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Abstract
Background: Mutational	signatures	are	somatic	mutation	patterns	enriching	op-
erational	mutational	processes,	which	can	provide	abundant	information	about	
the	mechanism	of	cancer.	However,	understanding	of	the	pathogenic	biological	
processes	is	still	limited,	such	as	the	association	between	mutational	signatures	
and	genes.
Methods: We	developed	a	simple	and	practical	R	package	called	RNMF	(https://
github.com/zhenz	hang-	li/RNMF)	for	mutational	signature	analysis,	including	a	
key	 model	 of	 cumulative	 contribution	 abundance	 (CCA),	 which	 was	 designed	
to	highlight	the	association	between	mutational	signatures	and	genes	and	then	
applying	it	to	a	meta-	analysis	of	1073	individuals	with	esophageal	squamous	cell	
carcinoma	(ESCC).
Results: We	 revealed	 a	 number	 of	 known	 and	 previously	 undescribed	 SBS	 or	
ID	 signatures,	 and	 we	 found	 that	 APOBEC	 signatures	 (SBS2*	 and	 SBS13*)	
were	closely	associated	with	PIK3CA	mutation,	especially	the	E545k	mutation.	
Furthermore,	we	found	that	age	signature	is	closely	related	to	the	frequent	muta-
tion	of	TP53,	of	which	R342*	is	highlighted	due	to	strongly	linked	to	age	signature.	
In	addition,	the	CCA	matrix	image	data	of	genes	in	the	signatures	New,	SBS3*,	
and	SBS17b*	were	helpful	 for	 the	preliminary	evaluation	of	shortened	survival	
outcome.	These	results	can	be	extended	to	estimate	the	distribution	of	mutations	
or	features,	and	study	the	potential	impact	of	clinical	factors.
Conclusions: In	a	word,	RNMF	can	successfully	achieve	the	correlation	analy-
sis	of	mutational	signatures	and	genes,	proving	a	strong	theoretical	basis	for	the	
study	of	mutational	processes	during	tumor	development.

K E Y W O R D S

cumulative	contribution	abundance,	esophageal	squamous	cell	carcinoma,	mutational	
signature,	RNMF

www.wileyonlinelibrary.com/journal/cam4
mailto:
mailto:
mailto:
http://creativecommons.org/licenses/by/4.0/
mailto:lianghhgdin@126.com
mailto:zsagdut2016@yeah.net
mailto:526478063@qq.com
https://github.com/zhenzhang-li/RNMF
https://github.com/zhenzhang-li/RNMF


4054 |   LI et al.

1 	 | 	 INTRODUCTION

The	cancer	genomes	contain	many	mutations,	which	are	
derived	from	exogenous	and	endogenous	mutational	pro-
cesses	that	operate	during	the	cell	 lineage.1	These	muta-
tional	 processes	 are	 cumulative	 effects	 of	 DNA	 damage	
and	repair	processes,	 indicating	unique	patterns	 in	tum-
origenesis,	namely	mutational	signatures.2–	5	Each	muta-
tional	process	from	a	tumor	may	involve	some	particular	
signatures	 that	 their	 biological	 combination	 processes	
could	 induce	a	 large	number	of	mutations.6,7	Via	 study-
ing	the	completeness	of	 these	mutations	and	identifying	
the	digital	genomic	footprints	that	contribute	to	the	mu-
tation	 characteristics	 of	 tumors,	 we	 can	 not	 only	 reveal	
the	potential	mutational	process	information,	understand	
the	 carcinogenic	 mechanism	 of	 tumor	 occurrence	 and	
development	but	also	provide	biomarkers	 for	early	diag-
nosis,	accurate	cancer	stratification	and	clinical	response	
prediction,	and	realize	individual	treatment	strategies.8–	13	
Analysis	of	mutational	 signatures	may	reveal	previously	
unknown	mutation	mechanisms	and	mysterious	environ-
mental	exposure,	such	as	herbal	supplements	containing	
aristolochic	acid.13	However,	understanding	of	the	patho-
genic	 biological	 processes	 is	 still	 limited.	 Therefore,	 to	
systematically	describe	the	mutational	process	leading	to	
cancer,	 it	 is	 necessary	 to	 decipher	 the	 mutational	 signa-
tures	from	the	somatic	mutation	catalog	by	using	mathe-
matical	statistical	methods,14–	23	the	number	of	mutations	
that	each	feature	 in	a	single	sample	can	be	attributed	to	
each	feature,	which	annotate	the	probability	of	each	mu-
tation	class	in	each	tumor	and	the	possibility	of	each	fea-
ture	producing.

Currently,	 the	 final	 referenced	 mutational	 signatures	
are	archived	in	the	catalog	of	cancer	of	somatic	mutations	
in	 cancer	 (COSMIC,	 https://cancer.sanger.ac.uk/cosmi	c/
signa	tures).	Most	of	them	are	common	in	various	tumors,	
of	which	are	specific	to	a	certain	type	of	tumor,	of	which	
are	part	of	normal	cell	biology,	and	of	which	are	related	
to	 abnormal	 exposure	 or	 tumor	 progression.24–	31	 They	
may	be	attributed	to	known	environmental	exposure	and	
mutation	 processes,	 such	 as	 tobacco	 smoke,	 ultraviolet	
radiation,	 the	activity	of	 the	APOBEC	series	of	cyclobu-
tylaminases,	and	DNA	mismatch	repair	defects	or	muta-
tions	 in	 POLE.	 Besides,	 as	 known	 to	 us,	 the	 association	
between	genes	and	mutational	signatures	was	confirmed,	
and	much	focus	were	paid	to	study	the	role	of	hotspot	mu-
tations	in	the	formation	of	mutational	signatures,	which	
provides	 a	 good	 research	 idea	 for	 the	 mechanism	 of	 tu-
morigenesis	and	development.	However,	at	present,	there	
are	 few	tools	systematically	and	 in-	depth	mining	the	re-
lationship	between	genes	and	mutational	signatures,32,33	
which	undoubtedly	does	not	bring	much	convenience	to	
the	association	between	mutational	signatures	and	genes.

Here,	we	first	used	the	R	language	to	design	a	simple	
and	convenient	package	RNMF,	which	can	directly	start	
from	the	mutation	data	set	to	realize	the	correlation	anal-
ysis	of	mutational	signatures.	Then,	we	pooled	1073	sam-
ples	from	Asian	ESCC	population,	and	then	used	RNMF	
to	 verify	 the	 practicability	 of	 this	 method	 framework.	
During	 the	 analysis,	 we	 highlighted	 interesting	 correla-
tions	through	association	analysis	with	driving	mutations.	
Finally,	deep	 learning	method	 is	used	 to	explore	 the	cu-
mulative	 contribution	 abundance	 (CCA)	 matrix	 image	
data	of	gene	under	fixed	features,	and	hierarchical	learn-
ing	of	prognosis	is	done.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Genomic data collection

All	 somatic	 mutations	 were	 initially	 collected	 from	 the	
supplementary	 data	 of	 six	 previous	 studies	 (Table  S1)	
comprising	 1073	 esophageal	 squamous	 cell	 carcinoma	
(ESCC)	 cases,	 including	 508	 genome-	wide	 data	 and	 565	
exon	sequencing	data.

2.2	 |	 R package link and parsing 
description

In	the	analysis	process	of	this	software,	somatic	variants	
can	 be	 imported	 from	 a	 Variant	 Call	 Format	 (VCF)	 file	
or	 a	 Mutation	 Annotation	 Format	 (MAF)	 file.	 Then	 it	
relies	 on	 the	 Bioconductor	 library,	 such	 as	 BS.genome.
Hsapiens.UCSC.hg19	 or	 BS.genome.Hsapiens.UCSC.
hg38,	to	acquire	an	information	matrix	of	mutation	types	
(single-	base	 substitutions	 [SBS],	 double-	base	 substitu-
tions	 [DBS],	 and	 insertion	 and	 deletion	 mutation	 [ID]).	
Subsequently,	the	program	extracts	mutational	signatures	
according	to	the	generated	data	and	finally	obtains	the	re-
sult	 files.	 The	 R	 package	 is	 publicly	 available	 at	 https://
github.com/zhenz	hang-	li/RNMF.	The	detailed	document	
file	also	provides	some	examples	of	commands	usage.	In	
addition,	scripts	for	running	the	package	will	also	be	pro-
vided	in	the	R	package.

2.3	 |	 Optimal mutational signature 
extraction framework

Alexandrov,15	an	NMF	software,	was	developed	for	de-
composing	the	characteristic	map	based	on	MATLAB	
language	long	before.	Subsequently,	 there	were	some	
related	 programs	 developed	 based	 on	 R	 language,	
such	 as	 SomaticSignatures.16	 However,	 these	 two	

https://cancer.sanger.ac.uk/cosmic/signatures)
https://cancer.sanger.ac.uk/cosmic/signatures)
https://github.com/LuoLicgigjs/RNMF
https://github.com/LuoLicgigjs/RNMF
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software	only	targeted	SBS	Signatures'	analysis.	Then	
SigProfilerExtractor,	 which	 was	 developed	 based	 on	
Python	 language,	 appeared,	 aiming	 to	 analyze	 the	
three	 characteristic	 maps	 such	 as	 SBS,	 DBS,	 and	 ID	
signatures.	 Quite	 fittingly,	 our	 designed	 RNMF	 soft-
ware	provides	the	ability	to	obtain	the	count	matrix	of	
SBS,	DBS,	and	ID	directly	from	mutation	data	sets	by	
a	function	interface.	To	connect	the	result	format	ob-
tained	 by	 this	 function	 more	 conveniently	 and	 select	
a	 more	 optimized	 initial	 value,	 we	 decided	 to	 build	
a	 new	 R	 interface	 based	 on	 NMF	 principle	 and	 gen-
erate	 the	 data	 result	 format	 required	 in	 downstream	
analysis.	 Therefore,	 based	 on	 the	 model	 definition	
in	previous	reports,34,35	we	can	obtain	a	classical	 for-
mula	 V  =  PS	+	E,	 which	 is	 used	 to	 extract	 the	 muta-
tional	signatures	 in	human	cancers.	In	this	equation,	
V	refers	to	the	observation	matrix	with	size	M	×	N,	of	
which	M	 represents	 the	observed	characteristics,	and	
N	 is	 the	 number	 of	 samples.	 Supposing	 the	 number	
of	mutational	signatures	is	K,	 then	we	can	estimate	a	

non-	negative	mutational	signature	matrix	P	with	size	
M	×	K	and	a	non-	negative	abundance	fractions	matrix	
S	with	size	K	×	N.	Simultaneously,	error	matrix	E	that	
refers	 to	 nonsystematic	 errors	 and	 sampling	 noise	 is	
calculated	during	the	processing.

For	 an	 observed	 mutational	 catalogs	 V,	 these	 K	 mu-
tational	 signatures	 could	 be	 extracted	 by	 denovoNMF	
(Figure 1)	as	following:

Step	1	(Capture	random	matrices):	We	randomly	gen-
erate	matrices	P	 (P	≥	0)	and	S	 (S	≥	0).	 Ideally,	 for	a	muta-
tional	signature,	its	components	are	basically	fixed,	so	the	
sum	of	its	standardized	components	is	equal	to	1;	for	one	
sample,	 the	 total	 of	 normalized	 abundance	 fractions	 for	
each	mutational	signature	should	be	infinitely	close	to	1.	
Hence,	here	we	require	that	

∑
m
Pmk = 1,

∑
k
Skn = 1.

Step	 2	 (Optimize	 the	 initial	 value):	 We	 apply	 resa-
mpling	 to	 obtain	 a	 new	 matrix	 Ṽ

(
Ṽ ≈ V

)
	 by	 using	 the	

Dirichlet	distribution,	and	straighten	matrices	P	and	S	by	
columns	and	then	merge	them	into	a	solution	vector	x.	An	
optimized	objective	function	

F I G U R E  1  Overview	of	RNMF	workflows.	The	automatic	process	can	start	from	inputting	mutation	data	files	in	MAF	or	VCF	format	
to	generate	the	necessary	mutation	type	matrix,	including	single-	base	substitution	mutation	types	with	96	different	contexts,	78	strand	
agnostic	double-	base	substitution	mutation	types,	and	a	compilation	of	83	different	types	of	small	insertion	and	deletion	(ID)	mutation	types.	
Next,	the	process	can	use	two	program	interfaces	(denovoNMF	and	InverseNMF)	for	signature	analysis	to	get	the	mutational	profiles.	Then,	
according	to	the	clinical	grouping,	non-	silent	mutation	data	and	the	list	of	genes	to	be	studied,	combined	with	P	matrix	and	S	matrix,	the	
cumulative	contribution	abundance	matrix	of	genes	was	calculated.	At	the	same	time,	the	corresponding	image	data	are	generated	according	
to	the	specified	order,	and	finally	the	training	and	analysis	are	carried	out	by	machine	learning	or	deep	learning	methods,	so	as	to	obtain	the	
expected	results
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min
P,S

E(P, S, �, �) = 1

2
‖V −PS‖2 + �

∑
i,j,i≠ j

PT
i
Pj + �

∑
i,j
Sij

which	previously	reported34	is	used	to	find	the	best	solu-
tion,	where	α	and	β	are	the	parameters	to	control	the	ac-
celerated	 convergence.	 After	 smoothing	 x̃,	 the	 updated	
matrices	P	and	S	are	restored	according	to	the	straighten-
ing	 rules.	 Finally,	 we	 generate	 a	 new	 initial	 mutational	
signature	matrix	P	and	a	new	initial	abundance	fraction	
matrix	S	through	20,000	iterations	via	referring	to	the	pre-
vious	implementation	process.15

Step	 3	 (Re-	updated	 the	 initial	 value):	 Perform	 Steps	 1	
and	 2	 for	 I(I ≥ 5)	 iterations.	Their	 errors	 generated	 by	 it-
erations	are	calculated	by	formula	E = ‖V −PS‖2,	and	the	
results	of	 the	5	 items	with	the	smallest	error	are	selected.	
Then	we	apply	the	k-	means36	algorithm	to	the	set	of	matri-
ces	P	and	S	to	cluster	the	data	into	K	clusters,	respectively.	
Subsequently,	class-	center	P̃	and	S̃	are	obtained.	Similar	to	
Step	2,	we	straighten	them	to	calculate	the	optimal	solution	
space	and	finally	gain	the	excellent	initial	value.

Step	4	(Rerun	NMF):	In	this	step,	we	still	use	the	mul-
tiplicative	update	rules	 to	generate	 the	 final	matrix.	The	
iterative	model	is	as	follows:

where	 γ	 is	 a	 parameter	 to	 control	 the	 accelerated	
convergence.	 Iterate	 until	 P	 and	 S	 convergence	 or	
until	 the	 maximum	 number	 of	 100,000	 iterations	 is	
reached.

Step	5	(Build	a	solution	space):	Repeat	the	process	of	
steps	 1	 to	 5	 with	 Î

(
Î ≥ 20

)
	 times	 to	 generate	 a	 solution	

space	 for	 all	 the	 value	 of	K
(
K ∈ N+

)
.	Then	 suitable	 se-

lection	in	this	solution	space	using	the	 silhouette	coeffi-
cient	 measure	and	error	gradient.	The	criteria	we	chose	
are	as	 follows:	1)	stable,	without	sudden	decline	or	rela-
tively	large	gradient	of	descent	and	large	width	of	confi-
dence	 interval	and	2)	small	 standard	error	 term	and	 the	
gradient	of	standard	error	between	adjacent	classes	tends	
to	be	gentle.

After	a	series	of	analysis	process,	the	final	mutational	
profiles	of	each	K	clusters	can	be	acquired.	Follow	the	pre-
vious	experience,20	we	use	the	cosine	similarity	to	deter-
mine	the	similarity	between	two	mutational	signature	A	
and	B.

2.4	 |	 Deriving the contribution of 
defined mutational signatures

At	the	same	time,	we	also	developed	a	reversible	method	
named	 InverseNMF,	 which	 can	 identify	 mutational	

signatures	within	a	small	data	set	or	a	single	tumor	sam-
ple.	Previous	reports20,33	have	confirmed	the	importance	
of	such	applications	and	provided	another	analytical	strat-
egy	for	tumor	characteristic	map	studies.

In	this	step,	the	P	matrix	is	a	user-	defined	matrix	(such	
as	the	signature	matrix	provided	by	COSMIC),	and	then	
a	feasible	sample	contribution	matrix	S	can	be	estimated	
iteratively	by	observing	matrix	V.	The	iterative	model	is	as	
follows:

where	γ	is	a	parameter	to	control	the	accelerated	conver-
gence.	Iterate	until	S	convergence	or	until	the	maximum	
number	of	100,000,000	iterations	is	reached.

2.5	 |	 Mutational signature operative 
in ESCC

We	applied	our	framework	to	extract	mutational	signatures	
from	508	WGS	samples	of	1073	ESCC	tumors.	At	the	same	
time,	the	previously	reported	tool	“SigProfilerExtractor”23	
was	 used	 to	 analyze	 the	 data.	 Finally,	 the	 similarity	 be-
tween	 the	 two	 results	 was	 analyzed	 (Figure  S1).	 Our	
framework	 optimizes	 the	 non	 negative	 matrix	 factoriza-
tion	(NMF)	algorithm	and	takes	the	change	of	silhouette	
coefficient	and	error	gradient	as	 the	evaluation	 index	of	
feature	number	selection	(Figure S2).	Here,	the	threshold	
is	set	to	0.9.

To	analyze	and	explore	the	potential	features	of	exons	
of	 1073	 ESCC	 samples,	 We	 used	 COSMIC	 Mutational	
Signatures	 (v3.2	 -		 March	 2021	 and	 v2.0	 -		 March	 2015)	
and	 mutational	 signals	 extracted	 from	 508	WGS	 data	 as	
the	 background	 to	 obtain	 the	 number	 of	 mutations	 in	
each	mutational	signatures.	Based	on	the	results	of	three	
single	base	mutation	data	sets	(508-	WGS	cohort	renames	
as	WGS508,	 exon	 region	 of	 508-	WGS	 cohort	 renames	 as	
EXON508,	and	exon	region	of	1073	samples	 renames	as	
EXON1073),	the	eigenvalues	of	mutational	signatures	for	
subsequent	analysis	of	ESCC	were	determined.

2.6	 |	 Cumulative contribution 
abundance of genes

As	 described	 earlier,7	 because	 each	 mutational	 process	
takes	 into	 account	 the	 mutation	 category	 and	 the	 gen-
eration	 of	 mutations	 in	 tumor	 is	 attributed	 to	 each	 cor-
responding	 process,	 we	 define	 that	 the	 influence	 of	
mutations	of	category	m	in	tumor	n	during	the	mutational	
process	can	be	expressed	as:

P = P
VST

PSST
, S = S

PTV

PTPS + �
,

S� = S
PTV

PTPS + �
,
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where	 the	 unit	 PmkSkn	 represents	 the	 influence	 of	
mutations	 of	 category	 m	 attributed	 to	 signature	 k	 in	
tumor	n.	Then	the	probability	effects	 in	mutations	of	
category	 m	 due	 to	 signature	 k	 in	 tumor	 n	 can	 be	 ex-
pressed	as:

Let	us	now	consider	that	all	genes	with	the	number	of	
mutations	of	each	mutation	type	in	tumor	n	can	be	calcu-
lated	in	matrix	�	that	designed	as	following:

where	the	G	represents	the	number	of	gene	lists	in	the	data	
set.	Here,	we	define	�nmg	as	the	impact	factor	of	mutations	of	
category	m	in	sample	n	due	to	a	gene	g,	and	it	can	be	calcu-
lated	by	the	following	formula:

Then	the	contribution	of	mutational	signature	s	to	muta-
tions	of	category	m	in	a	gene	g	in	tumor	n	can	be	estimated	
as:

Therefore,	we	consider	that	the	cumulative	abundance	
of	a	gene	g	that	is	attributed	to	mutational	signature	s	in	
tumor	n	can	be	estimated	as	follows:

On	the	other	hand,	considering	the	influence	of	gene	
length,	 we	 also	 define	 the	 relative	 abundance	 of	 a	 gene	
g	 that	is	attributed	to	mutational	signature	s	 in	tumor	n,	
which	can	be	calculated	as	follows:

where	lg	represents	the	length	of	the	gene	g.	And	�(sg, mn)	is	
on	behalf	of	the	relative	abundance	of	mutational	signature	
s	to	mutations	of	category	m	in	a	gene	g	in	tumor	n	can	be	
estimated	as:

where	the	�′nmg	can	be	calculated	by	the	following	formula:

Finally,	based	on	 the	 research	results	of	 the	previous	
workers,7,14,21,37	we	integrated	and	optimized	some	meth-
ods	 to	 evaluate	 the	 association	 between	 gene	 mutation	
and	 mutational	 signatures.	 We	 hope	 that	 through	 these	
methods,	we	can	provide	a	convenient	program	interface	
for	 researchers,	 and	 further	 provide	 new	 ideas	 for	 the	
study	of	tumor	mechanism.

2.7	 |	 Prognostic analysis

Kaplan–	Meier	survival	analysis	and	Cox	proportional	haz-
ards	model	were	used	to	analyze	an	association	between	
cancer-	related	 genes	 and	 prognosis.	 Kaplan–	Meier	 sur-
vival	and	Cox	regression	analyses	were	carried	out	with	
the	R	survival	package	(2.40–	1).	p-	value	less	than	0.05	was	
considered	to	be	statistically	significant.

2.8	 |	 Image analysis

To	obtain	some	favorable	statistical	information,	and	even	
get	 some	 prognosis	 evaluation	 or	 medication	 guidance,	
which	is	helpful	for	clinical	treatment,	we	designed	a	way	
to	 transform	 CCA	 of	 gene	 in	 each	 mutational	 signature	
into	intuitive	image	information.	The	detailed	operations	
are	as	 follows:	(1)	we	can	sequence	these	genes	through	
some	potential	relationships,	such	as	similarity,	pathway,	
or	clinical	association;	(2)	according	to	these	CCA	matrix	
results,	 some	 standard	 visual	 impact	 images	 are	 gener-
ated;	and	(3)	we	can	apply	these	images	to	deep	learning	
model,	 combined	 with	 clinical	 information	 for	 analysis	
and	mining.

In	 this	 work,	 we	 use	 “hclust”	 clustering	 to	 get	 the	
gene	sequence	based	on	the	CCA	matrix	of	genes.	From	
our	mutation	data	set,	we	will	screen	out	the	list	of	all	
non-	silent	mutation	genes	in	the	existing	mutation	set	

�(mn) =

K∑
k=1

PmkSkn,

�(s, mn) =
PmsSsn∑K
k=1 PmkSkn

.

� =

⎡
⎢⎢⎢⎣

Nn
11 ⋯ ⋯

⋮ ⋱ ⋮

⋯ ⋯ Nn
MG

⎤
⎥⎥⎥⎦
,

�nmg =
Nn
mg∑G

i=1 N
n
mi

.

�(sg, mn)=
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and	do	intersection	processing	with	717	genes.	The	in-
tersecting	 gene	 set	 is	 the	 final	 data	 information	 trans-
formed	into	image.	We	organize	the	data	set	into	a	N	×	N	
matrix	 (where	 N =

√
Number of intersecting genes).		

In	 this	 paper,	 we	 arrange	 the	 genes	 from	 top	 to	 bot-
tom	 with	 the	 aim	 of	 obtaining	 the	 effect	 picture	 of	
gene	 mutation.	To	 study	 the	 effect	 of	 CCA	 changes	 in	
each	 mutational	 signature	 on	 the	 prognosis,	 the	 deep	
learning	 framework	 PyTorch38	 was	 performed	 to	 train	
some	 publicly	 available	 models,	 such	 as	 ResNet39	
(ResNet50,	 ResNet101),	 DenseNet40,41	 (DenseNet-	121,	
DenseNet-	161),	 Inception-	V442	 and	 MoblieNet-	V2,43	
V3.44	 First	 of	 all,	 we	 uniformly	 limit	 the	 pixels	 of	 the	
picture	to	500*500.

3 	 | 	 RESULTS

3.1	 |	 Framework analysis of RNMF

Optimizing	 and	 improving	 the	 derivation	 of	 mutational	
signatures	can	not	only	rediscover	some	known	features,	
but	 also	 produce	 new	 discoveries	 that	 were	 previously	
masked	by	technical	and	biological	confusions.	Here,	we	
designed	a	simple	and	convenient	process	framework	by	
R	 language	(Figure 1)	and	developed	a	novel	R	package	
called	 RNMF	 (https://github.com/zhenz	hang-	li/RNMF).	
The	 package	 RNMF	 can	 directly	 analyze	 the	 mutation	
data	set	which	exist	 in	 the	 form	of	MAF	or	VCF	format	
files,	rapidly	obtain	the	number	of	specific	mutation	types	
in	 each	 sample	 and	 then	 resolve	 the	 mutational	 signa-
tures.	 This	 software	 can	 achieve	 7	 kinds	 of	 outstanding	
functions:	 (1)	 the	 mutation	 rate	 per	 M	 shown	 in	 LEGO	
graph;	 (2)	 rapidly	 extraction	 of	 mutational	 signatures;	
(3)	 accurately	 evaluating	 the	 contribution	 of	 each	 sam-
ple	 to	 the	 known	 mutation	 profile;	 (4)	 deeply	 studying	
on	the	similarity	of	mutational	signatures	and	displaying	
the	 heat-	map;	 (5)	 calculating	 the	 CCA	 matrix	 of	 genes;	
(6)	 studying	 the	 relationship	 between	 mutational	 signa-
tures	and	genes;	and	(7)	studying	on	the	relationship	be-
tween	hotspot	mutation	of	driving	factors	and	mutational	
signatures.

One	 outstanding	 function	 of	 RNMF	 is	 defined	 as	
SigsInput,	which	 is	 suitable	 for	 large	or	most	 small	data	
sets,	providing	analysis	interfaces	for	different	types	of	ge-
nomic	DNA	changes,	such	as	SBS,	DBS,	small	ID.	To	prove	
high	 performance	 of	 our	 designed	 RNMF,	 the	 mutation	
data	sets	of	1073	ESCC	samples	from	Asia	(including	508	
WGS	data)	are	analyzed	thoroughly.	These	mutation	data	
were	 extracted	 from	 the	 appendix	 of	 published	 articles	
(Table S1),	and	were	annotated	by	Oncotator.45	As	shown	
in	Figure 1,	by	extracting	the	mutational	signatures	with	
the	designed	denovoNMF	function,	the	evaluation	results	

exhibits	 the	 change	 of	 silhouette	 coefficient	 and	 error	
gradient.

In	the	Figure 1,	an	application	interface	“InverseNMF”	
can	calculate	the	fraction	of	one	sample	which	is	contrib-
uted	 to	each	provided	mutational	 signatures.	By	our	de-
signed	RNMF,	we	analyzed	the	contribution	scores	of	these	
coding	 region	 mutations	 to	 each	 mutational	 signature	
which	are	gotten	from	the	COSMIC	Mutational	Signatures	
(v2.0	-		March	2015).	The	results	are	highly	consistent	with	
the	 analysis	 ones	 of	 the	 known	 “MutationalPatterns”20	
and	“deconstructSigs”	software,37	as	shown	in	Figure S3A.	
It	 is	worth	noting	 that	operating	speed	of	“InverseNMF”	
rivals	 to	 that	of	“MutationalPatterns”	software,	however,	
is	12	times	faster	than	that	of	“deconstructSigs”	software	
(Figure  S3B).	 To	 go	 insight	 into	 the	 inner	 link	 between	
mutational	 signatures	 and	 gene	 mutations,	 a	 series	 of	
powerful	functions	are	designed	according	to	the	the	CCA	
calculation	model	of	gene,	such	as	“cumulativeCA,”	“ge-
nePerMutSigs,”	 “samFisherSigs,”	 “samPerMutSigs,”	 and	
“eachMutationCA.”	The	detailed	analysis	description	will	
be	provided	in	the	example	of	our	designed	RNMF.

According	to	the	previous	reports,7,24,33	we	define	that	
if	the	CCA	of	a	gene	in	a	sample	to	a	signature	is	less	than	
6%,	the	gene	in	the	sample	has	little	effect	on	the	signature.	
Next,	we	combined	non-	silent	mutations,	sorted	gene	list	
and	 clinical	 grouping	 information	 to	 obtain	 gene	 muta-
tion	image	sets	of	samples	under	different	mutational	sig-
natures	based	on	gene	CCA	matrix.	Then,	deep	learning	
method	was	used	to	process	these	image	information	for	
hierarchical	learning,	which	could	obtain	some	biological	
cognition,	so	that	we	could	deeply	understand	some	use-
ful	 information	 for	 adjuvant	 therapy,	 such	 as	 prognosis	
evaluation,	efficacy	evaluation,	medication	guidance	and	
so	on	(Figure 1).

In	 a	 word,	 as	 a	 versatile	 R	 package,	 RNMF	 can	 real-
ize	parallel	operation	that	helps	to	study	and	evaluate	the	
mutational	 processes	 during	 tumor	 development.	 Thus,	
molecular	analysis	can	be	performed	based	on	extracted	
mutational	 signatures,	 further	 revealing	 the	 molecular	
mechanisms	and	optimizing	the	diagnosis	and	treatment	
decisions.

3.2	 |	 Identifying mutational signatures 
via RNMF

The	incidence	and	mortality	of	esophageal	cancer	have	al-
ways	been	relatively	high,	as	in	China,	for	example,	among	
which	 ESCC	 accounts	 for	 90%	 of	 esophageal	 cancer.46	 A	
previous	study	has	provided	a	large	genome-	wide	sequenc-
ing	cohort	of	Chinese	ESCC	population.47	To	demonstrate	
the	role	of	RNMF	in	the	extraction	of	mutational	singatures,	
our	designed	RNMF	 is	used	to	systematically	analyze	 the	

https://github.com/zhenzhang-li/RNMF
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mutation	data	set	(single	base	mutations	and	INDEL	muta-
tions)	of	this	cohort	data.	In	the	overall	single	base	muta-
tion	pattern	of	ESCC,	it	is	mainly	C>T	and	C>G	mutation,	
followed	by	C>A	mutation,	accounting	for	34.9%,	18.81%	
and	15.94%,	respectively	(Figure S4).	Besides	the	insertion	
of	 a	 zero-	length	 1-	bp	T	 base	 homologous	 sequence,	 most	
other	types	of	deficient	incongruities	are	characterized	by	
long	(≥5)	thymine	mononucleotide	repeats.

In	this	cohort,	the	RNMF	successfully	identified	12	single	
base	substitutions	signatures,	named	SBS1,	SBS2,	…,	SBS12,	
respectively,	which	 is	compared	with	 the	COSMIC	signa-
tures	 (https://cancer.sanger.ac.uk/signa	tures;	 Figure  2,	
Figure S2A,	Table S2A,B).	Mutational	Signatures	descrip-
tion	are	represented	in	Table 1.

To	verify	the	accuracy	of	the	above	results,	the	known	
SigProfilerExtractor	software23	is	also	used	to	analyze	SBS	
signatures,	 and	 extract	 13	 features	 (Figures  S2B,	 S5).	 By	
further	 making	 a	 similarity	 comparison,	 we	 found	 that	
whether	 using	 V2	 or	 V3	 version	 of	 COSMIC	 signature,	
it	 shows	 strong	 consistency	 (Figure  2,	 Figure  S1A,B).	

Moveover,	 the	 results	 were	 basically	 consistent	 between	
RNMF	and	SigProfilerExtractor	(Figure S1C).	Thus,	these	
results	 enough	 show	 the	 validity	 of	 the	 RNMF.	 In	 addi-
tion,	we	also	extract	ID	signature.	Nine	ID	signatures	were	
prominent	(Figure S2C,	Figure 3,	Table S2C-	D),	and	three	
of	them	have	been	previously	reported,	including	two	with	
known	mutational	processes.23	Mutational	Signatures	de-
scription	are	represented	in	Table 1.

3.3	 |	 Estimation of sample contribution 
under known mutational signatures 
by RNMF

To	verify	the	practicability	of	the	functions	in	our	frame-
work,	 the	 contribution	 of	 samples	 was	 analyzed	 in	 the	
known	 mutational	 signatures.	 We	 collected	 a	 total	 of	
115,130	 somatic	 mutations	 from	 exon	 region	 of	 1073	
ESCC	samples,	including	16	of	them	were	hyper-	mutated	
with	mutation	count	more	than	500	(Figure 4A,	Table S3).	

F I G U R E  2  SBS	signatures	extracted	from	508	Chinese	patients	with	esophageal	squamous	cell	carcinoma.	The	left	side	of	the	picture	
shows	the	classifications	of	96	mutation	types.	Each	color	is	used	to	illustrate	the	positions	of	each	mutation	subtype	on	each	plot.	The	right	
side	of	the	picture	shows	heatmap	of	the	cosine	similarity	between	mutational	signatures	and	COSMIC	Mutational	Signatures	(v3.1	-		June	
2020).	The	shade	of	color	corresponds	to	different	cosine	similarity	scores.	The	single-	base	substitution	signatures	with	cosine	similarity	
score	no	less	than	0.6	are	shown	at	the	bottom	of	the	figure,	and	the	most	similar	one	is	highlighted	in	red

https://cancer.sanger.ac.uk/signatures;
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Comparing	with	508-	WGS	cohort,	we	found	that	the	over-
all	 proportion	 of	 C>T	 mutations	 increased	 in	 the	 exon	
region,	 among	 which	 *[C>T]G	 context	 changed	 greatly	
(Figure S6A).	However,	the	single	base	mutations	in	the	
exon	region	were	mainly	C>T	(48.19%)	and	C>G	(18.2%),	
followed	by	C>A	(13.8%),	indicating	that	the	mutation	pat-
tern	of	exon	region	was	similar	to	that	of	whole	genome.

To	 better	 explore	 and	 analyze	 the	 potential	 features	
of	 exon	 regions,	 we	 used	 Single	 Base	 Substitution	 (SBS)	
Signatures	(v3.2	-		March	2021	and	v2.0	-		March	2015)	from	
COSMIC	database	as	the	provided	mutational	signatures	
to	obtain	the	number	of	contribution	mutations	of	sam-
ples	in	each	signature.	We	analyzed	three	single	base	mu-
tation	data	sets:	508-	WGS	cohort	(WGS508),	exon	region	
of	508-	WGS	cohort	 (EXON508)	and	exon	region	of	1072	
samples	(EXON1073).	For	the	12	feature	maps	extracting	
from	 WGS	 data,	 the	 trends	 of	 WGS508,	 EXON508	 and	
EXON1073	are	basically	 the	same	under	 the	same	back-
ground	(Figure 4B,	Figure S6B).	However,	 the	results	of	
WGS508	revealed	that	the	signature,	which	accounted	for	
a	large	proportion,	may	not	exist	in	the	list	of	12	decom-
posed	 signatures,	 and	 these	 signatures	 either	 have	 high	
similarity	or	low	similarity	related	to	those	12	signatures.	
What's	 more,	 the	 results	 of	 WGS508	 showed	 that	 com-
pared	 with	 the	 results	 of	 different	 versions	 of	 COSMIC	

Mutational	 Signatures,	 we	 found	 that	 with	 the	 increase	
of	features	background	analysis,	high	similar	or	low	sim-
ilarity	signatures	with	high	proportion	will	be	produced,	
indicating	that	adding	background	features	may	introduce	
some	 unimportant	 or	 similar	 features	 to	 share	 the	 load	
weight	 (Figure  4B,	 Figure  S6B).	 Meanwhile,	 under	 the	
same	background,	the	results	of	EXON508	and	EXON1073	
showed	that	the	number	of	samples	play	little	role	in	the	
proportion	of	signatures	(Figure 4B,	Figure S6B).	In	addi-
tion,	previous	reports24,47	showed	that	each	kind	of	cancer	
has	its	own	important	characteristics.	Of	which	the	num-
ber	or	type	of	signatures	is	usually	different.	These	differ-
ent	main	signatures	play	a	leading	role	in	the	occurrence	
and	development	of	different	tumor	types.

In	this	paper,	by	combining	the	results	of	our	analysis	
and	 the	 reported	 results	 (Figure  S5),	 we	 strongly	 believe	
that	12	stable	SBS	signatures,	which	is	extracted	from	the	
508-	WGS	 cohort,	 should	 be	 the	 outstanding	 features	 of	
ESCC,	which	are	considered	as	the	leading	mutation	pat-
terns	 in	 the	 occurrence	 and	 development	 of	 this	 tumor.	
Therefore,	 these	12	 features	were	 selected	as	background	
walls	for	the	analysis	of	ESCC	tumors	(Table S4).	We	found	
that	the	signatures	SBS1*,	SBS2*,	SBS5*,	SBS13*	and	SBS15*	
were	 effective	 in	 most	 samples	 containing	 more	 somatic	
mutations,	which	are	considered	as	ubiquitous	signatures	

T A B L E  1 	 Mutational	Signatures	description

Original name
Matching 
COSMIC

Cosine 
similarity Redefine name Comments

SBS	Signatures

SBS1 SBS3 0.83 SBS3* BRCA1	and	BRCA2	mutations;
BRCA1	promoter	methylation;
homologous	recombination	deficiency

SBS2 SBS16 0.84 SBS16* Alcoholic	consumption

SBS3 SBS18 0.98 SBS18* CDH1	mutations21;	MUTYH	mutations

SBS5 SBS33 0.98 SBS33* Unknown

SBS6 SBS13* 0.98 SBS13* ABOPEC;	PIK3CA	mutation	[This	article]

SBS7 SBS2* 1.00 SBS2* ABOPEC;	PIK3CA	mutation	[This	article]

SBS8 SBS5 0.90 SBS5* ERCC2	mutations;	tobacco	smoking

SBS9 SBS1 0.96 SBS1* Age;	TP53	mutation	[This	article]

SBS10 SBS17b 0.90 SBS17b* Gastric	acid	reflux;	fluorouracil	(5FU)	
chemotherapy	treatment

SBS11 SBS22 0.98 SBS22* Aristolochic	acid

SBS12 SBS15 0.95 SBS15* DNA	mismatch	repair	defificiency

SBS4 -	 -	 New Unknown

ID	Signatures

ID3 ID6 0.94 ID6* Homologous	recombination-	based	repair

ID6 ID2 0.99 ID2* DNA	mismatch	repair	defificiency

ID2 ID14 0.88 ID14* Unknown

ID1,ID4,ID5,	ID7-	ID9 -	 -	 New1- New6 Unknown

Note:	“-	”	represents	there	is	no	match	feature	or	the	similarity	is	generally	very	low.



   | 4061LI et al.

(Figure  4C,	 Figure  S6C).	 By	 contrast,	 signatures	 SBS3*,	
SBS16*,	SBS17b*,	SBS18*,	SBS22*,	New,	and	SBS33*	were	
sporadic	signatures	which	existed	in	rare	samples	(≤8%	of	
cases).	 Interestingly,	 clinical	 association	 analysis	 revealed	
that	 compared	 with	 non-	drinking	 patients,	 drinking	 pa-
tients	 contributed	 significantly	 more	 mutations	 to	 SBS5*	
and	SBS16*,	and	their	contribution	also	 increased	signifi-
cantly,	suggesting	that	these	two	SBS	signatures	may	be	re-
lated	to	alcohol	consumption	(Figure 4D).

3.4	 |	 Cumulative contribution 
abundance analysis reveals potential 
prognostic features and mechanisms 
through RNMF

In	 this	 work,	 a	 total	 of	 717	 cancer-	related	 genes	 are	
screened	 from	 the	 COSMIC	 census	 (https://cancer.

sanger.ac.uk/census,	Table S5)	and	their	CCAs	were	cal-
culated	via	RNMF	software	with	a	given	model	function	
named	 “cumulativeCA”.	 Through	 this	 program	 algo-
rithm	interface,	CCA	of	a	gene	on	a	signature	and	CCA	
of	a	gene	on	a	signature	in	a	sample	can	be	obtained.	We	
found	that	these	cancer-	related	genes	are	more	enriched	
in	 ubiquitous	 signatures,	 especially	 signatures	 such	 as	
SBS1*,	 SBS2*,	 and	 SBS13*	 (Figure  4E).	 There	 are	 differ-
ences	in	CCA	levels	of	genes	under	different	mutational	
signatures,	which	indicates	 that	genes	have	their	prefer-
ence	for	mutational	signatures.	At	the	same	time,	survival	
analysis	found	that	CCA	of	several	genes	was	associated	
with	prognosis	(Figure S7A,	Table S6).	In	addition,	a	mul-
tivariate	 Cox	 model	 was	 confirmed	 that	 some	 of	 them	
were	 still	 significant	 (Figure  S7B),	 such	 as	 ARHGAP5,	
SETD2,	 RNF213,	 CDKN2A,	 NOTCH1,	 NFE2L2,	 and	 so	
on.	 Analysis	 of	 mutation	 characteristics	 showed	 that	
TP53	mutation	significantly	increased	exposure	to	SBS1*,	

F I G U R E  3  Insertion	and	deletion	mutation	(ID)	signatures	extracted	from	508	Chinese	patients	with	esophageal	squamous	cell	
carcinoma.	The	left	side	of	the	picture	shows	the	classifications	of	83	mutation	types.	Each	color	is	used	to	illustrate	the	positions	of	each	
mutation	subtype	on	each	plot.	The	right	side	of	the	picture	shows	heatmap	of	the	cosine	similarity	between	mutational	signatures	and	
COSMIC	Mutational	Signatures	(v3.1	-		June	2020).	The	shade	of	color	corresponds	to	different	cosine	similarity	scores.	The	ID	signatures	
with	cosine	similarity	score	no	less	than	0.6	are	shown	at	the	bottom	of	the	figure,	and	the	most	similar	one	is	highlighted	in	red.	At	the	
bottom	of	the	figure,	the	specific	information	of	83	mutation	types	is	given,	and	the	colors	correspond	to	the	columns	in	the	left	image	one	
by	one

https://cancer.sanger.ac.uk/census
https://cancer.sanger.ac.uk/census
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but	 conversely,	 the	 contribution	 to	 SBS1*	 was	 signifi-
cantly	 reduced	 in	 samples	 carrying	 RNF213	 mutation	
(Figure  4F,	 Figure  S8A).	 Furthermore,	 among	 the	 TP53	
mutant	samples,	the	contribution	of	the	RNF213	mutant	
samples	to	SBS1*	was	significantly	reduced(Figure S8A).	
Similarly,	we	found	a	significant	increase	in	the	contribu-
tion	of	APOBEC	signatures	(SBS2*,	SBS13*)	in	ESCC	sam-
ples	 with	 PIK3CA	 mutations,	 and	 the	 other	 three	 genes	
(ARHGAP5,	SETD2,	and	UBR5)	were	also	associated	with	

APOBEC	signature	(SBS13*)	(Figure 4F,	Figure S8A).	It	is	
noted	that	NFE2L2	mutation	was	related	to	SBS16*.	These	
above	results	indicate	that	there	is	a	potential	mechanism	
between	gene	mutations	and	mutational	signatures	in	the	
process	of	tumorigenesis	and	development.	Thus,	we	stud-
ied	40	representative	genes	from	717	cancer-	related	genes,	
which	contained	about	3.6%	of	the	total	number	of	non-	
silent	SNV	mutations.	Most	of	these	mutations	preferred	
the	characteristic	SBS1*	(15%),	SBS2*	(11%),	SBS5*	(12%),	

F I G U R E  4  Mutational	signatures	reconstruction	from	1073	esophageal	squamous	cell	carcinoma	(ESCC)	cases.	(A)	The	top	figure	
of	the	graph	shows	the	statistics	of	hypermutation.	Using	Ckmeans.1d.dp	to	cluster	the	number	of	mutations	of	1073	ESCC	samples,	16	
hypermutated	samples	(red	dots)	and	1057	regular	tumors	(yellow	and	gray	dots)	are	found.	The	bottom	figure	of	the	graph	shows	the	
proportion	of	six	mutation	types	of	1073	ESCC	samples	with	point	mutation,	and	the	X-	axis	represents	the	sample,	Each	sample	has	a	single	
column,	and	each	color	represents	a	mutation	type.	(B)	Based	on	the	background	mutation	contribution	probability	of	COSMIC	Mutational	
Signatures	(v3.2	-		March	2021),	each	color	represents	a	mutational	signature,	the	length	of	each	column	represents	the	contribution	ratio	of	
mutation	to	the	signature,	the	red	mark	represents	the	signature	most	similar	to	the	12	mutational	signature,	and	the	green	arrow	and	green	
font	indicate	that	this	signature	is	very	similar	to	the	12	mutational	signature.	Yellow	means	that	the	similarity	between	the	signature	and	12	
mutational	signatures	is	very	low.	(C)	Percentage	of	ESCC	tumors	in	each	signature	was	displayed	(top)	and	mutation	rate	for	each	signature	
in	the	relevant	samples	(bottom).	If	the	contribution	of	a	sample	assigned	to	one	signature	is	not	less	than	20%,	we	would	consider	that	this	
signature	is	present	in	the	sample.	(D)	The	association	between	mutational	activity	of	single-	base	substitution	(SBS)	signatures	(SBS5*	and	
SBS16*)	and	alcohol	consumption.	The	violin	compared	the	difference	between	drinking	and	non	drinking	groups	from	the	mutation	count	
and	the	contribution	of	samples	to	the	signatures,	and	the	significant	p-	value	was	statistically	analyzed	by	Student's	t-	test	with	two-	sided.	
(E)	The	heatmap	shows	the	distribution	of	cumulative	contribution	abundance	of	cancer-	related	genes	from	the	COSMIC	census,	and	the	
depth	of	color	represents	the	degree	of	correlation.	(F)	Box	plot	showing	that	the	SBS	signatures	were	associated	with	cancer-	related	genes	
mutations	(including	SNV	and	indel),	where	n	represents	the	number	of	samples.	Statistical	significance	was	tested	by	rank	sum	test	with	
two	sided.	(G)	The	contribution	of	non-	silent	mutations	in	the	coding	regions	of	40	cancer-	related	genes	is	statistically	analyzed.	Each	
color	represents	a	class	of	mutation	feature	map,	and	the	pie	chart	shows	the	proportion	of	each	feature.	In	the	figure,	the	top	figure	shows	
the	total	CCA	of	each	gene	in	1073	samples,	while	the	bottom	figure	shows	the	proportion	of	each	mutational	signature,	and	a	column	
represents	a	gene.	Gene	selection	rules:	the	number	of	non-	silent	mutations	is	more	than	30	and	belongs	to	cancer-	related	genes	from	the	
COSMIC	census
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SBS13*	(10%),	and	SBS18*	(12%),	but	were	less	distributed	
in	SBS17b*	(3%)	(Figure 4G).	We	found	that	66.5%	of	1073	
ESCC	samples	had	non-	silent	SNV	of	TP53,	 resulting	 in	
a	highest	level	of	CCA	of	TP53	gene,	and	the	proportion	
of	 three	SBS	signatures	 (SBS1*,	SBS5*,	and	SBS18*)	was	
higher,	 followed	 by	 SBS15*.	 Obviously,	 different	 genes	
have	different	ratios	for	different	mutated	traits.	It	attracts	
our	 attention	 that	 PIK3CA	 gene	 is	 obviously	 in	 favor	 of	
APOBEC	 signatures	 (SBS2*),	 which	 accounts	 for	 more	
than	50%	(Figure 4G).	Hence,	all	 findings	above	suggest	
that	preference	of	cancer-	related	genes	for	mutational	sig-
natures	can	be	defined	by	CCA,	which	can	further	expose	
some	potential	prognostic	features	or	mechanisms.

3.5	 |	 Cumulative contribution 
abundance analysis exposing APOBEC are 
closely associated with PIK3CA helical 
mutation E545K

According	 to	 the	 reports,48–	50	PIK3CA	 is	a	 typical	proto-	
oncogene	that	 typically	harbors	some	hotspot	mutations	
in	tumors	and	is	enriched	in	APOBEC	characteristics	in	a	
variety	of	cancer	types,	especially	these	two	most-	common	
and	well-	studied	hotspots:	E542K	(c.1624G>A)	and	E545K	
(c.1633G>A)	in	the	helical	domain.	In	ESCC,	the	results	
of	previous	studies	implicitly	implicated	APOBEC	activity	
as	a	key	driver	of	PIK3CA	mutagenesis.50,51	In	this	cohort,	
we	are	committed	 to	 further	 study	 the	potential	mecha-
nism	between	PIK3CA	biological	mutations	and	APOBEC	
signatures	via	CCA	model.

By	 the	 CCA	 enrichment	 analysis,	 it	 is	 found	 that	 tu-
mors	with	non-	silent	mutations	in	PIK3CA	had	increased	
activity	of	the	signature	SBS2*	(ESCC1073-	EXON:	89	tu-
mors	 with	 non-	silent	 PIK3CA	 mutations	 and	 a	 median	
increase	 CCA	 of	 0.74	 per	 sample;	 q	<	0.0001,	 p	<	0.0001;	
regular	tumors	of	ESCC1073-	EXON:	88	tumors	with	non-	
silent	PIK3CA	mutations	and	a	median	increase	CCA	of	
0.74	per	sample;	q	<	0.0001,	p	<	0.0001;	WGS508-	EXON:	38	
tumors	with	non-	silent	PIK3CA	mutations	and	a	median	
increase	CCA	of	0.741	per	sample;	q	<	0.0001,	p	<	0.0001;	
Figure 5A,	Figure S8B).	Analogously,	 those	 tumors	with	
non-	silent	mutations	in	PIK3CA	also	had	increased	activ-
ity	of	the	signature	SBS13*	(ESCC1073-	EXON:	89	tumors	
with	non-	silent	PIK3CA	mutations	and	a	median	increase	
CCA	 of	 0.136	 per	 sample;	 q	<	0.0001,	 p	<	0.0001;	 regular	
tumors	 of	 ESCC1073-	EXON:	 88	 tumors	 with	 non-	silent	
PIK3CA	mutations	and	a	median	increase	CCA	of	0.1359	
per	sample;	q	<	0.0001,	p	<	0.0001;	WGS508-	EXON:	38	tu-
mors	 with	 non-	silent	 PIK3CA	 mutations	 and	 a	 median	
increase	CCA	of	0.133	per	sample;	q = 0.0008,	p	<	0.0001;	
Figure 5b,	Figure S8C).	To	further	prove	these	connections,	
we	performed	mutational	signature	enrichment	analyses	

and	 gained	 the	 same	 results	 (Figure  S8B,C),	 providing	
the	strongest	 statistical	evidence	 for	 the	 relationship	be-
tween	PIK3CA	mutation	and	APOBEC	signatures	activity	
in	ESCC.	Together,	these	results	further	strongly	suggest	
that,	although	APOBEC	signatures	activity	are	present	in	
all	tumors,	somatic	PIK3CA	mutations	are	associated	with	
a	significant	increase	in	APOBEC	signatures	activity.

We	 also	 dissect	 the	 mutation	 spectrum	 of	 PIK3CA	
non-	silent	 mutations,	 revealing	 the	 underlying	 mecha-
nism	of	during	mutation	processing.	In	our	series,	65.22%	
of	PIK3CA	non-	silent	mutations	were	C>T	substitution,	
and	those	mutations	were	frequent	presenters	that	mostly	
contributed	 to	 APOBEC	 signatures	 (SBS2*	 and	 SBS13*)	
with	highest	percentage	(Figure 5C).	Simultaneously,	we	
investigated	the	PIK3CA	helical	 (E545K:	36.96%;	E542K:	
14.13%)	and	kinase	(H1047R:	11.96%)	hotspot	mutations,	
and	found	that	only	the	helical	mutations	had	a	high	cu-
mulative	proportion	 for	APOBEC	signatures	 (SBS2*	and	
SBS13*)	(Figure 5C).	Then,	We	related	the	PIK3CA	helical	
mutations	 to	 each	 APOBEC	 signatures,	 and	 observed	 a	
significant	increase	for	mutational	exposure	of	APOBEC	
signatures	in	samples	harboring	helical	domain	mutations	
(Figure  5D-	E).	 Significantly,	 tumors	 carrying	 a	 hotspot	
mutation	E545K	significantly	hold	a	high	degree	of	con-
tribution	 fraction	of	SBS2*,	yet	hotspot	mutation	E542K	
can	not	bring	significant	benefits	to	SBS2*,	as	well	as	the	
other	mutations	(Figure 5D),	implying	that	only	mutation	
E545K	can	affect	the	benefit	of	the	overall	mutation	data	
of	the	sample	on	SBS2*	compared	with	other	mutations.	
Similarly,	we	found	that	although	the	E542K	mutation	sig-
nificantly	increased	the	benefits	of	SBS13*,	the	significant	
intensity	of	the	increase	was	not	as	high	as	that	of	E545K	
(Median:	0.146	vs.	0.172)	(Figure 5E),	indicating	that	the	
E545K	 mutation	 in	 PIK3CA	 can	 accelerate	 the	 increase	
of	SBS13*	activity.	Furthermore,	 from	the	perspective	of	
gene	itself,	the	CCA	of	PIK3CA	genetic	hotspot	mutations	
for	APOBEC	signatures	was	significantly	higher	than	that	
of	 other	 mutations	 (Figure  5F-	G).	 However,	 compared	
with	 E542K	 mutation,	 the	 effect	 of	 E545K	 mutation	 is	
more	significant,	indicating	E545K	among	PIK3CA	muta-
tion	is	more	closely	associated	with	APOBEC	signatures.	
In	 a	 word,	 PIK3CA	 helical	 mutation	 E545K	 contributes	
more	significantly	to	APOBEC	signatures,	suggesting	that	
they	are	strongly	association	with	APOBEC.

3.6	 |	 Cumulative contribution 
abundance analysis displaying the 
relationship between age signature and 
TP53 typical hotspot mutations

In	previous	study,	the	results	of	TP53	mutations	on	muta-
tional	signatures	 indicates	 that	driver	mutations	of	TP53	
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mutations	are	associated	with	specific	mutation	processes	
in	human	cancers,	such	as	colon,	skin,	bladder,	lung,	and	
liver	cancers.51,52	They	only	mentioned	that	the	most	fre-
quent	TP53	mutations	were	associated	with	the	most	com-
monly	 observed	 age	 signature	 which	 featured	 by	 C>T	
transitions	at	CpG	dinucleotides.	 It	 is	worth	considering	
that	there	is	no	detailed	report	on	the	association	between	
TP53	typical	hotspot	mutations	and	age	signature	in	the	re-
lated	studies	of	ESCC,	including	the	previous	large	cohort	
analysis	 of	 ESCC.47,53	 Here,	 we	 analyzed	 the	 association	
between	 TP53	 mutations	 and	 age	 signature	 confirm-
ing	 that	 age	 signature	 was	 associated	 with	 TP53	 muta-
tions	 via	 CCA	 enrichment	 analysis	 (Regular	 tumors	 of	
ESCC1073-	EXON:	715	tumors	with	non-	silent	TP53	mu-
tations	and	a	median	increase	CCA	of	0.0823	per	sample;	
q	<	0.0001,	p	<	0.0001;	ESCC1073-	EXON:	728	tumors	with	

non-	silent	 TP53	 mutations	 and	 a	 median	 increase	 CCA	
of	 0.085	 per	 sample;	 q	<	0.0001,	 p	<	0.0001;	 Figure  S8D).	
Moreover,	mutational	signature	enrichment	analyses	also	
revealed	 the	 strong	 relationship	 between	 TP53	 mutation	
and	 age	 signature	 activity	 (Figure  S8D).	 It	 is	 worth	 not-
ing	that	TP53	was	mainly	enriched	with	C>T	substitutions	
(44.51%)	with	a	 large	proportion	of	 them	were	preferen-
tially	 contributed	 to	 age	 signatures	 (SBS1*)	 (Figure  6A).	
We	screened	the	six	kinds	of	hotspot	mutations	with	the	
highest	 risk	 rate	 (R342*:	 4.07%;	 R213*:	 3.37%;	 R282W:	
2.95%;	 R175H:	 2.81%;	 R273H:	 2.53%;	 R248Q:	 2.11%)	 and	
analyzed	their	association	with	mutational	signatures.	We	
found	that	except	R175H,	the	other	five	hotspots	preferred	
the	 age	 signatures	 (SBS1*)	 (Figure  6A),	 which	 indicated	
that	there	was	a	potential	mechanism	between	these	hot-
spots	 and	 age	 signatures	 (SBS1*).	 Compared	 with	 other	

F I G U R E  5  Cumulative	contribution	abundance	(CCA)	enrichment	analysis	identifies	an	association	between	somatic	PIK3CA	
mutations	and	activity	of	SBS2*	or	SNS13*	in	esophageal	squamous	cell	carcinoma	(ESCC).	(A-	B)	Here,	we	use	two	data	sets:	exon	regions	of	
1073	and	508	ESCC	cases.	First,	the	median	CCA	of	each	gene	in	the	current	signature	is	calculated,	and	then	the	contribution	importance	
of	each	gene	is	calculated	by	PERMUTATION	test	to	study	the	association	between	gene	and	signature.	The	regular	patterns	in	the	figure	
represent	the	samples	with	non	hypermutated.	For	genes	mutated	in	>5%	of	samples,	the	CCA	of	genes	attributed	to	SBS2*	or	SBS13*	was	
compared	in	tumors	with	wild-	type	versus	mutated	copies	of	the	gene.	Genes	with	FDR	q	<	0.1	are	highlighted	in	red.	(C)	Mutation	trend	
and	hotspot	analysis	of	PIK3CA	non-	silent	mutations:	the	pie	chart	on	the	top	left	shows	the	proportion	of	six	mutation	types,	and	the	
pie	chart	on	the	top	right	shows	the	proportion	of	coding	protein,	with	the	name	of	the	protein	that	accounts	for	a	large	proportion.	Each	
color	in	the	figure	below	represents	a	mutational	signature,	and	the	statistical	proportion	of	the	contribution	of	six	mutation	types	to	each	
mutation	signature	is	on	the	left,	a	column	represents	a	mutation	type;	The	figure	on	the	right	shows	the	contribution	abundance	of	classical	
hotspot	mutant	protein	to	each	signature,	and	a	column	represents	a	classical	mutant	protein.	(D-	E)	The	violin	diagram	shows	the	difference	
of	contribution	to	SBS2*	and	SBS13*	between	the	samples	with	PIK3CA	hotspot	mutation	and	other	types	of	samples,	whereas	(f-	g)	shows	
the	difference	of	contribution	abundance	between	the	samples	with	PIK3CA	non-	silent	mutations	(E545K	and	E542K)	and	other	samples.	
The	Wilcoxon	rank	sum	test	with	two-	sided	is	used	here,	*	represents	(0.01	≤	p	<	0.05),	*	*	(0.001	≤	p	<	0.01),	***represents	(p	<	0.001),	and	ns	
represents	(p	≥	0.05)



   | 4065LI et al.

mutations,	tumors	harboring	at	least	one	of	these	hotspots	
will	 significantly	 increase	 its	 contribution	 to	 age	 signa-
ture	 (SBS1*)	 (Figure 6B).	Actually,	although	R282W	can	
improve	 the	 contribution	 of	 the	 sample	 to	 age	 signature	
(SBS1*)	(R282W	vs.	other	mutation	vs.	wild-	type:	median	
increase	of	0.367	vs.	0.306	vs.	0.276),	only	hotspot	mutation	
R342*	can	significantly	affect	the	benefit	of	the	whole	mu-
tation	data	of	the	sample	to	age	signature	(SBS1*)	(R342*	
vs.	other	mutation	vs.	wild-	type:	median	increase	of	0.388	
vs.	0.305	vs.	0.276;	Figure 6B),	indicating	that	R342*	mu-
tation	is	the	primary	factor	to	increase	the	activity	of	age	
signature	(SBS1*).	However,	from	the	perspective	of	gene	
mutation	 itself,	 the	 CCA	 of	 TP53	 typical	 hotspot	 muta-
tions	for	age	signatures	was	significantly	higher	than	that	
of	other	mutations	(Figure 6C),	which	indicated	that	ex-
cept	for	R342*	and	R282W	mutations,	the	other	four	hot	
spot	mutations	could	not	significantly	improve	the	overall	
mutation	contribution	level	of	the	sample,	but	they	are	still	
involved	 in	 the	 specific	 mutational	 process.	 In	 addition,	
under	age	signature	(SBS1*),	tumors	with	CCA	of	TP53	no	
less	than	0.06	were	significantly	associated	with	poor	prog-
noses	(p = 0.44,	Figure S7A).	Notably,	CCA	of	TP53	in	tu-
mors	carrying	TP53	mutation	R248Q	were	more	than	0.06,	
and	 those	 cases	 were	 associated	 with	 deceased	 survival	
outcomes	(Figure S8E).	Multivariate	cox	model	shows	that	
TP53	hotspot	mutation	R248Q	are	independent	prognosti-
cators	for	poor	survival	in	ESCC	(Figure S8F).	Finally,	we	

also	found	that	TP53	small	INDEL	mutations	were	related	
to	New3	(ID	signature;	Figure S8G).

3.7	 |	 Image analysis based on cumulative 
contribution abundance matrix of genes

Considering	 the	 limitation	 of	 relatively	 short	 follow-	up	
time,	we	set	three-	year	survival	as	a	threshold	and	divided	
the	sample	into	five	groups	(Table S7):	G1)	Survival	sta-
tus,	follow-	up	time	is	less	than	3	years;	G2)	survival	status,	
follow-	up	time	is	not	 less	 than	3	years;	G3)	death	status,	
follow-	up	time	is	not	 less	 than	3	years;	G4)	death	status,	
follow-	up	time	is	less	than	3	years;	G5)	others	(rejection).	
Because	G1	individuals	are	living	and	their	follow-	up	time	
is	less	than	3	years,	we	will	use	G2-	3-	4	groups	for	the	next	
analysis	and	mining,	as	shown	in	Table S7A.	Limited	by	
clinical	information,	and	to	better	evaluate	the	prognosis,	
we	 especially	 compared	 G2	 and	 G4	 groups.	 The	 above	
grouped	 samples	 were	 respectively	 converted	 into	 im-
ages	by	CCA	matrix	(Figure S9A)	for	deep	learning	model	
analysis.	 For	 choosing	 an	 ideal	 model,	 we	 randomly	 se-
lect	a	feature	as	a	template	for	training,	and	take	the	high	
average	accuracy	as	 the	 judgment	basis	 for	model	selec-
tion.	Here	we	choose	one	SBS	signature	(New)	as	an	ex-
ample,	as	shown	in	Table S7B.	Four	of	them	have	higher	
accuracy,	and	they	are	Resnet50	(68.571%),	DenseNet121	

F I G U R E  6  Cumulative	contribution	abundance	enrichment	analysis	identifies	an	association	between	somatic	TP53	mutations	and	
activity	of	SBS1*	in	esophageal	squamous	cell	carcinoma	(ESCC).	(A)	Mutation	trend	and	hotspot	analysis	of	TP53	non-	silent	mutations:	
the	pie	chart	on	the	top	left	shows	the	proportion	of	six	mutation	types,	and	the	pie	chart	on	the	top	right	shows	the	proportion	of	coding	
protein,	with	the	name	of	the	protein	that	accounts	for	a	large	proportion.	Each	color	in	the	figure	below	represents	a	mutation	feature,	and	
the	statistical	proportion	of	the	contribution	of	six	mutation	types	to	each	mutation	signature	is	on	the	left,	a	column	represents	a	mutation	
type;	The	figure	on	the	right	shows	the	contribution	abundance	of	classical	hotspot	mutant	protein	to	each	signature,	and	a	column	
represents	a	classical	mutant	protein.	(B)	The	violin	diagram	shows	the	difference	of	contribution	to	SBS1*	between	the	samples	with	TP53	
hotspot	mutation	and	other	types	of	samples,	while	(C)	shows	the	difference	of	contribution	abundance	between	samples	with	TP53	hotspot	
mutations	and	other	samples.	The	Wilcoxon	rank	sum	test	with	two-	sided	is	used	here,	*	represents	(0.01	≤	p	<	0.05),	**	(0.001	≤	p	<	0.01),		
***	represents	(p	<	0.001),	and	ns	represents	(p	≥	0.05)
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(71.429%),	 MoblieNetV2	 (68.571%),	 and	 InceptionV4	
(68.571%).	 To	 test	 the	 stability	 of	 our	 model,	 the	 above	
four	models	were	trained	for	10	times.	In	the	training	pro-
cess,	the	model	parameter	random	seed	was	fixed,	other	
parameters	are	the	same.	Finally,	through	the	analysis,	we	
found	that	DenseNet-	121	model	has	a	higher	average	ac-
curacy	(Table S7B;	Figure S9B).	Consequently,	we	chose	
DenseNet-	121	as	a	model	to	analyze	all	signatures,	the	full	
schematic	representation	as	shown	in	Figure S9C.	In	the	
process,	a	stochastic	gradient	descent	method54	was	used	
with	an	initial	learning	rate	of	0.01,	weight	decay	of	10–	4	
and	 momentum	 of	 0.7	 in	 the	 process	 of	 training.	 Next,	
dropout,	 data	 augmentation	 and	 L2-	regularization	 were	
applied	 to	prevent	overfitting.	The	above	parameter	 sets	
were	properly	 tuned	 for	DenseNet-	121	model.	Then,	 for	
testing	the	stability	of	data	and	finding	the	global	optimal	
solution,	 the	 model	 DenseNet-	121	 was	 trained	 10	 times	
for	each	sub-	feature	data	of	G2-	G4.	Random	seed	was	set	
free	in	the	training	process.	That	some	less	accuracy	than	
others	may	be	a	local	optimal	solution	because	stochastic	
gradient	descent	method	was	used	as	the	optimizer	in	the	
training	 process.	 We	 found	 that	 the	 accuracy	 was	 com-
paratively	stable	to	each	sub-	feature	and	relatively	higher	
in	 mutational	 SBS3*,	 New	 and	 SBS17b*	 (Figure  S9D),	
suggesting	 that	 the	 beneficial	 feasibility	 of	 this	 conver-
sion	 method	 of	 the	 CCA	 matrix	 image	 data	 of	 gene.	
Simultaneously,	 the	 results	 are	 given	 the	 best	 accuracy	
of	G2-	G4	 is	 the	sub-	feature	SBS17b*	(77.500%),	 followed	
by	SBS3*	(72.500%)	and	New	(71.429%).	Furthermore,	the	
probability	distribution	over	the	above	three	subfeatures	
of	 G3	 group	 in	 the	 G2-	G4	 was	 tested.	 Interestingly,	 the	
distribution	of	G3	group	is	more	likely	to	fall	on	G2	group	
(Figure  S9E).	 So	 further	 the	 model	 DenseNet-	121	 was	
also	trained	10	times	for	each	subfeature	data	of	G2G3-	G4	
(Figure S9D).	The	results	show	that	the	best	accuracy	of	
G2G3-	G4	is	the	sub-	feature	SBS3*	(76.190%),	followed	by	
New	(72.973%),	SBS16*	(71.111%),	and	SBS17b*	(70.732%),	
as	shown	in	Table S7C.	This	illustrate	that	the	G3	group	
addition	 has	 slight	 effect	 on	 the	 classification	 results.	
Additionally,	 the	 mutational	 signatures	 such	 as	 SBS3*,	
New	and	SBS17b*	still	have	a	high	degree	of	explanation	
for	G2-	G4	and	G2G3-	G4	(Figure 7).	Finally,	we	found	that	
the	survival	group	or	 the	samples	with	a	 follow-	up	time	
of	no	less	than	3	years	had	a	higher	contribution	to	SBS3*	
and	SBS17b*,	respectively	(Figure S9F).

4 	 | 	 DISCUSSION

Here,	 we	 provide	 an	 integrated	 mutational	 signature	
analysis	framework	with	a	CCA	model	of	genes,	achieve	
a	 meta-	analysis	 of	 1073	 ESCC	 samples,	 and	 verify	 the	
practicability	 and	 application	 value	 of	 our	 framework.	

Via	 this	 framework,	we	obtained	known	and	uncovered	
previously	undescribed	signatures	(including	12	SBS	sig-
natures	 and	 9	 ID	 signatures)	 from	 508	 WGS	 tumors	 of	
1073	ESCC	cases.	And	further	identified	and	highlighted	
an	association	between	PIK3CA	helical	mutation	E545K	
and	activity	of	APOBEC	signatures.	Similarly,	we	also	re-
ported	that	age	signature	and	the	hotspot	mutation	R342*	
of	TP53,	and	TP53	(R248Q)	is	a	poor	predictor	for	ESCC.	
In	 addition,	 the	 CCA	 matrix	 image	 data	 of	 genes	 under	
mutational	signatures	New,	SBS3*,	and	SBS17b*	were	cal-
culated.	This	is	helpful	for	the	preliminary	evaluation	of	
short-	term	prognosis.

In	addition	to	feature	extraction	and	sample	contribu-
tion	analysis,	we	can	also	assign	graph	variation	features	
to	each	sample	by	the	designed	framework,	or	even	each	
gene,	and	then	CCA	of	gene	under	a	certain	signature	can	
be	also	obtained.	Yet,	compared	with	the	previously	pub-
lished	 software,23	 our	 framework	 spends	 more	 time	 on	
a	de	novo	extraction	of	signature	analysis.	The	reason	is	
that	we	design	a	correction	process	“Re-	updated	the	ini-
tial	value”	and	a	solution	space	process	“build	a	solution	
space.”.	Hence,	this	is	a	weakness	in	the	framework	that	
need	to	be	optimized	in	the	future.	However,	our	frame-
work	 provides	 a	 new	 idea	 for	 understanding	 the	 pan-
orama	of	tumor	mutational	processes,	and	help	scientific	
researchers	 to	 study	 the	 mechanisms	 of	 tumor	 progres-
sion.	It	 is	of	great	application	value	to	study	the	charac-
teristics	 and	 statistical	 distribution	 of	 one	 gene	 under	 a	
certain	signature	by	assigning	the	signature.	In	this	study,	

F I G U R E  7  Application	of	cumulative	contribution	abundance	
matrix	of	genes	in	prognosis	for	esophageal	squamous	cell	
carcinoma.	The	sensitivity-	specificity	curve	of	set	classifier	at	the	
test	sample	sets	for	urgent	versus	non-	urgent	binary	classification
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based	on	previous	reports23,24,47	and	statistical	evaluation	
(Figure 4b,	Figure S6B),	we	confirmed	the	background	of	
expected	 mutational	 signatures	 of	 ESCC.	 Concurrently,	
717	 cancer-	related	 genes	 from	 the	 COSMIC	 census	
(https://cancer.sanger.ac.uk/census,	 Table  S5)	 were	 se-
lected	as	the	base	to	calculate	CCA.	Due	to	the	inconsis-
tent	 sequencing	 background	 of	 the	 data,	 we	 uniformly	
analyzed	 the	 data	 of	 coding	 regions,	 and	 calculated	 the	
contribution	of	each	sample	 to	 these	signatures	 for	 sub-
sequent	 analysis.	 However,	 this	 analysis	 will	 have	 some	
limitations.	To	avoid	the	impact	of	this	limitation,	we	are	
committed	 to	 explore	 the	 ubiquitous	 signatures	 such	 as	
APOBEC	signatures	and	age	signatures,	and	discuss	those	
frequently	mutated	genes	 that	present	 in	ESCC,	 such	as	
TP53	and	PIK3CA.

Previous	 reports	 have	 revealed	 that	 mutations	 in	 the	
helix	domain	and	kinase	domain	of	PIK3CA	cause	activation	
through	 different	 mechanisms,	 and	 the	 mutation	 process	
may	 be	 related	 to	 driving	 mutations	 in	 a	 variety	 of	 can-
cers.55	In	ESCC	studies,	it	was	also	mentioned	that	PIK3CA	
mutation	was	associated	with	the	APOBEC	signatures.50,51	
Furthermore,	we	found	that	there	was	a	close	relationship	
between	APOBEC	signatures	and	PIK3CA	mutations	in	the	
meta-	analysis	of	1073	ESCC	tumors,	especially	PIK3CA	mu-
tation	E545K.	In	conclusion,	APOBEC	are	strongly	 linked	
to	driver	mutations,	especially	the	known	hotspot	mutation	
E545K	of	PIK3CA,	suggests	that	there	is	a	mechanism	be-
tween	APOBEC	and	PIK3CA,	which	needs	to	be	deeply	ver-
ified	by	a	large	number	of	subsequent	experiments.

Next,	 we	 analyzed	 the	 association	 of	 TP53	 hotspot	
mutations	 and	 mutational	 signature.	 Notably,	 the	 most	
frequent	TP53	mutations	found	in	ESCC	were	associated	
with	the	most	commonly	observed	mutational	signature,	
age	 signature,	 which	 reflects	 the	 natural	 degradation	 of	
5-	methylcyto	 sine	 to	 thymine.56	 In	 particular,	 the	 mu-
tation	R342*	of	TP53	 can	affect	 the	mutation	process	of	
tumor	occurrence	and	development,	resulting	in	a	signif-
icant	increase	contribution	of	the	sample	to	age	signature	
(Figure 6B).	This	led	us	to	put	forward	the	hypothesis	that	
the	 mutation	 R342*	 of	 TP53	 in	 ESCC,	 which	 is	 the	 pri-
mary	 factor	 to	 increase	 the	 activity	 of	 age	 signature.	 In	
many	 tumor	 types,	 driver	 mutations	 of	 TP53	 appear	 to	
be	strongly	associated	with	multiple	signatures,	and	their	
probably	arises	due	to	the	selection	of	loss-	of-	function	and	
dominant-	negative	alleles,	which	are	generated	by	specific	
mutational	processes.51,52	In	our	analysis,	TP53	mutations	
R213*	 was	 also	 shown	 to	 be	 an	 independent	 prognostic	
factor.

In	 addition	 to	 the	 CCA	 matrix	 image,	 deep	 convo-
lutional	 neural	 network	 denseNet-	121	 was	 used	 to	 an-
alyze	 and	 the	 CCA	 matrix	 image	 data	 of	 gene	 in	 SBS3*	
and	 SBS17b*,	 which	 can	 be	 preliminarily	 distinguished	
the	 shortened	 survival	 outcome	 (follow-	up	 time	 no	 less	

than	 3	years).	 This	 finding	 indicates	 that	 the	 results	 of	
this	method	serves	as	one	of	 the	criteria	 to	evaluate	 the	
prognosis	of	3-	year	survival.	Combined	with	AI	technol-
ogy,	our	designed	scheme	directly	provides	a	new	way	to	
explore	from	the	single	gene	relationship	research	to	the	
multi	gene	association	analysis.	In	general,	the	number	of	
individuals	studied	in	this	paper	is	relatively	small,	which	
is	one	of	the	shortcomings	of	model	learning.	We	hope	to	
further	 achieve	 the	 useful	 information	 in	 the	 era	 of	 big	
data.	More	excellent	learning	model	is	also	one	of	the	im-
provement	 ideas	 to	obtain	accurate	results,	which	needs	
further	research	in	the	future.	At	the	same	time,	complete	
clinical	information,	including	treatment	methods,	medi-
cation	information,	extended	follow-	up	time	and	so	on,	is	
of	great	clinical	significance	for	the	further	exploration	of	
this	idea.	We	are	reasonably	optimistic	that	in	the	future,	
CCA	 matrix	 of	 genes	 can	 be	 used	 to	 evaluate	 the	 prog-
nosis,	metastasis	 risk,	 recurrence	 risk,	 and	even	provide	
medication	guidance	and	suggestions	for	individuals.

Overall,	it	is	indispensable	to	understand	and	explore	
the	 mechanism	 of	 tumorigenesis	 and	 development	 by	
studying	the	relationship	between	genes	and	mutational	
signatures.	 The	 potential	 application	 of	 CCA	 of	 genes	
needs	to	be	further	studied	and	explored,	such	as	giving	
some	 specific	 gene	 lists,	 forming	 image	 pictures,	 and	
perhaps	 evaluating	 prognosis	 and	 guiding	 medication	
through	deep	learning.
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