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Common variants of ARID1A and 
KAT2B are associated with obesity 
in Indian adolescents
Anil K. Giri1,2, Vaisak Parekatt1, Om Prakash Dwivedi1, Priyanka Banerjee1, Khushdeep 
Bandesh1,2, Gauri Prasad1,2, Nikhil Tandon3 & Dwaipayan Bharadwaj1,2,4

Obesity involves alterations in transcriptional programs that can change in response to genetic and 
environmental signals through chromatin modifications. Since chromatin modifications involve 
different biochemical, neurological and molecular signaling pathways related to energy homeostasis, 
we hypothesize that genetic variations in chromatin modifier genes can predispose to obesity. Here, 
we assessed the associations between 179 variants in 35 chromatin modifier genes and overweight/
obesity in 1283 adolescents (830 normal weight and 453 overweight/obese). This was followed up 
by the replication analysis of associated signals (18 variants in 8 genes) in 2247 adolescents (1709 
normal weight and 538 overweight/obese). Our study revealed significant associations of two variants 
rs6598860 (OR = 1.27, P = 1.58 × 10–4) and rs4589135 (OR = 1.22, P = 3.72 × 10–4) in ARID1A with 
overweight/obesity. We also identified association of rs3804562 (β = 0.11, P = 1.35 × 10–4) in KAT2B 
gene with BMI. In conclusion, our study suggests a potential role of ARID1A and KAT2B genes in the 
development of obesity in adolescents and provides leads for further investigations.

Obesity in childhood and adolescence can lead to life-long complications on individual’s health. Obese and over-
weight adolescents are more likely to have respiratory, sleep-related, behavioral and mental health problems1. 
Childhood obesity can also persist into adulthood, making such individuals vulnerable to developing diseases 
like cancer, arthritis, coronary heart disease and other chronic metabolic diseases such as type 2 diabetes2,3. There 
were 42 million overweight children (below 5 years) across the globe in 20154. By contributing to the growing 
prevalence of associated complications, the childhood obesity is putting an increasing burden on the global public 
health systems5. Hence it is necessary to study the predisposing factors associated with it.

Certain populations have a stronger genetic predisposition to obesity compared to other populations6, with 
varying degree of susceptibility among individuals within a population7. The available literature suggests a strong 
genetic basis of obesity8–11. Genetic studies have implicated 227 genetic variants from genes involved in various 
signaling pathways (neuro-endocrine coordination, insulin signaling, lipid metabolism, adipocyte differentia-
tion, muscle and liver biology, maintenance of gut microbiota) involved in the etiology of common polygenic 
obesity9. The environment also plays a significant role in the development of obesity12. Excessive food intake 
and insufficient physical activity can disrupt body’s energy homeostasis13. This disruption can lead to changes in 
complex biochemical and signaling pathways involved in the alimentary, neuroendocrine and immune system. 
Such changes in the internal environment of the body manifest at cellular level in the form of altered transcrip-
tional programs. Recent research efforts have shown that chromatin modifications allow cells to make rapid and 
context-specific transcriptional changes13. Several proteins have been identified as components of chromatin 
modification complexes that can control the accessibility of DNA towards transcription factors, in effect con-
trolling transcription in various disease states14. It is therefore important to understand the role of chromatin 
modification with respect to normal or disease states including obesity.

1Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura 
Road, New Delhi, 110025, India. 2Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and 
Integrative Biology Campus, Sukhdev Vihar, Mathura Road, New Delhi, 110025, India. 3Department of Endocrinology 
and Metabolism, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110608, India. 4Present address: 
Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, Munirka, 
Delhi, 110067, India. Anil K. Giri and Vaisak Parekatt contributed equally to this work. Correspondence and requests 
for materials should be addressed to N.T. (email: nikhil_tandon@hotmail.com) or D.B. (email: db@jnu.ac.in)

Received: 18 October 2017

Accepted: 19 February 2018

Published: xx xx xxxx

OPEN

mailto:nikhil_tandon@hotmail.com
mailto:db@jnu.ac.in


www.nature.com/scientificreports/

2SCIENtIfIC RePorTs |  (2018) 8:3964  | DOI:10.1038/s41598-018-22231-x

In the context of obesity, a few chromatin modifying proteins have been identified those play roles in con-
trolling transcriptional rewiring in response to environment15,16. A United Kingdom-based study has detected 
mutations in DNMT3A (chromatin modifier gene) in children with overgrowth syndrome17. Functional studies 
to identify novel players are confounded by the fact that obesity is a systemic condition affecting multiple tissues. 
Different players may be involved in different tissues for the same purpose. This adds complexity to the iden-
tification of chromatin modifiers involved in obesity. Candidate gene-based association could provide simpler 
approaches to identify chromatin modifier genes involved in obesity. Here, we hypothesized that genetic variants 
in chromatin modifying genes could play an important role in the development of obesity. To test this hypothesis, 
we conducted the first candidate gene-based association study investigating chromatin modifying genes to iden-
tify genetic variants associated with adolescent obesity.

Results
Anthropometric and clinical characteristics of study participants have been provided in Table 1. Association 
analysis in Stage 1 revealed the associations of 28 variants in 13 genes with overweight/obesity at P < 0.05 
(Supplementary Table 1). The top signals for overweight/obesity were identified at rs4589135 [P = 1.2 × 10−4] 
and rs6598860 [P = 7.8 × 10−4] in ARID1A gene. Association analysis with BMI identified rs907092 in IKZF3 
(P = 3.6 × 10−6) as top signals in stage 1.

We successfully genotyped 18 SNPs in stage 2 and 13 SNPs passed the QC (Supplementary Table 2). We 
replicated the associations of rs6598860 (P = 0.04) in ARID1A and rs17003998 in SMARCE1 (P = 0.01) with 
overweight/obesity (Table 2). Subsequent meta-analysis of summary results from stage 1 and stage 2 revealed 
significant association of rs6598860 (P = 1.58 × 10−4) and rs4589135 in ARID1A (P = 3.72 × 10−4) with over-
weight/obesity after multiple testing correction (P = 6.33 × 10−4). Meta-analysis of BMI data showed significant 
association of rs3804562 (P = 1.35 × 10−4) in KAT2B along with rs4589135 (P = 3.57 × 10−5) and rs6598860 
(P = 1.16 × 10−5) in ARID1A after multiple corrections (Table 2). Identified variants were also associated with 
other adiposity measures (Fig. 1, Supplementary Table 3). Variations in adiposity measures according to different 
genotypes of identified SNPs have been shown in Fig. 2. The study has more than 80% power to detect an associa-
tion of variant with an observed allele frequency of 0.30 and an effect size of 1.20–1.30 (Supplementary Figure 1).

We searched for the associations of identified variants with obesity-related phenotypes in Genetic 
Investigation of Anthropometric Traits (GIANT)18 consortium data. The analysis revealed that all the identified 
SNPs are associated with either BMI or other related traits (Table 3) with similar effect sizes at P <  = 0.05.

Discussion
The study has used an already established cohort for children/adolescent obesity for its finding. There were 1280 
and 863 common samples between current studies and our earlier work investigating the association of common 
variants in inflammatory marker genes with overweight or obesity in Indian children/adolescents by Tabassum 
et al.19 in stage 1 and 2 respectively. Our results demonstrate the associations of two SNPs in ARID1A (rs6598860 
and rs4589135) with the risk of overweight/obesity in urban Indian adolescents. A moderate LD (R2 = 0.57) 
between rs6598860 and rs4589135 was observed in combined samples from stage 1 and stage 2. Variant rs6598860 
(RegulomeDB score of 2b) lies in the promoter of ARID1A and might affect the binding affinity of transcription 
machinery units on the promoter (RegulomeDB). Variant rs6598860 has also been associated with leptin level 
and birth length at nominal significance level (P <  = 0.05) in Europeans20. Variant rs4589135 has also been asso-
ciated with High-Density Lipid (HDL) levels of European and mixed ancestry samples in Global Lipids Genetics 

Character

Stage 1 Stage2

P* P†NW adolescents
OW/OB 
adolescents NW adolescents

OW/OB 
adolescents

N(male/female) 369/461 173/280 779/930 220/318

Age (years) 14 (12.5–15.0) 13(12.0–15.0) 13(12.00–14) 13(12.0–15.0) 1.98 × 10−28 0.80

Height (m) 1.54(1.48–1.62) 1.56(1.50–1.62) 1.54(1.47–1.60) 1.57(1.51–1.63) 9.13 × 10−3 0.18

Z Height −0.23 ± 2.42 0.54 ± 2.16 −0.08 ± 0.98 0.26 ± 0.97 0.09 0.04

Weight (kg) 43.08(37–48.73) 65.12(55.50–73.80) 42.70(36.0–49.0) 63(55.6–63.39) 0.88 0.08

Z Weight −0.57 ± 0.86 1.18 ± 0.72 −0.40 ± 0.62 1.26 ± 0.79 5.2 × 10−11 0.24

BMI (kg/m2) 17.78(15.86–19.44) 26.52(23.97–28.93) 17.87(16.12–19.73) 25.27(23.68–27.44) 0.26 5.09 × 10−4

Z BMI −0.60 ± 0.71 1.07 ± 0.59 −0.44 ± 0.53 1.35 ± 0.76 1.44 × 10−12 6.05 × 10−6

WC (m) 0.67(0.61–0.72) 0.84(0.77–0.90) 0.66(0.60–0.73) 0.84(0.76–0.77) 0.02 0.05

Z WC −0.23 ± 0.54 0.81 ± 0.50 −0.73 ± 1.90 0.31 ± 0.29 8.71 × 10−6 4.65 × 10−15

HC (m) 0.81(0.76–0.86) 0.98(0.92–1.04) 0.80(0.74–0.86) 0.96(0.88–0.87) 0.09 2.8 × 10−3

Z HC −0.13 ± 0.46 0.76 ± 0.42 −0.33 ± 0.80 0.30 ± 2.9 3.39 × 10−15 7.84 × 10−21

WHR 0.82(0.78–0.87) 0.86(0.81–0.90) 0.82(0.76–0.87) −0.79(0.87–0.92) 2.38 × 10−4 5.73 × 10−8

Z WHR 0.16 ± 0.32 0.26 ± 0.27 −0.1.26 ± 3.05 −0.88 ± 0.2.9 4.79 × 10−32 1.61 × 10−8

Table 1.  Clinical status of study participants. Data are represented as median (inter-quartile range). Mann-
Whitney U test was used to compare the medians. Calculated Z-scores are shown as mean z score + SD and 
were compared by student’s t test. *P values for comparison between NW adolescents from stage 1 and NW 
adolescents from stage 2. †P values for comparison between OW/OB adolescents from stage 1 and OW/OB 
adolescents from stage 2.
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Consortium (GLGC) study at nominal significance level (P <  = 0.05)21. It has also been associated with triglyc-
erides levels in European population22.

Although no genetic study has linked ARID1A with adult or childhood obesity, a functional study involv-
ing ARID1A deficient mice showed higher expression of Interleukin 6 (IL6), a known inflammatory cytokine23. 
ARID1A is a transcription factor and its depletion has been reported to affect cholesterol synthesis as well as 
glycogen metabolism related proteins levels in ovarian cancer cell lines24. Study in skeletal muscle had shown 
positive correlation of expression of ARID1A with BMI in humans25. These evidences suggest that ARID1A may 
affect obesity through cytokines (IL6), adipokines (leptins) or lipids mediated lipid pathways.

We also found an association of rs3804562 in KAT2B, which codes for a histone acetyltransferase, with BMI. 
KAT2B knockdown mice showed a reduction in body weight and hyperglycemia in comparison to control mice26. 
Also, its role in gluconeogenesis and energy maintenance mechanism has been suggested by a previous study27.

In conclusion, our data revealed that common variants of ARID1A and KAT2B are associated with increased 
susceptibility to overweight/obesity in Indian urban adolescents. Our study had used overweight individuals 
along with obese individuals as case group, the effect size of identified associations can be underestimated and 
should be interpreted cautiously in case of obese subjects. Since, the current study aimed at investigating the 
important genes from chromatin modifiers pathway, and list of genes included in the study might not be an 
exhaustive list of all genes involved in the pathway. An exhaustive investigation of all the listed genes in literature 
might help to identify more genetic variants associated with childhood obesity in chromatin modifier genes. 
Although the case-control studies design limits the potential to identify the causal relationships, our study pro-
vides a lead for future investigations toward understanding the contribution of epigenetic modifiers in genetic 

OBESITY ZBMI

STAGE1 STAGE 2 META-ANALYSIS STAGE 1 STAGE 2 META-ANALYSIS

SNP (RA/AA) 
Gene

RAF 
OW/OB, 
NW

OR 
(95%CI) P

RAF 
OW/
OB, NW

OR 
(95%CI) P OR P HetPVal β(SE) P β(SE) P β(SE) P HetPVal

rs6598860(A/G); 
ARID1A 0.31,0.24 1.37 

(1.36–1.37) 7.8 × 10–4 0.29, 
0.25

1.19 
(1.01–1.4) 0.04 1.27 (1.14–

1.39) 1.58 × 10–4 0.26 0.17 
(0.05) 2.2 × 10−4 0.09 

(0.03) 0.01 0.12 
(0.03) 1.16 × 10–5 0.18

rs4589135 (G/A); 
ARID1A 0.43, 0.35 1.41 

(1.40–1.42) 1.2 × 10–4 0.41, 
0.38

1.11 
(0.96–1.28) 0.15 1.22 (1.08–

1.41) 3.72 × 10–4 0.04 0.15 
(0.04) 6.0 × 10–4 0.08 

(0.03) 0.01 0.1 
(0.02) 3.57 × 10–5 0.20

rs3804562 (C/T); 
KAT2B 0.57, 0.53 1.18 

(1.17–1.18) 0.04 0.59, 
0.55

1.14 
(0.99–1.32) 0.08 1.15 (1.03–

1.32) 8.93 × 10–3 0.76 0.11 
(0.04) 7.37 × 10−3 0.11 

(0.02) 6.20 × 10–4 0.11 
(0.02) 1.35 × 10–4 0.86

Table 2.  Association of significant SNPs with obesity and BMI. RA = Risk Allele, AA = Alternate Allele, 
RAF = Risk allele frequency, OW/OW = Overweight/obese individuals, HetPVal = Heterogeneity p value for effect 
of the SNP in 1st phase and 2nd phase of individuals, Meta-analysis was performed using inverse variance model 
using fixed effect model using METAL. The OR and beta value presented here are with respect to risk alleles.

Figure 1.  Associations of significant SNPs with measures of obesity. Association of overweight/obese associated 
SNPs with anthropometric measures of obesity (weight, BMI, WC, HC) in meta-analysis results. The z score 
change per risk allele for associated SNPs in meta-analysis has been plotted against corresponding phenotypes.
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predisposition to obesity in adolescents. This would help in understanding the molecular mechanisms and 
exploring therapeutic options toward prevention of childhood obesity.

Figure 2.  Effect of genotype of significant SNPs over z score of adiposity measures. Variation of adiposity 
measures with the different genotypes of associated SNPs. The average z score is plotted on the y-axis against the 
different genotypes of SNPs on the x-axis for SNPs associated with adiposity measures. The analysis has been 
performed on total samples obtained after combining samples from stage 1 and stage 2.

Gene SNP Chr Position_hg19 RA/OA Sample_size Effect Standard error P Trait Sample group

ARID1A rs6598860 1 27041714 A/G 253288 0.01 0.005 0.04 BMI Mixed ancestry 
individuals

ARID1A rs4589135 1 27041714 C/T 75552 0.02 0.0056 5.03 × 10–3 WHR
Women of mixed 
ancestry adjusted for 
physical activity

ARID1A rs4589135 1 27041714 C/T 71104 0.02 0.0058 0.01 WHR
European women 
adjusted for physical 
activity

ARID1A rs4589135 1 27041714 C/T 58558 0.02 0.0063 0.02 WHR adjusted BMI
Physically active 
woman of mixed 
ancestry

ARID1A rs4589135 1 27041714 C/T 71426 0.01 0.0057 0.03 BMI Physically active man 
of mixed ancestry

ARID1A rs4589135 1 27041714 C/T 55519 0.01 0.0065 0.05 WHR adjusted for BMI Physically active 
European women

ARID1A rs4589135 1 27041714 C/T 103871 0.01 0.0049 0.05 WC adjusted for BMI Physically active 
European

KAT2B rs3804562 3 20181028 T/C 52137 0.02 0.0091 0.03 WHR adjusted for BMI 
and physical activity A ancestry men

KAT2B rs3804562 3 20181028 T/C 126190 0.01 0.0063 0.05 WHR adjusted for BMI 
and physical activity

Mixed ancestry 
individuals

Table 3.  Association status of significant SNPs with obesity and other related parameters in GIANT consortium 
data. Chr: Chromosome, P: P value. RA: Risk allele, OA: Other allele. The summary statistics presented were 
obtained from the publicly available data from The Genetic Investigation of Anthropometric Traits (GIANT) 
consortium. The effect sizes are reported with respect to RA.
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Methods
The study involved the participation of 3,530 adolescents (aged 11–17 years) including 2,539 normal-weight (NW 
group) and 991 overweight/obese (OW/OB group) participants. All the participants belonged to Indo-European 
ethnicity and were recruited from school health surveys in five different zones of Delhi (north, south, east, west, 
and central regions) and National Capital Region as described previously19,28,29. Prior permission from school 
authorities, informed consent from parents/guardians and verbal consent from participants themselves were 
obtained before participation in the study. The study plan was discussed in detail with school authorities for 
administrative approval. A written plan was circulated to the parents through the school. The study proto-
col was approved by ethics committees of CSIR-Institute of Genomics and Integrative Biology and All India 
Institute of Medical Sciences. The study was conducted according to principles of the Declarations of Helsinki. 
Anthropometric measurements including height, weight, waist circumference (WC) and hip circumference (HC) 
were taken using standard methods and BMI was calculated. Blood samples were drawn from participants after 
overnight fast and DNA was extracted as mentioned previously30. Participants were classified as normal weight 
and overweight/obese according to age- and sex-specific cutoffs provided by Cole et al., 200231.

In stage 1, we initially selected 203 SNPs in 37 genes for genotyping after exhaustive literature survey on chro-
matin modifiers. Most of the genes included in this study were selected from You et al. who reviewed available 
literature till 2012 for epigenetic process-related genes in case of cancer32. We also included genes that were not 
included in this review but literature search revealed their involvement in the epigenetic process. The SNPs were 
selected on basis of their presence in functionally important regions of genes, previous reports of association with 
metabolic disorders and a minor allele frequency greater than or equal to 0.05. Genotyping was done on 1283 
participants using Illumina Golden Gate assay (Illumina, San Diego, CA). Genotyping data were subjected to 
extensive quality control (QC). SNPs with genotype confidence score (confidence value assigned to each called 
genotype that ranges between 0 and 1 with less reliable call assigned lower value) less than 0.25 were removed. 
We also removed SNPs with GenTrain score (a statistical score that mimics evaluations made by a human expert’s 
visual and cognitive systems about clustering behavior of a locus, less reliable cluster assigned lower value) less 
than 0.6. SNPs with cluster separation score (cluster separation measurement between different genotypes for 
an SNP that ranges between 0 and 1) less than 0.4 and call rate < 0.9 were also removed. Further, SNPs with 
Hardy-Weinberg equilibrium P value less than 0.01 in any of the NW, OW/OB and combined sample groups 
were removed. Out of selected 203 SNPs in 35 genes, 5 SNPs (rs66797130, rs9909489, rs16834954, rs6576 and 
rs341530259) in 4 genes were non-polymorphic in our samples. In total 24 SNPs in 17 different genes failed in 
the assay. The final analysis was done on 1283 adolescent (830 NW and 453 OW/OB adolescent) for 179 SNPs 
from 35 genes, encoding DNA methylation enzymes, histone modifiers and chromatin modifiers (Supplementary 
Table 1). After QC, SNPs (n = 179) had a call rate of 98% and a concordance rate of 99.97% with 5% duplicate 
samples. Genotype frequencies for all the SNPs are provided in Supplementary Table 1.

Genotyping of 18 obesity-associated SNPs (17 direct SNPs and one proxy SNP, rs56315139 for rs6504550 
as shown in Supplementary Table 2) from stage 1 was performed in 2247 adolescent (1709 normal weight and 
538 overweight/obese) using iPLEX (Sequenom, San Diego, CA now Agena Bioscience, Hamburg, Germany). 
We failed to design primers for remaining SNPs using Assay Design Suite Agena (https://seqpws1.agenacx.com/
AssayDesignerSuite.html) in a single plex. Stringent QC for the genotyped data was performed. We removed 
two SNPs with a call rate less than 90% and 3 SNPs with HWE P-value < 2.78 × 10−3 (0.05/18) during analysis in 
stage 2. Finally, we analyzed 13 SNPs in stage 2. The average genotyping success rate for remaining SNPs was 96% 
(range = 91–100%) with 99.7% consistency in genotyping with 10% duplicates.

Statistical analysis was performed using PLINK version 1.07 (http://pngu.mgh.harvard.edu/;purcell/plink)33,34 
and R version 3.1.0. Genotype frequencies were checked for Hardy-Weinberg equilibrium using the χ2 test. Prior 
to analysis, internal age- and sex-specific z scores were calculated for continuous variables as described previ-
ously31. The z scores were inverse normal transformed to achieve normal distribution. Logistic regression analysis 
under a log-additive model adjusting for age and sex was performed to test the association of QC-passed SNPs 
with overweight/obesity in PLINK. Associations for continuous traits related to obesity were performed using lin-
ear regression model adjusted for age and sex assuming the additive mode of inheritance. Meta-analysis of sum-
mary statistics from stage 1 and stage 2 associations was performed using fixed-effect inverse variance method 
using METAL (http://www.sph.umich.edu/csg/abecasis/Metal/). A P-value of 6.33 × 10–4 after meta-analysis was 
considered significant after correcting for 79 independent loci (r2 < 0.8) for obesity and BMI. We did not correct 
for multiple phenotypes as all the tested phenotypes (obesity and BMI) are correlated with each other.

We have collected samples from a small geographical region that forms a homogenous cluster as shown by 
Dwivedi OP et al., 201230. Principal component analysis of genetic data (Axiom™ Genome-Wide EUR 1 Array) 
available for 1095 participants revealed that our samples are genetically homogeneous (Supplementary Figure 2). 
The statistical power of the study was calculated using the log-additive model of inheritance of considering 24% 
prevalence of overweight/obesity2 for SNPs with allele frequency ranging between 0.05–0.50 and an effect size of 
1.05–2 at α = 6.33 × 10−4.

Raw genotype data used in the study has been included in the manuscript as supplementary dataset S1.
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