
Cancer Medicine. 2022;11:4053–4069.	 ﻿	    |  4053wileyonlinelibrary.com/journal/cam4

Received: 27 November 2021  |  Revised: 4 March 2022  |  Accepted: 14 March 2022

DOI: 10.1002/cam4.4717  

M E T H O D

A practical framework RNMF for exploring the association 
between mutational signatures and genes using gene 
cumulative contribution abundance

Zhenzhang Li1,2,3  |   Haihua Liang1  |   Shaoan Zhang1,2  |   Wen Luo1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided 
the original work is properly cited.
© 2022 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

1College of Mathematics and Systems 
Science, Guangdong Polytechnic 
Normal University, Guangzhou, China
2School of Basic Medical Sciences, 
Guangzhou Medical University, 
Guangzhou, China
3Cloud and Gene AI Research Institute, 
Guangzhou, China

Correspondence
Haihua Liang, Shaoan Zhang and 
Wen Luo, College of Mathematics 
and Systems Science, Guangdong 
Polytechnic Normal University. No. 
293, Zhongshan Avenue West, Tianhe 
District, Guangzhou, 510665, China.
Email: lianghhgdin@126.com (H. L.); 
Email: zsagdut2016@yeah.net (S. Z.); 
Email: 526478063@qq.com (W. L.)

Funding information
Science and technology planning 
project of guangzhou, Grant/Award 
Number: 006259497026; The project 
of promoting research capabilities 
for key constructed disciplines in 
Guangdong Province, Grant/Award 
Number: 2021ZDJS028; The project of 
young creative talents of department 
education of Guangdong (Natural 
Science), Grant/Award Number: 
2019KQNCX067; The NNSF of China, 
NNSF of Guangdong Province (2021), 
Grant/Award Number: 11771101

Abstract
Background: Mutational signatures are somatic mutation patterns enriching op-
erational mutational processes, which can provide abundant information about 
the mechanism of cancer. However, understanding of the pathogenic biological 
processes is still limited, such as the association between mutational signatures 
and genes.
Methods: We developed a simple and practical R package called RNMF (https://
github.com/zhenz​hang-li/RNMF) for mutational signature analysis, including a 
key model of cumulative contribution abundance (CCA), which was designed 
to highlight the association between mutational signatures and genes and then 
applying it to a meta-analysis of 1073 individuals with esophageal squamous cell 
carcinoma (ESCC).
Results: We revealed a number of known and previously undescribed SBS or 
ID signatures, and we found that APOBEC signatures (SBS2* and SBS13*) 
were closely associated with PIK3CA mutation, especially the E545k mutation. 
Furthermore, we found that age signature is closely related to the frequent muta-
tion of TP53, of which R342* is highlighted due to strongly linked to age signature. 
In addition, the CCA matrix image data of genes in the signatures New, SBS3*, 
and SBS17b* were helpful for the preliminary evaluation of shortened survival 
outcome. These results can be extended to estimate the distribution of mutations 
or features, and study the potential impact of clinical factors.
Conclusions: In a word, RNMF can successfully achieve the correlation analy-
sis of mutational signatures and genes, proving a strong theoretical basis for the 
study of mutational processes during tumor development.

K E Y W O R D S

cumulative contribution abundance, esophageal squamous cell carcinoma, mutational 
signature, RNMF

www.wileyonlinelibrary.com/journal/cam4
mailto:﻿
mailto:﻿
mailto:﻿
http://creativecommons.org/licenses/by/4.0/
mailto:lianghhgdin@126.com
mailto:zsagdut2016@yeah.net
mailto:526478063@qq.com
https://github.com/zhenzhang-li/RNMF
https://github.com/zhenzhang-li/RNMF


4054  |      LI et al.

1   |   INTRODUCTION

The cancer genomes contain many mutations, which are 
derived from exogenous and endogenous mutational pro-
cesses that operate during the cell lineage.1 These muta-
tional processes are cumulative effects of DNA damage 
and repair processes, indicating unique patterns in tum-
origenesis, namely mutational signatures.2–5 Each muta-
tional process from a tumor may involve some particular 
signatures that their biological combination processes 
could induce a large number of mutations.6,7 Via study-
ing the completeness of these mutations and identifying 
the digital genomic footprints that contribute to the mu-
tation characteristics of tumors, we can not only reveal 
the potential mutational process information, understand 
the carcinogenic mechanism of tumor occurrence and 
development but also provide biomarkers for early diag-
nosis, accurate cancer stratification and clinical response 
prediction, and realize individual treatment strategies.8–13 
Analysis of mutational signatures may reveal previously 
unknown mutation mechanisms and mysterious environ-
mental exposure, such as herbal supplements containing 
aristolochic acid.13 However, understanding of the patho-
genic biological processes is still limited. Therefore, to 
systematically describe the mutational process leading to 
cancer, it is necessary to decipher the mutational signa-
tures from the somatic mutation catalog by using mathe-
matical statistical methods,14–23 the number of mutations 
that each feature in a single sample can be attributed to 
each feature, which annotate the probability of each mu-
tation class in each tumor and the possibility of each fea-
ture producing.

Currently, the final referenced mutational signatures 
are archived in the catalog of cancer of somatic mutations 
in cancer (COSMIC, https://cancer.sanger.ac.uk/cosmi​c/
signa​tures). Most of them are common in various tumors, 
of which are specific to a certain type of tumor, of which 
are part of normal cell biology, and of which are related 
to abnormal exposure or tumor progression.24–31 They 
may be attributed to known environmental exposure and 
mutation processes, such as tobacco smoke, ultraviolet 
radiation, the activity of the APOBEC series of cyclobu-
tylaminases, and DNA mismatch repair defects or muta-
tions in POLE. Besides, as known to us, the association 
between genes and mutational signatures was confirmed, 
and much focus were paid to study the role of hotspot mu-
tations in the formation of mutational signatures, which 
provides a good research idea for the mechanism of tu-
morigenesis and development. However, at present, there 
are few tools systematically and in-depth mining the re-
lationship between genes and mutational signatures,32,33 
which undoubtedly does not bring much convenience to 
the association between mutational signatures and genes.

Here, we first used the R language to design a simple 
and convenient package RNMF, which can directly start 
from the mutation data set to realize the correlation anal-
ysis of mutational signatures. Then, we pooled 1073 sam-
ples from Asian ESCC population, and then used RNMF 
to verify the practicability of this method framework. 
During the analysis, we highlighted interesting correla-
tions through association analysis with driving mutations. 
Finally, deep learning method is used to explore the cu-
mulative contribution abundance (CCA) matrix image 
data of gene under fixed features, and hierarchical learn-
ing of prognosis is done.

2   |   MATERIALS AND METHODS

2.1  |  Genomic data collection

All somatic mutations were initially collected from the 
supplementary data of six previous studies (Table  S1) 
comprising 1073 esophageal squamous cell carcinoma 
(ESCC) cases, including 508 genome-wide data and 565 
exon sequencing data.

2.2  |  R package link and parsing 
description

In the analysis process of this software, somatic variants 
can be imported from a Variant Call Format (VCF) file 
or a Mutation Annotation Format (MAF) file. Then it 
relies on the Bioconductor library, such as BS.genome.
Hsapiens.UCSC.hg19 or BS.genome.Hsapiens.UCSC.
hg38, to acquire an information matrix of mutation types 
(single-base substitutions [SBS], double-base substitu-
tions [DBS], and insertion and deletion mutation [ID]). 
Subsequently, the program extracts mutational signatures 
according to the generated data and finally obtains the re-
sult files. The R package is publicly available at https://
github.com/zhenz​hang-li/RNMF. The detailed document 
file also provides some examples of commands usage. In 
addition, scripts for running the package will also be pro-
vided in the R package.

2.3  |  Optimal mutational signature 
extraction framework

Alexandrov,15 an NMF software, was developed for de-
composing the characteristic map based on MATLAB 
language long before. Subsequently, there were some 
related programs developed based on R language, 
such as SomaticSignatures.16 However, these two 

https://cancer.sanger.ac.uk/cosmic/signatures)
https://cancer.sanger.ac.uk/cosmic/signatures)
https://github.com/LuoLicgigjs/RNMF
https://github.com/LuoLicgigjs/RNMF
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software only targeted SBS Signatures' analysis. Then 
SigProfilerExtractor, which was developed based on 
Python language, appeared, aiming to analyze the 
three characteristic maps such as SBS, DBS, and ID 
signatures. Quite fittingly, our designed RNMF soft-
ware provides the ability to obtain the count matrix of 
SBS, DBS, and ID directly from mutation data sets by 
a function interface. To connect the result format ob-
tained by this function more conveniently and select 
a more optimized initial value, we decided to build 
a new R interface based on NMF principle and gen-
erate the data result format required in downstream 
analysis. Therefore, based on the model definition 
in previous reports,34,35 we can obtain a classical for-
mula V  =  PS + E, which is used to extract the muta-
tional signatures in human cancers. In this equation, 
V refers to the observation matrix with size M × N, of 
which M represents the observed characteristics, and 
N is the number of samples. Supposing the number 
of mutational signatures is K, then we can estimate a 

non-negative mutational signature matrix P with size 
M × K and a non-negative abundance fractions matrix 
S with size K × N. Simultaneously, error matrix E that 
refers to nonsystematic errors and sampling noise is 
calculated during the processing.

For an observed mutational catalogs V, these K mu-
tational signatures could be extracted by denovoNMF 
(Figure 1) as following:

Step 1 (Capture random matrices): We randomly gen-
erate matrices P (P ≥ 0) and S (S ≥ 0). Ideally, for a muta-
tional signature, its components are basically fixed, so the 
sum of its standardized components is equal to 1; for one 
sample, the total of normalized abundance fractions for 
each mutational signature should be infinitely close to 1. 
Hence, here we require that 

∑
m
Pmk = 1,

∑
k
Skn = 1.

Step 2 (Optimize the initial value): We apply resa-
mpling to obtain a new matrix Ṽ

(
Ṽ ≈ V

)
 by using the 

Dirichlet distribution, and straighten matrices P and S by 
columns and then merge them into a solution vector x. An 
optimized objective function 

F I G U R E  1   Overview of RNMF workflows. The automatic process can start from inputting mutation data files in MAF or VCF format 
to generate the necessary mutation type matrix, including single-base substitution mutation types with 96 different contexts, 78 strand 
agnostic double-base substitution mutation types, and a compilation of 83 different types of small insertion and deletion (ID) mutation types. 
Next, the process can use two program interfaces (denovoNMF and InverseNMF) for signature analysis to get the mutational profiles. Then, 
according to the clinical grouping, non-silent mutation data and the list of genes to be studied, combined with P matrix and S matrix, the 
cumulative contribution abundance matrix of genes was calculated. At the same time, the corresponding image data are generated according 
to the specified order, and finally the training and analysis are carried out by machine learning or deep learning methods, so as to obtain the 
expected results



4056  |      LI et al.

min
P,S

E(P, S, �, �) = 1

2
‖V −PS‖2 + �

∑
i,j,i≠ j

PT
i
Pj + �

∑
i,j
Sij

which previously reported34 is used to find the best solu-
tion, where α and β are the parameters to control the ac-
celerated convergence. After smoothing x̃, the updated 
matrices P and S are restored according to the straighten-
ing rules. Finally, we generate a new initial mutational 
signature matrix P and a new initial abundance fraction 
matrix S through 20,000 iterations via referring to the pre-
vious implementation process.15

Step 3 (Re-updated the initial value): Perform Steps 1 
and 2 for I(I ≥ 5) iterations. Their errors generated by it-
erations are calculated by formula E = ‖V −PS‖2, and the 
results of the 5 items with the smallest error are selected. 
Then we apply the k-means36 algorithm to the set of matri-
ces P and S to cluster the data into K clusters, respectively. 
Subsequently, class-center P̃ and S̃ are obtained. Similar to 
Step 2, we straighten them to calculate the optimal solution 
space and finally gain the excellent initial value.

Step 4 (Rerun NMF): In this step, we still use the mul-
tiplicative update rules to generate the final matrix. The 
iterative model is as follows:

where γ is a parameter to control the accelerated 
convergence. Iterate until P and S convergence or 
until the maximum number of 100,000 iterations is 
reached.

Step 5 (Build a solution space): Repeat the process of 
steps 1 to 5 with Î

(
Î ≥ 20

)
 times to generate a solution 

space for all the value of K
(
K ∈ N+

)
. Then suitable se-

lection in this solution space using the  silhouette coeffi-
cient  measure and error gradient. The criteria we chose 
are as follows: 1) stable, without sudden decline or rela-
tively large gradient of descent and large width of confi-
dence interval and 2) small standard error term and the 
gradient of standard error between adjacent classes tends 
to be gentle.

After a series of analysis process, the final mutational 
profiles of each K clusters can be acquired. Follow the pre-
vious experience,20 we use the cosine similarity to deter-
mine the similarity between two mutational signature A 
and B.

2.4  |  Deriving the contribution of 
defined mutational signatures

At the same time, we also developed a reversible method 
named InverseNMF, which can identify mutational 

signatures within a small data set or a single tumor sam-
ple. Previous reports20,33 have confirmed the importance 
of such applications and provided another analytical strat-
egy for tumor characteristic map studies.

In this step, the P matrix is a user-defined matrix (such 
as the signature matrix provided by COSMIC), and then 
a feasible sample contribution matrix S can be estimated 
iteratively by observing matrix V. The iterative model is as 
follows:

where γ is a parameter to control the accelerated conver-
gence. Iterate until S convergence or until the maximum 
number of 100,000,000 iterations is reached.

2.5  |  Mutational signature operative 
in ESCC

We applied our framework to extract mutational signatures 
from 508 WGS samples of 1073 ESCC tumors. At the same 
time, the previously reported tool “SigProfilerExtractor”23 
was used to analyze the data. Finally, the similarity be-
tween the two results was analyzed (Figure  S1). Our 
framework optimizes the non negative matrix factoriza-
tion (NMF) algorithm and takes the change of silhouette 
coefficient and error gradient as the evaluation index of 
feature number selection (Figure S2). Here, the threshold 
is set to 0.9.

To analyze and explore the potential features of exons 
of 1073 ESCC samples, We used COSMIC Mutational 
Signatures (v3.2 -  March 2021 and v2.0 -  March 2015) 
and mutational signals extracted from 508 WGS data as 
the background to obtain the number of mutations in 
each mutational signatures. Based on the results of three 
single base mutation data sets (508-WGS cohort renames 
as WGS508, exon region of 508-WGS cohort renames as 
EXON508, and exon region of 1073 samples renames as 
EXON1073), the eigenvalues of mutational signatures for 
subsequent analysis of ESCC were determined.

2.6  |  Cumulative contribution 
abundance of genes

As described earlier,7 because each mutational process 
takes into account the mutation category and the gen-
eration of mutations in tumor is attributed to each cor-
responding process, we define that the influence of 
mutations of category m in tumor n during the mutational 
process can be expressed as:

P = P
VST

PSST
, S = S

PTV

PTPS + �
,

S� = S
PTV

PTPS + �
,
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where the unit PmkSkn represents the influence of 
mutations of category m attributed to signature k in 
tumor n. Then the probability effects  in mutations of 
category m due to signature k in tumor n can be ex-
pressed as:

Let us now consider that all genes with the number of 
mutations of each mutation type in tumor n can be calcu-
lated in matrix � that designed as following:

where the G represents the number of gene lists in the data 
set. Here, we define �nmg as the impact factor of mutations of 
category m in sample n due to a gene g, and it can be calcu-
lated by the following formula:

Then the contribution of mutational signature s to muta-
tions of category m in a gene g in tumor n can be estimated 
as:

Therefore, we consider that the cumulative abundance 
of a gene g that is attributed to mutational signature s in 
tumor n can be estimated as follows:

On the other hand, considering the influence of gene 
length, we also define the relative abundance of a gene 
g that is attributed to mutational signature s in tumor n, 
which can be calculated as follows:

where lg represents the length of the gene g. And �(sg, mn) is 
on behalf of the relative abundance of mutational signature 
s to mutations of category m in a gene g in tumor n can be 
estimated as:

where the �′nmg can be calculated by the following formula:

Finally, based on the research results of the previous 
workers,7,14,21,37 we integrated and optimized some meth-
ods to evaluate the association between gene mutation 
and mutational signatures. We hope that through these 
methods, we can provide a convenient program interface 
for researchers, and further provide new ideas for the 
study of tumor mechanism.

2.7  |  Prognostic analysis

Kaplan–Meier survival analysis and Cox proportional haz-
ards model were used to analyze an association between 
cancer-related genes and prognosis. Kaplan–Meier sur-
vival and Cox regression analyses were carried out with 
the R survival package (2.40–1). p-value less than 0.05 was 
considered to be statistically significant.

2.8  |  Image analysis

To obtain some favorable statistical information, and even 
get some prognosis evaluation or medication guidance, 
which is helpful for clinical treatment, we designed a way 
to transform CCA of gene in each mutational signature 
into intuitive image information. The detailed operations 
are as follows: (1) we can sequence these genes through 
some potential relationships, such as similarity, pathway, 
or clinical association; (2) according to these CCA matrix 
results, some standard visual impact images are gener-
ated; and (3) we can apply these images to deep learning 
model, combined with clinical information for analysis 
and mining.

In this work, we use “hclust” clustering to get the 
gene sequence based on the CCA matrix of genes. From 
our mutation data set, we will screen out the list of all 
non-silent mutation genes in the existing mutation set 

�(mn) =

K∑
k=1

PmkSkn,

�(s, mn) =
PmsSsn∑K
k=1 PmkSkn

.

� =

⎡
⎢⎢⎢⎣

Nn
11 ⋯ ⋯

⋮ ⋱ ⋮

⋯ ⋯ Nn
MG

⎤
⎥⎥⎥⎦
,

�nmg =
Nn
mg∑G

i=1 N
n
mi

.

�(sg, mn)=
PmsSsn∑K
k=1 PmkSkn

⋅

�nmg∑M
i=1 �

n
ig

.
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∑M
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∑N

n=1
�(sg, mn).

�(s, g) =
∑M
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and do intersection processing with 717 genes. The in-
tersecting gene set is the final data information trans-
formed into image. We organize the data set into a N × N 
matrix (where N =

√
Number of intersecting genes). 	

In this paper, we arrange the genes from top to bot-
tom with the aim of obtaining the effect picture of 
gene mutation. To study the effect of CCA changes in 
each mutational signature on the prognosis, the deep 
learning framework PyTorch38 was performed to train 
some publicly available models, such as ResNet39 
(ResNet50, ResNet101), DenseNet40,41 (DenseNet-121, 
DenseNet-161), Inception-V442 and MoblieNet-V2,43 
V3.44 First of all, we uniformly limit the pixels of the 
picture to 500*500.

3   |   RESULTS

3.1  |  Framework analysis of RNMF

Optimizing and improving the derivation of mutational 
signatures can not only rediscover some known features, 
but also produce new discoveries that were previously 
masked by technical and biological confusions. Here, we 
designed a simple and convenient process framework by 
R language (Figure 1) and developed a novel R package 
called RNMF (https://github.com/zhenz​hang-li/RNMF). 
The package RNMF can directly analyze the mutation 
data set which exist in the form of MAF or VCF format 
files, rapidly obtain the number of specific mutation types 
in each sample and then resolve the mutational signa-
tures. This software can achieve 7 kinds of outstanding 
functions: (1) the mutation rate per M shown in LEGO 
graph; (2) rapidly extraction of mutational signatures; 
(3) accurately evaluating the contribution of each sam-
ple to the known mutation profile; (4) deeply studying 
on the similarity of mutational signatures and displaying 
the heat-map; (5) calculating the CCA matrix of genes; 
(6) studying the relationship between mutational signa-
tures and genes; and (7) studying on the relationship be-
tween hotspot mutation of driving factors and mutational 
signatures.

One outstanding function of RNMF is defined as 
SigsInput, which is suitable for large or most small data 
sets, providing analysis interfaces for different types of ge-
nomic DNA changes, such as SBS, DBS, small ID. To prove 
high performance of our designed RNMF, the mutation 
data sets of 1073 ESCC samples from Asia (including 508 
WGS data) are analyzed thoroughly. These mutation data 
were extracted from the appendix of published articles 
(Table S1), and were annotated by Oncotator.45 As shown 
in Figure 1, by extracting the mutational signatures with 
the designed denovoNMF function, the evaluation results 

exhibits the change of silhouette coefficient and error 
gradient.

In the Figure 1, an application interface “InverseNMF” 
can calculate the fraction of one sample which is contrib-
uted to each provided mutational signatures. By our de-
signed RNMF, we analyzed the contribution scores of these 
coding region mutations to each mutational signature 
which are gotten from the COSMIC Mutational Signatures 
(v2.0 - March 2015). The results are highly consistent with 
the analysis ones of the known “MutationalPatterns”20 
and “deconstructSigs” software,37 as shown in Figure S3A. 
It is worth noting that operating speed of “InverseNMF” 
rivals to that of “MutationalPatterns” software, however, 
is 12 times faster than that of “deconstructSigs” software 
(Figure  S3B). To go insight into the inner link between 
mutational signatures and gene mutations, a series of 
powerful functions are designed according to the the CCA 
calculation model of gene, such as “cumulativeCA,” “ge-
nePerMutSigs,” “samFisherSigs,” “samPerMutSigs,” and 
“eachMutationCA.” The detailed analysis description will 
be provided in the example of our designed RNMF.

According to the previous reports,7,24,33 we define that 
if the CCA of a gene in a sample to a signature is less than 
6%, the gene in the sample has little effect on the signature. 
Next, we combined non-silent mutations, sorted gene list 
and clinical grouping information to obtain gene muta-
tion image sets of samples under different mutational sig-
natures based on gene CCA matrix. Then, deep learning 
method was used to process these image information for 
hierarchical learning, which could obtain some biological 
cognition, so that we could deeply understand some use-
ful information for adjuvant therapy, such as prognosis 
evaluation, efficacy evaluation, medication guidance and 
so on (Figure 1).

In a word, as a versatile R package, RNMF can real-
ize parallel operation that helps to study and evaluate the 
mutational processes during tumor development. Thus, 
molecular analysis can be performed based on extracted 
mutational signatures, further revealing the molecular 
mechanisms and optimizing the diagnosis and treatment 
decisions.

3.2  |  Identifying mutational signatures 
via RNMF

The incidence and mortality of esophageal cancer have al-
ways been relatively high, as in China, for example, among 
which ESCC accounts for 90% of esophageal cancer.46 A 
previous study has provided a large genome-wide sequenc-
ing cohort of Chinese ESCC population.47 To demonstrate 
the role of RNMF in the extraction of mutational singatures, 
our designed RNMF is used to systematically analyze the 

https://github.com/zhenzhang-li/RNMF


      |  4059LI et al.

mutation data set (single base mutations and INDEL muta-
tions) of this cohort data. In the overall single base muta-
tion pattern of ESCC, it is mainly C>T and C>G mutation, 
followed by C>A mutation, accounting for 34.9%, 18.81% 
and 15.94%, respectively (Figure S4). Besides the insertion 
of a zero-length 1-bp T base homologous sequence, most 
other types of deficient incongruities are characterized by 
long (≥5) thymine mononucleotide repeats.

In this cohort, the RNMF successfully identified 12 single 
base substitutions signatures, named SBS1, SBS2, …, SBS12, 
respectively, which is compared with the COSMIC signa-
tures (https://cancer.sanger.ac.uk/signa​tures; Figure  2, 
Figure S2A, Table S2A,B). Mutational Signatures descrip-
tion are represented in Table 1.

To verify the accuracy of the above results, the known 
SigProfilerExtractor software23 is also used to analyze SBS 
signatures, and extract 13 features (Figures  S2B, S5). By 
further making a similarity comparison, we found that 
whether using V2 or V3 version of COSMIC signature, 
it shows strong consistency (Figure  2, Figure  S1A,B). 

Moveover, the results were basically consistent between 
RNMF and SigProfilerExtractor (Figure S1C). Thus, these 
results enough show the validity of the RNMF. In addi-
tion, we also extract ID signature. Nine ID signatures were 
prominent (Figure S2C, Figure 3, Table S2C-D), and three 
of them have been previously reported, including two with 
known mutational processes.23 Mutational Signatures de-
scription are represented in Table 1.

3.3  |  Estimation of sample contribution 
under known mutational signatures 
by RNMF

To verify the practicability of the functions in our frame-
work, the contribution of samples was analyzed in the 
known mutational signatures. We collected a total of 
115,130 somatic mutations from exon region of 1073 
ESCC samples, including 16 of them were hyper-mutated 
with mutation count more than 500 (Figure 4A, Table S3). 

F I G U R E  2   SBS signatures extracted from 508 Chinese patients with esophageal squamous cell carcinoma. The left side of the picture 
shows the classifications of 96 mutation types. Each color is used to illustrate the positions of each mutation subtype on each plot. The right 
side of the picture shows heatmap of the cosine similarity between mutational signatures and COSMIC Mutational Signatures (v3.1 - June 
2020). The shade of color corresponds to different cosine similarity scores. The single-base substitution signatures with cosine similarity 
score no less than 0.6 are shown at the bottom of the figure, and the most similar one is highlighted in red

https://cancer.sanger.ac.uk/signatures;
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Comparing with 508-WGS cohort, we found that the over-
all proportion of C>T mutations increased in the exon 
region, among which *[C>T]G context changed greatly 
(Figure S6A). However, the single base mutations in the 
exon region were mainly C>T (48.19%) and C>G (18.2%), 
followed by C>A (13.8%), indicating that the mutation pat-
tern of exon region was similar to that of whole genome.

To better explore and analyze the potential features 
of exon regions, we used Single Base Substitution (SBS) 
Signatures (v3.2 - March 2021 and v2.0 - March 2015) from 
COSMIC database as the provided mutational signatures 
to obtain the number of contribution mutations of sam-
ples in each signature. We analyzed three single base mu-
tation data sets: 508-WGS cohort (WGS508), exon region 
of 508-WGS cohort (EXON508) and exon region of 1072 
samples (EXON1073). For the 12 feature maps extracting 
from WGS data, the trends of WGS508, EXON508 and 
EXON1073 are basically the same under the same back-
ground (Figure 4B, Figure S6B). However, the results of 
WGS508 revealed that the signature, which accounted for 
a large proportion, may not exist in the list of 12 decom-
posed signatures, and these signatures either have high 
similarity or low similarity related to those 12 signatures. 
What's more, the results of WGS508 showed that com-
pared with the results of different versions of COSMIC 

Mutational Signatures, we found that with the increase 
of features background analysis, high similar or low sim-
ilarity signatures with high proportion will be produced, 
indicating that adding background features may introduce 
some unimportant or similar features to share the load 
weight (Figure  4B, Figure  S6B). Meanwhile, under the 
same background, the results of EXON508 and EXON1073 
showed that the number of samples play little role in the 
proportion of signatures (Figure 4B, Figure S6B). In addi-
tion, previous reports24,47 showed that each kind of cancer 
has its own important characteristics. Of which the num-
ber or type of signatures is usually different. These differ-
ent main signatures play a leading role in the occurrence 
and development of different tumor types.

In this paper, by combining the results of our analysis 
and the reported results (Figure  S5), we strongly believe 
that 12 stable SBS signatures, which is extracted from the 
508-WGS cohort, should be the outstanding features of 
ESCC, which are considered as the leading mutation pat-
terns in the occurrence and development of this tumor. 
Therefore, these 12 features were selected as background 
walls for the analysis of ESCC tumors (Table S4). We found 
that the signatures SBS1*, SBS2*, SBS5*, SBS13* and SBS15* 
were effective in most samples containing more somatic 
mutations, which are considered as ubiquitous signatures 

T A B L E  1   Mutational Signatures description

Original name
Matching 
COSMIC

Cosine 
similarity Redefine name Comments

SBS Signatures

SBS1 SBS3 0.83 SBS3* BRCA1 and BRCA2 mutations;
BRCA1 promoter methylation;
homologous recombination deficiency

SBS2 SBS16 0.84 SBS16* Alcoholic consumption

SBS3 SBS18 0.98 SBS18* CDH1 mutations21; MUTYH mutations

SBS5 SBS33 0.98 SBS33* Unknown

SBS6 SBS13* 0.98 SBS13* ABOPEC; PIK3CA mutation [This article]

SBS7 SBS2* 1.00 SBS2* ABOPEC; PIK3CA mutation [This article]

SBS8 SBS5 0.90 SBS5* ERCC2 mutations; tobacco smoking

SBS9 SBS1 0.96 SBS1* Age; TP53 mutation [This article]

SBS10 SBS17b 0.90 SBS17b* Gastric acid reflux; fluorouracil (5FU) 
chemotherapy treatment

SBS11 SBS22 0.98 SBS22* Aristolochic acid

SBS12 SBS15 0.95 SBS15* DNA mismatch repair defificiency

SBS4 - - New Unknown

ID Signatures

ID3 ID6 0.94 ID6* Homologous recombination-based repair

ID6 ID2 0.99 ID2* DNA mismatch repair defificiency

ID2 ID14 0.88 ID14* Unknown

ID1,ID4,ID5, ID7-ID9 - - New1-New6 Unknown

Note: “-” represents there is no match feature or the similarity is generally very low.
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(Figure  4C, Figure  S6C). By contrast, signatures SBS3*, 
SBS16*, SBS17b*, SBS18*, SBS22*, New, and SBS33* were 
sporadic signatures which existed in rare samples (≤8% of 
cases). Interestingly, clinical association analysis revealed 
that compared with non-drinking patients, drinking pa-
tients contributed significantly more mutations to SBS5* 
and SBS16*, and their contribution also increased signifi-
cantly, suggesting that these two SBS signatures may be re-
lated to alcohol consumption (Figure 4D).

3.4  |  Cumulative contribution 
abundance analysis reveals potential 
prognostic features and mechanisms 
through RNMF

In this work, a total of 717 cancer-related genes are 
screened from the COSMIC census (https://cancer.

sanger.ac.uk/census, Table S5) and their CCAs were cal-
culated via RNMF software with a given model function 
named “cumulativeCA”. Through this program algo-
rithm interface, CCA of a gene on a signature and CCA 
of a gene on a signature in a sample can be obtained. We 
found that these cancer-related genes are more enriched 
in ubiquitous signatures, especially signatures such as 
SBS1*, SBS2*, and SBS13* (Figure  4E). There are differ-
ences in CCA levels of genes under different mutational 
signatures, which indicates that genes have their prefer-
ence for mutational signatures. At the same time, survival 
analysis found that CCA of several genes was associated 
with prognosis (Figure S7A, Table S6). In addition, a mul-
tivariate Cox model was confirmed that some of them 
were still significant (Figure  S7B), such as ARHGAP5, 
SETD2, RNF213, CDKN2A, NOTCH1, NFE2L2, and so 
on. Analysis of mutation characteristics showed that 
TP53 mutation significantly increased exposure to SBS1*, 

F I G U R E  3   Insertion and deletion mutation (ID) signatures extracted from 508 Chinese patients with esophageal squamous cell 
carcinoma. The left side of the picture shows the classifications of 83 mutation types. Each color is used to illustrate the positions of each 
mutation subtype on each plot. The right side of the picture shows heatmap of the cosine similarity between mutational signatures and 
COSMIC Mutational Signatures (v3.1 - June 2020). The shade of color corresponds to different cosine similarity scores. The ID signatures 
with cosine similarity score no less than 0.6 are shown at the bottom of the figure, and the most similar one is highlighted in red. At the 
bottom of the figure, the specific information of 83 mutation types is given, and the colors correspond to the columns in the left image one 
by one

https://cancer.sanger.ac.uk/census
https://cancer.sanger.ac.uk/census
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but conversely, the contribution to SBS1* was signifi-
cantly reduced in samples carrying RNF213 mutation 
(Figure  4F, Figure  S8A). Furthermore, among the TP53 
mutant samples, the contribution of the RNF213 mutant 
samples to SBS1* was significantly reduced(Figure S8A). 
Similarly, we found a significant increase in the contribu-
tion of APOBEC signatures (SBS2*, SBS13*) in ESCC sam-
ples with PIK3CA mutations, and the other three genes 
(ARHGAP5, SETD2, and UBR5) were also associated with 

APOBEC signature (SBS13*) (Figure 4F, Figure S8A). It is 
noted that NFE2L2 mutation was related to SBS16*. These 
above results indicate that there is a potential mechanism 
between gene mutations and mutational signatures in the 
process of tumorigenesis and development. Thus, we stud-
ied 40 representative genes from 717 cancer-related genes, 
which contained about 3.6% of the total number of non-
silent SNV mutations. Most of these mutations preferred 
the characteristic SBS1* (15%), SBS2* (11%), SBS5* (12%), 

F I G U R E  4   Mutational signatures reconstruction from 1073 esophageal squamous cell carcinoma (ESCC) cases. (A) The top figure 
of the graph shows the statistics of hypermutation. Using Ckmeans.1d.dp to cluster the number of mutations of 1073 ESCC samples, 16 
hypermutated samples (red dots) and 1057 regular tumors (yellow and gray dots) are found. The bottom figure of the graph shows the 
proportion of six mutation types of 1073 ESCC samples with point mutation, and the X-axis represents the sample, Each sample has a single 
column, and each color represents a mutation type. (B) Based on the background mutation contribution probability of COSMIC Mutational 
Signatures (v3.2 - March 2021), each color represents a mutational signature, the length of each column represents the contribution ratio of 
mutation to the signature, the red mark represents the signature most similar to the 12 mutational signature, and the green arrow and green 
font indicate that this signature is very similar to the 12 mutational signature. Yellow means that the similarity between the signature and 12 
mutational signatures is very low. (C) Percentage of ESCC tumors in each signature was displayed (top) and mutation rate for each signature 
in the relevant samples (bottom). If the contribution of a sample assigned to one signature is not less than 20%, we would consider that this 
signature is present in the sample. (D) The association between mutational activity of single-base substitution (SBS) signatures (SBS5* and 
SBS16*) and alcohol consumption. The violin compared the difference between drinking and non drinking groups from the mutation count 
and the contribution of samples to the signatures, and the significant p-value was statistically analyzed by Student's t-test with two-sided. 
(E) The heatmap shows the distribution of cumulative contribution abundance of cancer-related genes from the COSMIC census, and the 
depth of color represents the degree of correlation. (F) Box plot showing that the SBS signatures were associated with cancer-related genes 
mutations (including SNV and indel), where n represents the number of samples. Statistical significance was tested by rank sum test with 
two sided. (G) The contribution of non-silent mutations in the coding regions of 40 cancer-related genes is statistically analyzed. Each 
color represents a class of mutation feature map, and the pie chart shows the proportion of each feature. In the figure, the top figure shows 
the total CCA of each gene in 1073 samples, while the bottom figure shows the proportion of each mutational signature, and a column 
represents a gene. Gene selection rules: the number of non-silent mutations is more than 30 and belongs to cancer-related genes from the 
COSMIC census



      |  4063LI et al.

SBS13* (10%), and SBS18* (12%), but were less distributed 
in SBS17b* (3%) (Figure 4G). We found that 66.5% of 1073 
ESCC samples had non-silent SNV of TP53, resulting in 
a highest level of CCA of TP53 gene, and the proportion 
of three SBS signatures (SBS1*, SBS5*, and SBS18*) was 
higher, followed by SBS15*. Obviously, different genes 
have different ratios for different mutated traits. It attracts 
our attention that PIK3CA gene is obviously in favor of 
APOBEC signatures (SBS2*), which accounts for more 
than 50% (Figure 4G). Hence, all findings above suggest 
that preference of cancer-related genes for mutational sig-
natures can be defined by CCA, which can further expose 
some potential prognostic features or mechanisms.

3.5  |  Cumulative contribution 
abundance analysis exposing APOBEC are 
closely associated with PIK3CA helical 
mutation E545K

According to the reports,48–50 PIK3CA is a typical proto-
oncogene that typically harbors some hotspot mutations 
in tumors and is enriched in APOBEC characteristics in a 
variety of cancer types, especially these two most-common 
and well-studied hotspots: E542K (c.1624G>A) and E545K 
(c.1633G>A) in the helical domain. In ESCC, the results 
of previous studies implicitly implicated APOBEC activity 
as a key driver of PIK3CA mutagenesis.50,51 In this cohort, 
we are committed to further study the potential mecha-
nism between PIK3CA biological mutations and APOBEC 
signatures via CCA model.

By the CCA enrichment analysis, it is found that tu-
mors with non-silent mutations in PIK3CA had increased 
activity of the signature SBS2* (ESCC1073-EXON: 89 tu-
mors with non-silent PIK3CA mutations and a median 
increase CCA of 0.74 per sample; q < 0.0001, p < 0.0001; 
regular tumors of ESCC1073-EXON: 88 tumors with non-
silent PIK3CA mutations and a median increase CCA of 
0.74 per sample; q < 0.0001, p < 0.0001; WGS508-EXON: 38 
tumors with non-silent PIK3CA mutations and a median 
increase CCA of 0.741 per sample; q < 0.0001, p < 0.0001; 
Figure 5A, Figure S8B). Analogously, those tumors with 
non-silent mutations in PIK3CA also had increased activ-
ity of the signature SBS13* (ESCC1073-EXON: 89 tumors 
with non-silent PIK3CA mutations and a median increase 
CCA of 0.136 per sample; q < 0.0001, p < 0.0001; regular 
tumors of ESCC1073-EXON: 88 tumors with non-silent 
PIK3CA mutations and a median increase CCA of 0.1359 
per sample; q < 0.0001, p < 0.0001; WGS508-EXON: 38 tu-
mors with non-silent PIK3CA mutations and a median 
increase CCA of 0.133 per sample; q = 0.0008, p < 0.0001; 
Figure 5b, Figure S8C). To further prove these connections, 
we performed mutational signature enrichment analyses 

and gained the same results (Figure  S8B,C), providing 
the strongest statistical evidence for the relationship be-
tween PIK3CA mutation and APOBEC signatures activity 
in ESCC. Together, these results further strongly suggest 
that, although APOBEC signatures activity are present in 
all tumors, somatic PIK3CA mutations are associated with 
a significant increase in APOBEC signatures activity.

We also dissect the mutation spectrum of PIK3CA 
non-silent mutations, revealing the underlying mecha-
nism of during mutation processing. In our series, 65.22% 
of PIK3CA non-silent mutations were C>T substitution, 
and those mutations were frequent presenters that mostly 
contributed to APOBEC signatures (SBS2* and SBS13*) 
with highest percentage (Figure 5C). Simultaneously, we 
investigated the PIK3CA helical (E545K: 36.96%; E542K: 
14.13%) and kinase (H1047R: 11.96%) hotspot mutations, 
and found that only the helical mutations had a high cu-
mulative proportion for APOBEC signatures (SBS2* and 
SBS13*) (Figure 5C). Then, We related the PIK3CA helical 
mutations to each APOBEC signatures, and observed a 
significant increase for mutational exposure of APOBEC 
signatures in samples harboring helical domain mutations 
(Figure  5D-E). Significantly, tumors carrying a hotspot 
mutation E545K significantly hold a high degree of con-
tribution fraction of SBS2*, yet hotspot mutation E542K 
can not bring significant benefits to SBS2*, as well as the 
other mutations (Figure 5D), implying that only mutation 
E545K can affect the benefit of the overall mutation data 
of the sample on SBS2* compared with other mutations. 
Similarly, we found that although the E542K mutation sig-
nificantly increased the benefits of SBS13*, the significant 
intensity of the increase was not as high as that of E545K 
(Median: 0.146 vs. 0.172) (Figure 5E), indicating that the 
E545K mutation in PIK3CA can accelerate the increase 
of SBS13* activity. Furthermore, from the perspective of 
gene itself, the CCA of PIK3CA genetic hotspot mutations 
for APOBEC signatures was significantly higher than that 
of other mutations (Figure  5F-G). However, compared 
with E542K mutation, the effect of E545K mutation is 
more significant, indicating E545K among PIK3CA muta-
tion is more closely associated with APOBEC signatures. 
In a word, PIK3CA helical mutation E545K contributes 
more significantly to APOBEC signatures, suggesting that 
they are strongly association with APOBEC.

3.6  |  Cumulative contribution 
abundance analysis displaying the 
relationship between age signature and 
TP53 typical hotspot mutations

In previous study, the results of TP53 mutations on muta-
tional signatures indicates that driver mutations of TP53 
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mutations are associated with specific mutation processes 
in human cancers, such as colon, skin, bladder, lung, and 
liver cancers.51,52 They only mentioned that the most fre-
quent TP53 mutations were associated with the most com-
monly observed age signature which featured by C>T 
transitions at CpG dinucleotides. It is worth considering 
that there is no detailed report on the association between 
TP53 typical hotspot mutations and age signature in the re-
lated studies of ESCC, including the previous large cohort 
analysis of ESCC.47,53 Here, we analyzed the association 
between TP53 mutations and age signature confirm-
ing that age signature was associated with TP53 muta-
tions via CCA enrichment analysis (Regular tumors of 
ESCC1073-EXON: 715 tumors with non-silent TP53 mu-
tations and a median increase CCA of 0.0823 per sample; 
q < 0.0001, p < 0.0001; ESCC1073-EXON: 728 tumors with 

non-silent TP53 mutations and a median increase CCA 
of 0.085 per sample; q < 0.0001, p < 0.0001; Figure  S8D). 
Moreover, mutational signature enrichment analyses also 
revealed the strong relationship between TP53 mutation 
and age signature activity (Figure  S8D). It is worth not-
ing that TP53 was mainly enriched with C>T substitutions 
(44.51%) with a large proportion of them were preferen-
tially contributed to age signatures (SBS1*) (Figure  6A). 
We screened the six kinds of hotspot mutations with the 
highest risk rate (R342*: 4.07%; R213*: 3.37%; R282W: 
2.95%; R175H: 2.81%; R273H: 2.53%; R248Q: 2.11%) and 
analyzed their association with mutational signatures. We 
found that except R175H, the other five hotspots preferred 
the age signatures (SBS1*) (Figure  6A), which indicated 
that there was a potential mechanism between these hot-
spots and age signatures (SBS1*). Compared with other 

F I G U R E  5   Cumulative contribution abundance (CCA) enrichment analysis identifies an association between somatic PIK3CA 
mutations and activity of SBS2* or SNS13* in esophageal squamous cell carcinoma (ESCC). (A-B) Here, we use two data sets: exon regions of 
1073 and 508 ESCC cases. First, the median CCA of each gene in the current signature is calculated, and then the contribution importance 
of each gene is calculated by PERMUTATION test to study the association between gene and signature. The regular patterns in the figure 
represent the samples with non hypermutated. For genes mutated in >5% of samples, the CCA of genes attributed to SBS2* or SBS13* was 
compared in tumors with wild-type versus mutated copies of the gene. Genes with FDR q < 0.1 are highlighted in red. (C) Mutation trend 
and hotspot analysis of PIK3CA non-silent mutations: the pie chart on the top left shows the proportion of six mutation types, and the 
pie chart on the top right shows the proportion of coding protein, with the name of the protein that accounts for a large proportion. Each 
color in the figure below represents a mutational signature, and the statistical proportion of the contribution of six mutation types to each 
mutation signature is on the left, a column represents a mutation type; The figure on the right shows the contribution abundance of classical 
hotspot mutant protein to each signature, and a column represents a classical mutant protein. (D-E) The violin diagram shows the difference 
of contribution to SBS2* and SBS13* between the samples with PIK3CA hotspot mutation and other types of samples, whereas (f-g) shows 
the difference of contribution abundance between the samples with PIK3CA non-silent mutations (E545K and E542K) and other samples. 
The Wilcoxon rank sum test with two-sided is used here, * represents (0.01 ≤ p < 0.05), * * (0.001 ≤ p < 0.01), ***represents (p < 0.001), and ns 
represents (p ≥ 0.05)
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mutations, tumors harboring at least one of these hotspots 
will significantly increase its contribution to age signa-
ture (SBS1*) (Figure 6B). Actually, although R282W can 
improve the contribution of the sample to age signature 
(SBS1*) (R282W vs. other mutation vs. wild-type: median 
increase of 0.367 vs. 0.306 vs. 0.276), only hotspot mutation 
R342* can significantly affect the benefit of the whole mu-
tation data of the sample to age signature (SBS1*) (R342* 
vs. other mutation vs. wild-type: median increase of 0.388 
vs. 0.305 vs. 0.276; Figure 6B), indicating that R342* mu-
tation is the primary factor to increase the activity of age 
signature (SBS1*). However, from the perspective of gene 
mutation itself, the CCA of TP53 typical hotspot muta-
tions for age signatures was significantly higher than that 
of other mutations (Figure 6C), which indicated that ex-
cept for R342* and R282W mutations, the other four hot 
spot mutations could not significantly improve the overall 
mutation contribution level of the sample, but they are still 
involved in the specific mutational process. In addition, 
under age signature (SBS1*), tumors with CCA of TP53 no 
less than 0.06 were significantly associated with poor prog-
noses (p = 0.44, Figure S7A). Notably, CCA of TP53 in tu-
mors carrying TP53 mutation R248Q were more than 0.06, 
and those cases were associated with deceased survival 
outcomes (Figure S8E). Multivariate cox model shows that 
TP53 hotspot mutation R248Q are independent prognosti-
cators for poor survival in ESCC (Figure S8F). Finally, we 

also found that TP53 small INDEL mutations were related 
to New3 (ID signature; Figure S8G).

3.7  |  Image analysis based on cumulative 
contribution abundance matrix of genes

Considering the limitation of relatively short follow-up 
time, we set three-year survival as a threshold and divided 
the sample into five groups (Table S7): G1) Survival sta-
tus, follow-up time is less than 3 years; G2) survival status, 
follow-up time is not less than 3 years; G3) death status, 
follow-up time is not less than 3 years; G4) death status, 
follow-up time is less than 3 years; G5) others (rejection). 
Because G1 individuals are living and their follow-up time 
is less than 3 years, we will use G2-3-4 groups for the next 
analysis and mining, as shown in Table S7A. Limited by 
clinical information, and to better evaluate the prognosis, 
we especially compared G2 and G4 groups. The above 
grouped samples were respectively converted into im-
ages by CCA matrix (Figure S9A) for deep learning model 
analysis. For choosing an ideal model, we randomly se-
lect a feature as a template for training, and take the high 
average accuracy as the judgment basis for model selec-
tion. Here we choose one SBS signature (New) as an ex-
ample, as shown in Table S7B. Four of them have higher 
accuracy, and they are Resnet50 (68.571%), DenseNet121 

F I G U R E  6   Cumulative contribution abundance enrichment analysis identifies an association between somatic TP53 mutations and 
activity of SBS1* in esophageal squamous cell carcinoma (ESCC). (A) Mutation trend and hotspot analysis of TP53 non-silent mutations: 
the pie chart on the top left shows the proportion of six mutation types, and the pie chart on the top right shows the proportion of coding 
protein, with the name of the protein that accounts for a large proportion. Each color in the figure below represents a mutation feature, and 
the statistical proportion of the contribution of six mutation types to each mutation signature is on the left, a column represents a mutation 
type; The figure on the right shows the contribution abundance of classical hotspot mutant protein to each signature, and a column 
represents a classical mutant protein. (B) The violin diagram shows the difference of contribution to SBS1* between the samples with TP53 
hotspot mutation and other types of samples, while (C) shows the difference of contribution abundance between samples with TP53 hotspot 
mutations and other samples. The Wilcoxon rank sum test with two-sided is used here, * represents (0.01 ≤ p < 0.05), ** (0.001 ≤ p < 0.01), 	
*** represents (p < 0.001), and ns represents (p ≥ 0.05)
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(71.429%), MoblieNetV2 (68.571%), and InceptionV4 
(68.571%). To test the stability of our model, the above 
four models were trained for 10 times. In the training pro-
cess, the model parameter random seed was fixed, other 
parameters are the same. Finally, through the analysis, we 
found that DenseNet-121 model has a higher average ac-
curacy (Table S7B; Figure S9B). Consequently, we chose 
DenseNet-121 as a model to analyze all signatures, the full 
schematic representation as shown in Figure S9C. In the 
process, a stochastic gradient descent method54 was used 
with an initial learning rate of 0.01, weight decay of 10–4 
and momentum of 0.7 in the process of training. Next, 
dropout, data augmentation and L2-regularization were 
applied to prevent overfitting. The above parameter sets 
were properly tuned for DenseNet-121 model. Then, for 
testing the stability of data and finding the global optimal 
solution, the model DenseNet-121 was trained 10 times 
for each sub-feature data of G2-G4. Random seed was set 
free in the training process. That some less accuracy than 
others may be a local optimal solution because stochastic 
gradient descent method was used as the optimizer in the 
training process. We found that the accuracy was com-
paratively stable to each sub-feature and relatively higher 
in mutational SBS3*, New and SBS17b* (Figure  S9D), 
suggesting that the beneficial feasibility of this conver-
sion method of the CCA matrix image data of gene. 
Simultaneously, the results are given the best accuracy 
of G2-G4 is the sub-feature SBS17b* (77.500%), followed 
by SBS3* (72.500%) and New (71.429%). Furthermore, the 
probability distribution over the above three subfeatures 
of G3 group in the G2-G4 was tested. Interestingly, the 
distribution of G3 group is more likely to fall on G2 group 
(Figure  S9E). So further the model DenseNet-121 was 
also trained 10 times for each subfeature data of G2G3-G4 
(Figure S9D). The results show that the best accuracy of 
G2G3-G4 is the sub-feature SBS3* (76.190%), followed by 
New (72.973%), SBS16* (71.111%), and SBS17b* (70.732%), 
as shown in Table S7C. This illustrate that the G3 group 
addition has slight effect on the classification results. 
Additionally, the mutational signatures such as SBS3*, 
New and SBS17b* still have a high degree of explanation 
for G2-G4 and G2G3-G4 (Figure 7). Finally, we found that 
the survival group or the samples with a follow-up time 
of no less than 3 years had a higher contribution to SBS3* 
and SBS17b*, respectively (Figure S9F).

4   |   DISCUSSION

Here, we provide an integrated mutational signature 
analysis framework with a CCA model of genes, achieve 
a meta-analysis of 1073 ESCC samples, and verify the 
practicability and application value of our framework. 

Via this framework, we obtained known and uncovered 
previously undescribed signatures (including 12 SBS sig-
natures and 9 ID signatures) from 508 WGS tumors of 
1073 ESCC cases. And further identified and highlighted 
an association between PIK3CA helical mutation E545K 
and activity of APOBEC signatures. Similarly, we also re-
ported that age signature and the hotspot mutation R342* 
of TP53, and TP53 (R248Q) is a poor predictor for ESCC. 
In addition, the CCA matrix image data of genes under 
mutational signatures New, SBS3*, and SBS17b* were cal-
culated. This is helpful for the preliminary evaluation of 
short-term prognosis.

In addition to feature extraction and sample contribu-
tion analysis, we can also assign graph variation features 
to each sample by the designed framework, or even each 
gene, and then CCA of gene under a certain signature can 
be also obtained. Yet, compared with the previously pub-
lished software,23 our framework spends more time on 
a de novo extraction of signature analysis. The reason is 
that we design a correction process “Re-updated the ini-
tial value” and a solution space process “build a solution 
space.”. Hence, this is a weakness in the framework that 
need to be optimized in the future. However, our frame-
work provides a new idea for understanding the pan-
orama of tumor mutational processes, and help scientific 
researchers to study the mechanisms of tumor progres-
sion. It is of great application value to study the charac-
teristics and statistical distribution of one gene under a 
certain signature by assigning the signature. In this study, 

F I G U R E  7   Application of cumulative contribution abundance 
matrix of genes in prognosis for esophageal squamous cell 
carcinoma. The sensitivity-specificity curve of set classifier at the 
test sample sets for urgent versus non-urgent binary classification
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based on previous reports23,24,47 and statistical evaluation 
(Figure 4b, Figure S6B), we confirmed the background of 
expected mutational signatures of ESCC. Concurrently, 
717 cancer-related genes from the COSMIC census 
(https://cancer.sanger.ac.uk/census, Table  S5) were se-
lected as the base to calculate CCA. Due to the inconsis-
tent sequencing background of the data, we uniformly 
analyzed the data of coding regions, and calculated the 
contribution of each sample to these signatures for sub-
sequent analysis. However, this analysis will have some 
limitations. To avoid the impact of this limitation, we are 
committed to explore the ubiquitous signatures such as 
APOBEC signatures and age signatures, and discuss those 
frequently mutated genes that present in ESCC, such as 
TP53 and PIK3CA.

Previous reports have revealed that mutations in the 
helix domain and kinase domain of PIK3CA cause activation 
through different mechanisms, and the mutation process 
may be related to driving mutations in a variety of can-
cers.55 In ESCC studies, it was also mentioned that PIK3CA 
mutation was associated with the APOBEC signatures.50,51 
Furthermore, we found that there was a close relationship 
between APOBEC signatures and PIK3CA mutations in the 
meta-analysis of 1073 ESCC tumors, especially PIK3CA mu-
tation E545K. In conclusion, APOBEC are strongly linked 
to driver mutations, especially the known hotspot mutation 
E545K of PIK3CA, suggests that there is a mechanism be-
tween APOBEC and PIK3CA, which needs to be deeply ver-
ified by a large number of subsequent experiments.

Next, we analyzed the association of TP53 hotspot 
mutations and mutational signature. Notably, the most 
frequent TP53 mutations found in ESCC were associated 
with the most commonly observed mutational signature, 
age signature, which reflects the natural degradation of 
5-methylcyto sine to thymine.56 In particular, the mu-
tation R342* of TP53 can affect the mutation process of 
tumor occurrence and development, resulting in a signif-
icant increase contribution of the sample to age signature 
(Figure 6B). This led us to put forward the hypothesis that 
the mutation R342* of TP53 in ESCC, which is the pri-
mary factor to increase the activity of age signature. In 
many tumor types, driver mutations of TP53 appear to 
be strongly associated with multiple signatures, and their 
probably arises due to the selection of loss-of-function and 
dominant-negative alleles, which are generated by specific 
mutational processes.51,52 In our analysis, TP53 mutations 
R213* was also shown to be an independent prognostic 
factor.

In addition to the CCA matrix image, deep convo-
lutional neural network denseNet-121 was used to an-
alyze and the CCA matrix image data of gene in SBS3* 
and SBS17b*, which can be preliminarily distinguished 
the shortened survival outcome (follow-up time no less 

than 3 years). This finding indicates that the results of 
this method serves as one of the criteria to evaluate the 
prognosis of 3-year survival. Combined with AI technol-
ogy, our designed scheme directly provides a new way to 
explore from the single gene relationship research to the 
multi gene association analysis. In general, the number of 
individuals studied in this paper is relatively small, which 
is one of the shortcomings of model learning. We hope to 
further achieve the useful information in the era of big 
data. More excellent learning model is also one of the im-
provement ideas to obtain accurate results, which needs 
further research in the future. At the same time, complete 
clinical information, including treatment methods, medi-
cation information, extended follow-up time and so on, is 
of great clinical significance for the further exploration of 
this idea. We are reasonably optimistic that in the future, 
CCA matrix of genes can be used to evaluate the prog-
nosis, metastasis risk, recurrence risk, and even provide 
medication guidance and suggestions for individuals.

Overall, it is indispensable to understand and explore 
the mechanism of tumorigenesis and development by 
studying the relationship between genes and mutational 
signatures. The potential application of CCA of genes 
needs to be further studied and explored, such as giving 
some specific gene lists, forming image pictures, and 
perhaps evaluating prognosis and guiding medication 
through deep learning.
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