tibbetts, 2021); however, a similar dilution effect was
not common to all pathogens. The highest richness of pathogens
corresponded to the peak in abundance recorded in July. That
increase may be associated with both the development of the
honey bee colonies and the availability of floral resources. Indeed,
after the winter, the colony starts the growth of its population,
which is intended to peak in summer, with an increased
probability both of intra-colonial (Smith et al., 2013; Steinhauer
et al., 2018; D’Alvise et al., 2019; Chen et al., 2021) and
interspecific environmental transmission (Bartlett et al., 2019;
Wilfert, 2021). Furthermore, the reduced flower availability in
summer prompts pollinators to concentrate on the limited
resources available, increasing the probability of pathogen
exchanges among the potential host species.

Finally, our study showed repeated cases of co-infection in the
wild bee species, as already reported for A. mellifera and Aethina
tumida (Hung et al., 1995; Evans and Schwarz, 2011; Meeus et al.,
2014; Nanetti et al., 2021b). Multiple infections are common in
natural environments; nonetheless, we have a limited
understanding of the interactions occurring among the
involved pathogens (Armitage et al., 2022). Often, multiple
infections reduce pathogen virulence due to antagonism
(Garbutt et al., 2011), but in other cases, synergistic
interactions may increase virulence and reduce the host
lifespan (Clay and Rudolf, 2019; Armitage et al., 2022).
CONCLUSION

This study demonstrates the environmental circulation of honey
bee pathogens in the wild pollinating entomofauna present in
two different North-Italian regions. The presence of the
replicative forms of viruses affecting the honey bees suggests
effective interspecific transmission between A. mellifera and
alternate host species. To elucidate the effects of those
infections on wild pollinators, studies are needed on their
fitness, behaviour, mating and reproductive success, nesting,
pollen stores, and larval development. Spillover of honey bee
pathogens may have undetected yet important drawbacks to the
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health and functioning of an ecosystem. Health management of
honey bee colonies is of high importance in this context, and the
beekeepers should therefore undertake the consequent
responsibility of being an essential component of the One
Health concept (Wilfert et al., 2021).
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Supplementary Figure 1 | Virus abundance related to the site, month, and genus.
Data are presented log10 transformation for better visualization. Means are visualized
are red dots. Different number of asterisks indicate statistical differences from base
average: p-value<0.05 (*); p-value<0.01 (**); p-value<0.001 (***).

Supplementary Figure 2 | DNA pathogen abundance related to the site, month,
and genus. Data are presented log10 transformation for better visualization. Means
are visualized are red dots. Different number of asterisks indicate statistical differences
from base average: p-value<0.05 (*); p-value<0.01 (**); p-value<0.001 (***).

Supplementary Table 1 | Individual pathogen abundance of the collected
samples, grouped by genus, species, region, site, and month.

Supplementary Table 4 | Wilcoxon test results. Tables show the significativity level
of each paired test for each pathogen in different sites, months and genera. Only p-
values<0.05 are shown. All the other comparisons (not shown) have p-values>0.05.

Supplementary Table 5 | Accession number of viral sequences, deposited in
GenBank.

Supplementary Table 6 | Associations between wild bee species and honey bee
pathogens that were never described before.
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