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Abstract

Embryonic stem cells (ESCs) consist of a population of self-renewing cells displaying exten-

sive phenotypic and functional heterogeneity. Research towards the understanding of the

epigenetic mechanisms underlying the heterogeneity among ESCs is still in its initial stage.

Key issues, such as how to identify cell-subset specifically methylated loci and how to inter-

pret the biological meanings of methylation variations remain largely unexplored. To fill in

the research gap, we implemented a computational pipeline to analyze single-cell methy-

lome and to perform an integrative analysis with single-cell transcriptome data. According to

the origins of variation in DNA methylation, we determined the genomic loci associated with

allelic-specific methylation or asymmetric DNA methylation, and explored a beta mixture

model to infer the genomic loci exhibiting cell-subset specific methylation (CSM). We

observed that the putative CSM loci in ESCs are significantly enriched in CpG island (CGI)

shelves and regions with histone marks for promoter and enhancer, and the genes hosting

putative CSM loci show wide-ranging expression among ESCs. More interestingly, the puta-

tive CSM loci may be clustered into co-methylated modules enriching the binding motifs of

distinct sets of transcription factors. Taken together, our study provided a novel tool to

explore single-cell methylome and transcriptome to reveal the underlying transcriptional reg-

ulatory networks associated with epigenetic heterogeneity of ESCs.

Author summary

DNA methylation is an epigenetic mark with covalent modification that occurs directly

on genetic material. In vertebrates, the most common form of DNA methylation is 5-
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methylcytosine (5-mC) at which a methyl group (CH3) is attached to the cytosine nucleo-

tide, especially in the context of CpG dinucleotide. DNA methylation has important regu-

latory roles in a broad range of biological processes and diseases, such as embryonic stem

cells (ESCs) differentiation and development. ESC populations can be strikingly heteroge-

neous in DNA methylation. Emerging single-cell methods for capturing DNA methyla-

tion are being developed with the exciting potential to investigate the DNA methylation

feature within complex and heterogeneous tissues. In this study, we implemented a

computational pipeline to infer cell-subset specific methylation of ESCs from single-cell

methylome. Through integrative analyses with transcription factor binding and single-cell

transcriptome, we explored the underlying regulatory mechanisms associated with meth-

ylation heterogeneity in ESCs to interpret the biological functional relevance of methyla-

tion variations.

Introduction

Embryonic stem cells (ESCs) have a wide range of applications in both basic research and pre-

clinical drug screening. ESCs are characterized with the capacity to self-renew and to differen-

tiate into multi-lineage cells [1, 2]. While continuously proliferating, the undifferentiated ESCs

are heterogeneous cellular populations corresponding to various differentiation potentials [3,

4]. Growing evidence indicated that heterogeneous ESCs display substantial variations in gene

expression [5], transcription factor regulation patterns [6, 7], and epigenetic modifications

including DNA methylation [8]. The heterogeneous expression of transcription factors (TFs)

is responsible for lineage specific differentiation [9] and may underlie the mechanism that

allows ESCs to exit self-renewal cycle and enter into various differentiation paths [7]. The

recruitment of TFs to their binding sites may depend on DNA methylation and thus the bind-

ing activities of some TFs are methylation-dependent [10]. On the other hand, TF binding

may modulate chromatin configuration and contribute to the regulation of DNA methylation

[11, 12]. Consequently, the interplays between TF binding and DNA methylation orchestrate

gene expression. Despite these increased understandings, the connections among TF binding,

DNA methylation, and gene expression in ESCs remain largely unexplored at the single-cell

level.

During cell differentiation, dynamic DNA methylation changes occur and have been recog-

nized as needs for lineage-specific expression of developmentally regulated genes [8, 13]. Regu-

lar bisulfite sequencing data sets derived from various tissues are informative to identify tissue

specific DNA methylation. However, in tissues with a mixed cell population, each cell subset

may have a distinct epigenetic landscape with a specific set of genomic loci differentially meth-

ylated. For experiments using bulk tissues, it remains challenging to determine the cell-to-cell

methylation variation. With the advances in single-cell sequencing technologies, single-cell

reduced representation bisulfite sequencing (scRRBS) [14] and single-cell bisulfite sequencing

(scBS-seq) [15, 16] have been exploited to profile genome-scale DNA methylation. Substantial

heterogeneous DNA methylation patterns were observed in mouse ESCs [15]. Unfortunately,

neither scRRBS nor scBS-seq could distinguish the methylation variations within a cell from

the ones between cells. Within a cell, methylation variations may result from the differences

between two alleles, i.e. allele-specific DNA methylation (ASM), or between the two comple-

mentary strands within a DNA molecule, i.e. asymmetric methylation (AM). Mouse ASM loci

have been surveyed in a genome-wide study with brain methylomes generated from reciprocal

crosses between two distantly related inbred strains [17]. AM can be assessed with the hairpin
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bisulfite sequencing technique, which generates methylation data for two complementary

DNA strands simultaneously [18]. To compare the methylomes derived from single cells, it is

necessary to consider ASM and AM, the two types of methylation variations within a cell.

In this study, we implemented a pipeline to identify the epigenetic heterogeneity from

scBS-seq datasets of mouse ESCs and explored the correlations among DNA methylation and

gene expression. Using information from previous map of allele specific methylated loci [17]

and the genome annotation of asymmetric methylation for mouse ESCs [18], we were able to

propose a statistical approach called the “beta mixture model” to infer the genomic regions

exhibiting cell subset-specific methylation (CSM) pattern. Furthermore, we integrated the

methylomes and transcriptomes at the single cell level as well as the profiles of TF bindings

enriched in the putative CSM loci identified to decipher the epigenetic heterogeneity of mouse

ESCs.

Results

Methylation profiles of ASM and AM loci in single-cell methylomes derived

from mouse ESCs

To assess DNA methylation variations within and across single cells, we started with the

scBS-Seq data generated with the random priming method for nineteen mouse ESCs [15]. We

first extracted genomic segments with four neighboring CpG dinucleotides in any given

sequence read (S1A Fig). From the nineteen methylomes, 2,875,509 distinct 4-CpG segments

were obtained and the number of 4-CpG segments varied from 98,586 to 1,054,970 in the 19

cells (S1A Fig & S1 Table). The average read depth of those 4-CpG segments in each cell var-

ied from 1.1 for segments identified in only one cell to 35 for the segments identified in all 19

cells (S1B Fig). Among the total 2,875,509 4-CpG segments, only 701 were present in all 19

cells and 917,687 were identified in at least five cells (S1C Fig). 93.3% of the 701 4-CpG seg-

ments were with�5Xs read coverage in the 19 cells on average (S1D Fig), and 79% of these

701 segments were distributed in 5’UTR compared to 13.3% for all 2,875,509 segments (S1E

Fig). This indicates the biased distribution of sequence reads on genome for single cell

methylomes.

We next examined methylation levels for allelic specific methylated loci in single cell

methylomes. Within a cell, theoretically, the methylation levels of ASM loci should be around

50%. Due to loss of DNA content during library preparation, PCR bias, and low sequence

depth, the two alleles from a single cell may not present equally in sequencing data. To assess

the representation of methylation patterns for two alleles, we examined the methylation pro-

files of ASM loci reported in a previous study [17]. These ASM loci were identified with brain

tissues derived from reciprocal crosses between two distantly related mouse strains. We

focused on the parent-of-origin dependent (imprinted) ASM at 1,952 CG dinucleotides in 55

discrete genomic loci, including 21 germline ASM loci which acquire allelic methylation status

during gametogenesis and maintain throughout development, and 34 somatic ASM loci of

which the allelic methylation states arise late in development in a tissue-specific manner [17].

The methylation levels for 47 of these ASM loci could be determined in at least one single-cell

methylome (S2 Table and Fig 1). We calculated the methylation levels of these 47 ASM loci

for each methylome and obtained 546 data points. Surprisingly, only 32 out of the total 546

data points are with methylation level between 0.4 and 0.6 (Fig 1A). In addition, the methyla-

tion levels of 47 ASM loci, including germline imprinted ones, are highly variable among sin-

gle cells (Figs 1B & S2A). Thus, the majority of ASM loci may be reported as cell subset-

specific methylated: hyper-methylated in some cells while hypo-methylated in others.
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We next examined the methylation profiles of asymmetric methylated loci in single-cell

methylomes. In a DNA molecule, the CpG dyads on the two complementary DNA strands

usually show highly symmetric methylation pattern [18–20]. However, strand-to-strand meth-

ylation variation has been observed in mouse ESCs. Using the hairpin bisulfite sequencing

strategy, our recent study showed that approximately 12% of CpG dyads are asymmetrically

methylated in undifferentiated ESCs [18]. In particular, 65.2% of half-methylated (methylation

level at 50%) cytosines are due to asymmetric methylation. Apparently, CpG sites with inter-

mediate methylation level may pose a challenge to the identification of CSM in single-cell

methylomes, in particular for those with low sequence depth.

To explore CpG sites with asymmetrical methylation (AM), we integrated the hairpin bisul-

fite sequencing data and single-cell methylomes generated for mouse E14TG2a ESCs. From

the hairpin methylome, we identified a total of 12,042 4-CpG segments as AM loci which have

at least a pair of hairpin sequence reads showing one strand as completely methylated and the

other strand as completely unmethylated. We further analyzed the single cell methylomes and

identified 7,209 4-CpG segments as AM loci with both completely methylated and completely

unmethylated reads within a single cell. We obtained 19,162 AM loci in total by merging the

results from the hairpin bisulfite sequencing data and single cell methylomes. Similar to the

observation made for ASM loci, the methylation levels of these 19,162 AM loci vary substan-

tially across cells (S2B and S2C Fig).

Beta mixture model to infer putative CSM loci

Since the two types of within-cell methylation variations, i.e. ASM and AM, may undermine

the comparison of single-cell methylomes, we implemented a computational pipeline to assess

the methylation heterogeneity among ESCs and infer putative CSM loci (Fig 2). The pipeline

starts with the extraction of 4-CpG segments, excluding the known ASM and AM ones. We

then defined CSM seeds as the 4-CpG segments that show complete methylated pattern in at

least one methylome and complete unmethylated pattern in other methylomes. Overlapped

Fig 1. The methylation profile of ASM loci. (A) Heatmap of the methylation level of 47 ASM loci in 19 cells. The methylation levels were represented by color gradient

from blue (unmethylation) to yellow (partial methylation) until to red (full methylation), with white color representing missing data of the locus in that cell. (B) Boxplot

of the methylation level of 47 ASM loci across single cells, with germline and somatic ASM loci marked separately.

https://doi.org/10.1371/journal.pcbi.1006034.g001
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CSM seeds were merged together to generate candidate CSM regions. Applying such a proce-

dure to single cell methylomes, we obtained 7,161 candidate CSM regions covered by at least 5

cells and with at least 10 methylation counts within each candidate region in each cell.

Suppose that there are two methylation states: hyper-methylated and hypo-methylated in a

given candidate region. However, the composition of each state is unknown. To decompose

states, a beta mixture model is developed. Here we assumed that the methylation probabilities

of hyper-methylated state and hypo-methylated state, denoted by θ(1) and θ(2), follow two dis-

tinct beta distributions. For each candidate region, the two probabilities were estimated by

using the EM algorithms. One critical parameter is the methylation difference between two

states for each candidate region, denoted by θ(1)—θ(2). We conducted simulations to evaluate

how the performance of our model is related to θ(1)—θ(2) (S3A & S3B Fig). As shown in S3A

Fig, the fraction of accurate prediction increased with the increasing of θ(1)—θ(2) and became

stable until θ(1)—θ(2) reaching 0.3. Thus, for the beta mixture model, we determined the

threshold of methylation difference between two methylation states as 0.3. We also checked

the relationship between the estimated θ(1)—θ(2) and real θ(1)—θ(2) at different setting of λ

Fig 2. An overview of analysis pipeline to infer CSM with single-cell BS-seq dataset. Top panel illustrates the procedure of detecting putative CSM loci in mouse ES

cells. Bottom panel illustrates the procedure of exploring the regulation mechanisms of putative CSM loci.

https://doi.org/10.1371/journal.pcbi.1006034.g002
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which represented the proportion of the cells with hyper-methylated state in the given region,

and found a high Pearson’s correlations, showing that the estimation of θ(1)—θ(2) was accurate

enough (S3B Fig).We further exploited the receiver operating characteristic (ROC) curve and

the positive predictive value (PPV) to evaluate the model performance (S3C & S3D Fig). In

the beta mixture model, we used Deltamin to represent the observed minimum methylation dif-

ference of the two methylation states. From the ROC curve, we found that the beta mixture

model had high sensitivity and high specificity for different settings of Deltamin as well as high

PPV for different settings of θ(1)—θ(2). The false discovery rate (FDR) and false positive rate

(FPR) decreased dramatically with the increase of θ(1)—θ(2) until θ(1)—θ(2) reached 0.3 (S3E

Fig). In addition, to ensure the data quality, we required that a putative CSM loci should have

data generated from at least 8 cells. With those parameters, 2,102 out of the total 7,142 candi-

date regions were inferred as putative CSM loci among ESCs.

Putative CSM loci were characterized with the enrichment in CpG island

(CGI) shelves and regions with histone marks for enhancer and promoter

We next assessed the methylation profiles, genomic characteristics, and DNA-related features

of the 2,102 putative CSM loci (Figs 3 & S4, S3 Tables). We also produced our control region

set including 46,642 regions by merging the 2,813,756 ASM-freed segments. Putative CSM loci

are intermediated methylated with methylation levels centered around 50% across single cells

(Fig 3A), while control regions tend to form two clusters, either hypermethylated or hypo-

methylated (S4A Fig). Additionally, the methylation differences between the two methylation

states, i.e. θ(1)—θ(2), are centered at 0.54 for putative CSM loci and 0.25 for control regions

(S4B Fig). We calculated the methylation variance of putative CSM loci across cells and found

that putative CSM loci exhibited significantly smaller methylation variance with average at

5.3e-04 compared to 5.7e-04 in control regions (Wilcoxon test, p value = 5.94e-09) (S4B Fig).

By contrast, putative CSM loci exhibited higher methylation variance surrounding transcrip-

tion start sites (TSSs) compared to control regions, especially in the downstream regions of

TSSs (Fig 3B). In addition, we found that putative CSM loci were enriched in CGI shelves with

a 1.5-fold increase compared with control regions, and 1.2-fold and 1.1-fold increase in exons

and CGI shores, respectively (Fig 3C).

We further examined the correlation between DNA methylation and histone modifications.

As shown in the Fig 3C & 3D, putative CSM loci show enrichment in regions with H3K4me1,

H3K4me3, H3K9ac, and H3K36me3 marks, except H3K27ac. Since H3K4me1[21, 22],

H3K4me3 [22, 23], and H3K9ac [24] are the histone marks for enhancers or promoters, while

H3K36me3 marks indicate active transcribed genes and induce the DNA methylation of the

gene bodies [25], this result suggests the regulation potential of the putative CSM loci on gene

expression. Meanwhile, putative CSM loci are with higher GC content and CpG density (S4C

& S4D Fig), which are known to be related to open chromatin and active transcription [26,

27]. In addition, compared to control regions, the sequences of putative CSM loci are more

conservative among the placental mammals (S4E Fig).

Co-methylation and co-regulation of putative CSM loci

To explore the association among the 2,102 putative CSM loci identified in mouse ESCs, we

determined the methylation profiles of these loci in 17 mouse tissues spanning all three germ

layers and extraembryonic placenta derived from trophectoderm [28] and performed co-

methylation analysis to cluster these CSM loci into modules. For the 2,094 (99.7% of 2,102)

putative CSM loci with data available in all 17 tissues, we calculated their pairwise Pearson’s

correlations in methylation level, and identified five major co-methylated modules (Fig 4A)
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which show distinct methylation profiles across different tissues (Fig 4B). An early differentia-

tion event during embryonic development is the segregation of trophectoderm and inner cell

mass [29]. Intriguingly, compared to those in other tissues, the methylation levels in placenta

are lower for the putative CSM loci in module I but higher for those in module IV. Putative

CSM loci in module II are hypomethylated in cerebellum (ectoderm-derived tissue) and puta-

tive CSM loci in module III are hypomethylated in bone marrow, spleen and thymus (blood-

Fig 3. Characteristics of putative CSM loci. (A) Density scatterplot of θ(1)—θ(2) (x-axis) and the average methylation level (y-axis) of putative CSM loci across 19

cells. The coloring indicates the density of putative CSM loci from low (blue) to high (yellow). (B) The methylation variance in putative CSM loci and control

regions in 5kb flanking regions of TSS. (C) The fold change in the distribution of putative CSM loci across various genomic features compared to those of control

regions. (D) The frequency of putative CSM loci distributed in the 5kb regions flanking the center of histone marks of H3K4me1, H3K4me3, H3K27ac, H3K9ac and

H3K36me3.

https://doi.org/10.1371/journal.pcbi.1006034.g003
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Fig 4. Co-methylation and co-regulation of putative CSM loci. (A) Heatmap of pair-wise Pearson’s correlations of putative CSM loci according to their

methylation levels in 17 mouse tissues, with top five co-methylated modules marked. (B) The methylation profiles of the top five modules in the 17 mouse tissues,

with circle showing the average methylation level, and the error bar showing the standard deviation. Tissues deriving from different germ layers are marked. (C) The

significance of GO terms enriched for each module. P values were reported using NCBI DAVID annotation tool and scaled to–log10 based. (D) Top three TF motifs

enriched in each module. P values were determined using Homer software.

https://doi.org/10.1371/journal.pcbi.1006034.g004
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producing, mesoderm-derived tissues), while putative CSM loci in module V show higher

methylation level in ectoderm-derived tissues.

To characterize the function of genes associated with co-methylated CSM modules, we

determined genes with putative CSM loci located within [-10k, 2k] from TSS and then per-

formed GO analysis using DAVID annotation tool [30, 31] to check the enrichment of GO

terms for biological process (Fig 4C). For the largest module I, GO terms including protein

transport and autophagy were identified to be significant. Autophagy is recognized to promote

cell survival and involved in the development of human placenta [32, 33]. Genes in protein

transport pathways are important for placenta function, since placenta plays an important role

in the feto-maternal exchange processes via classic membranous transport mechanisms, i.e.

the transportation capacity of the placenta. For module II and module III, the terms of neuron

apoptotic process and positive regulation of protein kinase B signaling were identified, and

were found to be related to the cell fate regulation during the development of cerebellum [34]

and of hematopoietic lineages [35], respectively.

DNA methylation affects the bindings of transcription factors (TFs) to their targets [10],

while TFs binding may prevent or facilitate the methylation on their binding sites [11, 12].

Hence, specific TFs could cooperate with DNA methylation to regulate gene expression. To

examine whether co-methylated loci are under the control of the same set of TFs, we per-

formed motif enrichment analysis with HOMER software [36] (Fig 4D and S4 Table). Intrigu-

ingly, each co-methylated module is associated with a distinct set of transcription factors,

whose functions have been linked to the tissues associated with modules. More specifically,

transcription factor Dhcr24 was found to be the regulator for the putative CSM loci in both

modules I and IV. The Dhcr24 gene is involved in cellular lipid metabolism and cholesterol

biosynthesis [37], and cholesterol is of vital importance for fetal development, thus the expres-

sion of Dhcr24 in placenta would provide a means to satisfy the high requirement for choles-

terol in fetus [38]. Downregulation of this gene was detected in intrauterine growth restriction

placentas compared to normal placentas [39], which indicated that the decreased expression of

this gene in the placenta influenced the cholesterol supply to the fetus, and contributed to the

poor fetal growth. The enriched Hic1 [40] in module II, and Ets1 [41, 42] in module III were

essential for normal development of cerebellar and for the establishment of differentiation

potentialities of hematopoietic tissues in mesoderm layers, respectively.

Putative CSM loci may underlie variable gene expression in ESC

To further investigate the role of DNA methylation in transcription regulation, we re-analyzed

a single-cell RNAseq dataset derived from IB10 cell line [43], a sub-clone of E14 ESCs we ana-

lyzed for the single cell methylomes in this study. Following the procedure described in the

previous study [43], we identified 2,266 highly variable genes (HVGs), which were genes with

over-dispersed abundance compared to those transcripts with non-fluctuating expression in

all cells and showed much higher υ statistics than other genes (S5A Fig) [43]. To explore how

the CSM contributes to the variation in gene expression, we examined the HVGs in genes

overlapped with putative CSM loci (S5B Fig). We determined genes with putative CSM loci

localized in the distal upstream region ([-10k, 2k] of TSS), proximal upstream region ([-2k,

0.5k] of TSS), and gene body ([-10k of TSS, TES]). A total of 927 genes with their distal

upstream regions overlapped with putative CSM loci showed significant enrichment in the list

of HVGs, with 134 of these 927 genes highly variably expressed among ES cells (Chi square

test, p value = 2.5e-02). In contrast, no significant overlap was observed among HVGs and

genes with putative CSM loci in their proximal upstream regions or gene bodies (Chi square

test, p value = 0.70 and 0.11, respectively). This result indicates that the methylation
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heterogeneity in distal upstream region might underlie the variable gene expression in ESCs

rather than proximal upstream region or gene body.

We then examined the methylation differences of HVGs between two methylation states,

i.e. θ(1)—θ(2). Interestingly, for those genes with putative CSM loci in their gene bodies, we

found that HVGs showed significantly higher θ(1)—θ(2) than non-HVGs (Wilcoxon test, p

value = 4.1e-02), while for genes with non-CSM loci in their gene bodies, the θ(1)—θ(2) of

HVGs were significantly lower than those of non-HVG (Wilcoxon test, p value = 4.1e-06)

(S5C Fig). This indicates that other factors such as histone modifications may be involved in

regulating genes lack of CSM, of which the expression variability showed independence to the

methylation difference. Even for genes with putative CSM loci, the CSM are only partially

responsible for the variable expression. This result is similar to a recent study which demon-

strated that for genes with variably methylated promoters among single cells, about 26.1% of

them are significantly correlated with gene transcription, while for genes with hypomethylated

promoters, 51% of them exhibit dynamic expression across cells [44]. Altogether, these results

suggest a complex regulating role of DNA methylation on gene expression, either in promoter

or gene body.

Discussion

Embryonic stem cells are characterized by high cellular heterogeneity and consist of various

cell subsets that express different levels of specific markers (such as Stella, Nanog and GATA-

6) and differ in bias toward self-renewal or differentiation [4]. Single cell “omics” studies pro-

vide data in an unprecedented resolution to achieve understandings of the cellular complexity

in multicellular organisms. Currently, a few single cell methylome datasets are available [14–

16] but how to analyze and interpret methylation variation among single cells is far from clear.

For cells in multicellular organisms, the genomic DNA contents are nearly identical, if not the

same. However, at the epigenome level, dynamic DNA methylation is key to diverse cellular

functions. In this study, we proposed a computational pipeline to infer CSM with scBS-seq

data derived from mouse ES cells. To our knowledge, this study is the first attempt to explore

single cell methylomes for CSM in heterogeneous embryonic stem cells. The pipeline imple-

mented in this study may also be applied to other emerging single-cell methylation data sets.

Single-cell methylomes are frequently with low read depth, which greatly limits the distinc-

tion of CSM from ASM and AM. Such a limitation has also been pointed out in a recent study.

Hu et al. discovered a high rate of allele drop-out while applying single-cell techniques, resulting

that the vast majority of assayed CpGs represent only one of two possible alleles [44]. To over-

come such a limitation, the pipeline implemented in this study took the within-a-cell interfer-

ence into account, and annotated ASM from previous knowledge and AM based on hairpin

bisulfite sequencing data from our previous study and scBS-seq datasets. Current single-cell epi-

genetic studies primarily focused on measuring methylation heterogeneity by estimating the

cell-to-cell methylation variance [44–46]. However, methylation variance may not reflect the

heterogeneity attributed to different methylation states. For example, the higher methylation

variance could be caused by methylation levels following continuous uniform distribution than

bi-modal distributed ones, whereas the latter is more likely to be seen in a population of mixed

cell subsets. In contrast to aforementioned studies [44–46], we model the methylation data on

putative CSM loci with a beta mixture model. Based on this model, we determined the differ-

ence of the estimated methylation probabilities between the two methylation states and pro-

vided statistical justification to infer putative CSM loci. As a side note, it was found that, when

divided into hyper-and hypo-methylated clusters, such putative CSM loci exhibited higher

methylation difference (θ(1)—θ(2)) but smaller methylation variance (S4C Fig).
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Our analysis pipeline for CSM inference accepts single cell methylomes and excludes geno-

mic loci associated with allele-specific and asymmetric methylation. It has several limitations

on the requirements of prior knowledge and data inputs. 1) We assume a majority of allele-

specific methylated loci have been identified in previous studies [17]. However, it remains

challenging to determine the genome loci associated with stochastic allele-specific methylation

and the parental origins of the conservative genomic loci lacking of SNPs across mouse strains.

Thus, the existing list of ASM loci may not be comprehensive. 2) Our recent studies [18, 47]

on asymmetric DNA methylation suggest that fast replicating cells may have a large number of

asymmetrically methylated CpG dyads while terminally differentiated cells have much fewer.

Although asymmetric methylated CpG sites tend to be widely distributed [18], some clusters

of asymmetric methylated CpG sites in stem cells may end up as a source of cell specific meth-

ylated loci if the methylation statuses of two DNA strands segregating into two daughter cells

are stable during cell duplication. 3) Apparently, the determination of putative CSM loci is

highly dependent on the data quality of single cell methylomes, in particular the number of

single cell sequenced, the genome coverage and read depth for each methylome. Currently,

only very limited number of methylomes were determined at the single cell level and with low

genome coverage. This greatly limits the downstream methylome comparisons and co-methyl-

ation analysis of CSM clusters.

Despite all the aforementioned limitations, we were able to infer a number of putative CSM

loci in mouse ESCs and made several interesting observations. The genome distribution analy-

sis for putative CSM loci show that these loci are enriched in CGI shelves and genomic regions

with histone marks for enhancer and promoter. We explored the methylation profiles of puta-

tive CSM loci in adult mouse tissues to perform co-methylation analysis. The co-methylation

analysis provides valuable information for understanding on the biological readouts of epige-

netic heterogeneity. Some putative CSM loci in co-methylated modules show placenta specific

methylation profile. This suggests that, within a population of ESCs, some cells may be pre-

marked at the epigenetic level and with the potential to differentiate into placenta tissue. In

addition, TFs playing important roles in tissue specification were enriched in the co-methyla-

tion modules. More interestingly, the integration with single cell RNAseq data indicates that

the putative CSM loci are associated with highly variable genes. The three-step procedure

implemented in this study will provide lists of co-methylation modules, co-regulation of TFs,

and underlying highly variable expression. Such a process paves the way to integrate “omics”

data sets from multiple layers and to explore epigenetic regulation at a module-based level.

Methods

Analyses of scBS-seq datasets and hairpin BS-seq dataset

Methylomes of mouse ES cells (E14TG2a) were downloaded from Gene Expression Omnibus

(GEO) database (GSE56879), including 19 scBS-seq datasets of cells cultured in serum/LIF

[15] and one hairpin BS-seq dataset (GSE48229) [18]. Our scBS-seq data analysis followed the

processing steps provided in Smallwood et al. 2014 [15]: 1) perform adaptor trimming with

Trim Galore! (v0.3.7); 2) map reads to human genome (GRCh38/hg19) in pair-end mode to

remove contaminated reads and then map the unmapped reads to mouse genome (GRCm38/

mm10) in single-end mode using Bismark [48] (v0.7.7); 3) perform duplication removal using

picard-tools (v1.118); 4) perform methylation calling with Bismark [48] (v0.7.7). For hairpin

BS-seq dataset, HBS analyzer [49] was employed. For both scBS-seq data and hairpin BS-seq

data, all segments with four neighboring CpG sites in any sequence read were extracted from

autosomes. In this study, the methylation level was determined as the ratio of the methylated

cytosine counts to the total cytosine counts.
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Annotation of ASM and AM loci

The genomic coordinates of mouse ASM loci and the annotation of either ‘germline’ or ‘somatic’

ASM were retrieved from a previous study [17], and were lifted to mm10 using liftOver. The

AM loci were determined from hairpin BS-seq data [18] and scBS-seq data [15]. With hairpin

BS-seq data, the AM loci were defined as 4-CpG segments with completely methylated pattern

on one strand and completely unmethylated pattern on the other strand in a pair of hairpin

sequence reads. For the scBS-seq dataset, the 4-CpG segments with at least one completely meth-

ylated read and one completely unmethylated read in one cell were defined as AM loci.

Inference of candidate CSM regions

Three steps were taken to infer candidate CSM regions. 1) The determination of seeds for

CSM: The 4-CpG segments overlapped with known ASM loci were filtered from the total seg-

ments. Bipolar methylated segments were selected from the remaining segments, which were

defined as the ones with completely methylation in one single-cell methylome and completely

unmethylation in any other single-cell methylome. After filtering out AM loci, the remaining

bipolar methylated segments were defined as CSM seeds. 2) The extension of CSM seeds: Each

CSM seed as well as other ASM-filtered segments were extended to include upstream and

downstream 100 bp regions. Extended CSM seeds overlapped with other extended segments

or seeds were merged into one, which ensured that each merged region included at least one

CSM seed. 3) The extraction of candidate CSM regions: The merged regions covered by at

least 5 single-cell methylomes and with at least 10 cytosine counts in each single-cell methy-

lome were defined as candidate CSM regions. To produce a control set for putative CSM loci,

all ASM-filtered segments were extended to include upstream and downstream 100 bp regions,

merged with overlapped ones, and filtered with the same cutoffs of number of cells and cyto-

sine counts as the candidate CSM regions.

Empirical Bayesian estimation

Consider N single cells and R regions. For a given a region r from cell i(r = 1,2,. . .,R; i = 1,2,. . .,

N), there are cri CpG sites. For each CpG site, we assume that the methylated count follows

binomial distribution with a common methylation probability. We further assume that there

are a total of njri read counts for the jth CpG site (j = 1,2,. . .,cri). Then, on this CpG site, we

have the methylated count

mjri � Binomial ðnjri; yriÞ: ð1Þ

Denote M0
ri ¼ ðm1ri;m2ri; . . . ;mcriri

Þ
T

and, N 0ri ¼ ðn1ri; n2ri; . . . ; ncriri
Þ
T

the joint probability

function can be written as

f ðM0

rijyri;N
0

riÞ ¼
Qcri

j¼1
Cmjri

njri yri
mjrið1 � yriÞ

njri � mjri : ð2Þ

Since the true methylation probability θri is unknown, we treat θri as a random variable

which follows beta distribution,

yri � Betaðari; briÞ: ð3Þ

By conjugacy, we have the posterior distribution of θri that is also beta distribution

Prðyrijari;bri;M
0

ri;N
0

riÞ ¼ Betað
Pcri

j¼1
mjri þ ari;

Pcri
j¼1

njri �
Pcri

j¼1
mjri þ briÞ: ð4Þ
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The parameters of the prior distribution αri and βri are unknown. In order to estimate

them, first, the beta distribution may be reparameterized by its mean μri and precision Mri,

that is

mri ¼
ari

ari þ bri
; Mri ¼ ari þ bri:

According to the previous assumptions of distributions, the marginal distribution of the

methylated counts mjri is then given by beta-binomial distribution. Second, the parameters μri
and Mri of the beta-binomial distribution are estimated using an empirical Bayesian method

[50]. Consequently, we obtain an estimation based on the method of moments

m̂ri ¼

P
jnjriejri
P

jnjri
; ð5Þ

where m̂ri is the weighted mean of observed methylation level ejri, and ejri ¼
mjri
njri
; j ¼ 1; 2; . . . ; cri. An esti-

mation of precision Mri may be obtained as

M̂ri ¼
m̂rið1 � m̂riÞ � s2

ri

s2
ri �

m̂rið1� m̂ riÞ

N

PN
i¼1

1Pcri
j¼1

njri
;

where s2
ri is the total weighted sampled variance

s2

ri ¼

P
jnjriðejri � m̂riÞ

2

P
jnjri

:

Based on (5) and (6), αri and βri are estimated as follows

âri ¼ m̂riM̂ ri; ð7Þ

b̂ri ¼ ð1 � m̂riÞM̂ri: ð8Þ

In case that M̂ri is negative [50], we assign âri ¼ b̂ri ¼ 1. In addition, for missing methyla-

tion data on some CpG sites for some cells, we set the two parameters of their methylated

counts and total counts to zero.

Methylation variance of cell to cell

To understand the methylation heterogeneity driven by CSM, we evaluate the methylation var-

iance of cell to cell. To this end, we employ a random effect model to describe the variances

across single cells. According to the posterior estimations of methylation probabilities above,

we have the expectations and variances of the methylation probabilities of θri:

EðyriÞ ¼

P
jmjri þ ari

P
jnjri þ ari þ bri

; ð9Þ

var yrið Þ ¼
ð
P

jmjri þ ariÞð
P

jnjri �
P

jmjri þ briÞ

ð
P

jnjri þ ari þ briÞ
2
ð
P

jnjri þ ari þ bri þ 1Þ
: ð10Þ

Also, we assume that μr is the abstract methylation probability across single cells. Further-

more, D
2

r is defined as the variance of population; δri is defined as the deviation from the aver-

age methylation probability across single cells; and εri is a random effect. The observed

methylation probabilities θri with the corresponding variance Vri for region r from cell i are

(6)
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considered to be a function of the abstract methylation probability μr, δri and εri:

yri ¼ mry þ dri þ εri: ð11Þ

To resolve the random effect model, a non-iteration algorithm was employed [51]. As a

result, μr is estimated as a weighted mean of the observed methylation probabilities θri:

m̂r ¼

PN
i¼1

w�riyri
PN

i¼1
w�ri

; ð12Þ

where

w�ri ¼ ðVri þ D̂2

riÞ
� 1
: ð13Þ

Also, the estimator of the methylation variance V̂ r is

V̂ r ¼
1

PN
i¼1

w�ri
; ð14Þ

where the 95% confidence interval of V̂ r is obtained from 1000 Bootstrap samplings.

Clustering of single cell subpopulations

Suppose that there are K methylation states in a given region. As the composition of methyla-

tion state is unknown, a mixture model is employed to decompose the mixture methylation

states. To this end, we focus on some candidate regions with methylation variation across cells.

For a given region r, we assume that the proportion of the kth subgroup over the cell popula-

tion is λrk, where
PK

k¼1
lrk ¼ 1. As mentioned above, we assume that the number of methylated

count for each CpG site in a given region follows binomial distribution and the methylation

probability follows beta distribution. Then, we obtain the posterior distribution of methylation

probability θri in region r from cell i:

PrðyrijM
0

ri;N
0

riÞ ¼ Betað
Pcri

j¼1
mjri þ ari;

Pcri
j¼1

njri �
Pcri

j¼1
mjri þ briÞ:

Since cells are grouped in the region, the methylation probabilities of the cells from a sub-

group are assumed to be the same. Let y
ðkÞ
r denote the methylation probability of group k.

Then, the probability for the observed methylation in cell i is:

PrðiÞ ¼
PK

k¼1
PrðkÞ � PrðijkÞ ¼

PK
k¼1

lrkPrðijyðkÞr Þ:

According to the posterior distribution of methylation probability, the conditional proba-

bility of observing cell i from subgroup k is obtained:

PrðijyðkÞr Þ ¼
Gð
Pcri

j¼1
mjri þ âriÞGð

Pcri
j¼1

njri �
Pcri

j¼1
mjri þ b̂riÞ

Gð
Pcri

j¼1
njri þ a^ ri þ b̂riÞ

ðy
ðkÞ
r Þ

Pcri
j¼1

mjriþâri� 1
�ð1 � y

ðkÞ
r Þ

Pcri
j¼1

njri�
Pcri

j¼1
mjriþb̂ri� 1

;

where Γ(.) is the Gamma function.

Therefore, the joint likelihood function can be written as:

LðYÞ ¼
QN

i¼1
PrðiÞ; ð15Þ

where Y ¼ ðlr1; lr2; . . . ; lrK ; y
ð1Þ

r ; y
ð2Þ

r ; . . . ; y
ðKÞ
r Þ

T
. The parameters Θ may be estimated by maximizing

the log likelihood function:

Ŷ ¼ arg maxY logLðYÞ ¼ arg maxY‘ðYÞ ¼ arg maxY

PN
i¼1

logPrðiÞ: ð16Þ
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The optimized problem (16) may be resolved by the Expectation-Maximization (EM) algo-

rithm by introducing a latent random variable Yi which denotes the membership of cell i, that

is Yi = k if cell i is from subgroup k. Let Pr(Yi = k) denote the probability of Yi = k. Finally, we

iteratively estimate all parameters based on the EM algorithm:

E-step:

Pr Yi ¼ kji;Yð Þ ¼
lrkPrðijyðkÞr Þ

PK
k¼1

lrkPrðijyðkÞr Þ
; ð17Þ

M-step:

lrk ¼

PN
i¼1

PrðYi ¼ kji; YÞ

N

y
ðkÞ
r ¼

PN
i¼1

PrðYi ¼ kji; YÞð
Pcri

j¼1
mjri þ âri � 1Þ

PN
i¼1

PrðYi ¼ kji; YÞð
Pcri

j¼1
njri þ âri þ b̂ri � 2Þ

; ð18Þ

8
>>>><

>>>>:

here k = 1,2,. . .K,

where Pr(Yi = k|i,Θ) is the posterior estimation of the probability of Yi = k given the

observed cell i and parameters Θ. In this study, we only focused on the bimodal methylation

states by assuming a two-state model, that is K = 2.

Assessment of beta mixture model

For each candidate region in a given cell, we considered two models: one is the beta mixture

model; the other is a null model where only one cluster exists. We used likelihood ratio test to

evaluate the goodness-of-fit of the two models to the data. The p-values are then adjusted by

the Benjamini–Hochberg procedure [52]. In addition, we introduced a latent membership

probability estimated by the beta mixture model to determine which cluster each single cell

originates from in a given region, that is, the single cell i is from the first state if Pr(Yi = 1)� Pr

(Yi = 2), and from the second state otherwise. Besides, larger θ(1)—θ(2) will lead to the more

accurate estimation of the two states. We determined the cutoff of θ(1)—θ(2) to be 0.3 based on

simulation data. In the study, the regions with significant adjusted p-values and with θ(1)—θ(2)

(that is tuning parameter) greater than a given value were considered as putative CSM loci.

Lastly, false discovery rate (FDR), true positive rate (TPR), false positive rate (FPR) and posi-

tive predictive value (PPV) are calculated for these putative CSM loci. A full description of the

beta mixture model is provided in the S1 Text. The code and test data of the beta mixture

model are available in the S1 Appendix and freely downloadable from https://github.com/

Evan-Evans/Beta-Mixture-Model.

Simulation

In the simulation study, we consider two cell subpopulations with distinct methylation proba-

bilities. To evaluate the robustness of parameters estimation in the statistical model, we simu-

late data by setting the number of reads for each CpG site, the number of cells, and the rate of

missing data. More specifically, the parameter λ is randomly sampled from unif[0, 1]; the read

counts for each CpG site are sampled from a Poisson distribution with a prespecified mean

that is considered as the read depth; and the methylated counts for each CpG site are sampled

from binomial distribution with fixed methylation probabilities (i.e. y
ðkÞ
r ; k ¼ 1; 2) sampled

from unif[0, 1]. We consider the estimated parameter to be accurate if the difference between
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the estimated value and the real value we set is less than 1e-2. All simulations are based on

10,000 independent samplings.

Genomic features extraction

Genomic features were obtained from the UCSC Genome database [53], including annota-

tions for gene structure (Refseq genes), CpG islands (cpgIslandExt), repetitive elements

(RepeatMasker), and placental mammal conservation scores (phastCons60wayPlacental) in

mm10. Promoters were defined as 1kb regions in the upstream of transcription starting sites

(TSSs). CGI shores (2kb regions directly upstream and downstream of CpG islands) and CGI

shelves (neighboring regions outwards from a CpG island shore and up to 4kb away from the

CpG islands) were defined according to each CpG island. The information for DNA-related

attributes including GC content, CpG density (defined as CpG observed vs. expected ratio)

were extracted from the sequences of putative CSM loci. The histone modifications H3K27ac,

H3K36me3, H3K4me1, H3K4me3, and H3K9ac for E14 cell line were obtained from the

ENCODE Project [54] and lifted to mm10. Each histone peak was divided into 100 equal sized

bins, and the frequency of putative CSM loci for each bin was calculated for plotting.

CSM co-methylation and co-regulation analyses

We made use of 17 mouse tissue methylomes derived from a single pregnant female mouse

(GSE42836), with an average depth of 8.2-fold genomic coverage per tissue, covering on aver-

age 79.7% of the CpG dinucleotides in the mouse genome [28]. The putative CSM loci with no

methylation data available were filtered out. The methylation levels for the remaining 2,096

putative CSM loci (account for 99.6% of the total) were determined in each tissue. Pearson’s

correlations were then calculated based on the methylation levels of each pair of putative CSM

loci and further used for hierarchical clustering to determine co-methylation modules, with a

correlation coefficient cut-off set as 0.75. The motif enrichment analyses were performed for

each co-methylated module using Hypergeometric Optimization of Motif Enrichment

(HOMER) [36].

Single-cell RNAseq analysis

Single-cell RNAseq data for 933 cells derived from mouse IB10 cell line subcloned from E14

ESCs [43] were re-analyzed in this study. The expression profiles of these cells were down-

loaded from GEO (GSE65525). We referred to the filtering steps for genes in Zeisel et al. 2015

[55] to select genes with strong correlations with many others. First, genes with less than 10

UMI counts across the 933 mouse ESCs were removed (resulted in 23943 genes). Second, we

calculated the Pearson’s correlation between each two genes based on their expression profiles

across single cells. Next, a threshold of correlation among genes was set according to the 90th

percentile of all the Pearson’s correlations (ρ = 0.166). We removed the gene if among the cor-

relations involving this gene, only 4 or fewer correlation values were found to be larger than

the threshold (resulted in 22660 genes). Lastly, the statistic score (υ) defined in Eq. (S13) in

Klein et al. 2015 [43] was calculated and the genes with the top 10% υ were determined as

HVGs (resulted in 2266 genes).

Supporting information

S1 Fig. Characterization of scBS-seq libraries. (A) Overview of the extraction of 4-CpG seg-

ments across 19 single cells. Two example segments composited by CpG 1~4, and CpG 2~5

were shown. Sequence reads derived from different cells were marked by different colors.
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Methylated and unmethylated patterns of each CpG were distinguished by black and white cir-

cles, respectively. (B) Average read depth of segments covered by different number of cells. (C)

Number of segments covered by different number of cells. (D) The number of segments with

read depth of 1X, 2X, 3X, 4X, and > = 5X covered by different number of cells. 19 ES cells are

shown in x axis. Segments covered by different number of cells are shown in 19 facets, denoted

as “#Cells: number”. (E) The frequency of segments covered by different number of cells in dif-

ferent genomic features.

(TIF)

S2 Fig. The methylation profile of ASM and AM loci. (A) The distribution of range of meth-

ylation level (maximum methylation level–minimum methylation level) versus the average

methylation level of each ASM locus across single cells. Each point represents one ASM locus,

with germline and somatic ASM loci marked separately. (B) Heatmap of methylation level of

12,042 AM loci in 19 cells. The methylation levels are represented by color gradient from blue

(unmethylation) to yellow (partial methylation) until to red (full methylation), with white

color representing missing data of the locus in that cell. (C) Density scatterplot of the range of

methylation level (maximum methylation level–minimum methylation level) versus the aver-

age methylation level of AM loci across single cells. Coloring indicates density of AM loci from

high (black) to low (white).

(TIF)

S3 Fig. Assessment of beta mixture model. (A) The distribution of the fraction of accurate

prediction of the beta mixture model with different θ(1)—θ(2) based on simulation data. Differ-

ent settings of λ were shown in different colors. (B) Scatterplot of the estimated θ(1)—θ(2) ver-

sus real θ(1)—θ(2) based on simulation data. Different setting of λ were shown in different

facets. (C) ROC curve of beta mixture model at different setting of Deltamin. (D) PPV of beta

mixture model at different setting of θ(1)—θ(2). (E) Performance of beta mixture model with

the θ(1)—θ(2). The solid black line denotes the number of CSM. The solid red line represents

the percent of false discovery rate (FDR). The solid blue line is the number of false positive

CSM.

(TIF)

S4 Fig. Characterization of putative CSM loci. (A) Density scatterplot of θ(1)—θ(2) (x-axis)

versus average methylation level (y-axis) in control regions across 19 cells. Coloring indicates

density of control regions from low (blue) to high (yellow). (B) Violin plot of methylation vari-

ance, average methylation level, and θ(1)—θ(2) of putative CSM loci across genomic features.

Black dots mark the mean value; Black vertical lines indicate the standard deviation. Grey dash

line marks the mean value of methylation variance, average methylation level, and θ(1)—θ(2) of

control regions. The distribution of (C) GC-content, (D) CpG density, and (E) placental mam-

mal conservation of putative CSM loci and control regions.

(TIF)

S5 Fig. Genes with putative CSM loci and highly variable genes of single ES cell transcrip-

tome. (A) The υ statistics of HVGs and non-HVGs in log10 scale. (B) The number of HVGs

and non-HVGs with putative CSM loci and non-CSM loci localized in their distal upstream

region ([-10k, 2k] of TSS), proximal upstream region ([-2k, 0.5k] of TSS), and gene body

([-10k of TSS, TES]). P values are calculated by chi square test. (C) Distribution of θ(1)—θ(2) of

HVGs and non-HVGs with putative CSM loci and non-CSM loci localized in the gene body

([-10k of TSS, TES]). P values are calculated by wilcoxon rank sum test.

(TIF)
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S1 Table. Mapping details for 19 scBS-seq libraries.

(XLSX)

S2 Table. Annotation of coordinates of ASM loci in mm10 version.

(XLSX)

S3 Table. Statistical test for distribution of genomic features of putative CSM loci.

(XLSX)

S4 Table. Enrichment of TF binding motifs in putative CSM loci in five modules.

(XLSX)

S1 Text. A full description of beta mixture model.

(DOCX)

S1 Appendix. Beta mixture model and test data.

(ZIP)

Author Contributions

Conceptualization: Hehuang Xie.

Data curation: Yanting Luo, Jianlin He.

Formal analysis: Yanting Luo, Jianlin He.

Funding acquisition: Xuemei Lu, Hehuang Xie.

Investigation: Yanting Luo, Jianlin He, Xiguang Xu, Ming-an Sun.

Methodology: Yanting Luo, Jianlin He.

Project administration: Xuemei Lu, Hehuang Xie.

Resources: Xuemei Lu, Hehuang Xie.

Software: Yanting Luo, Jianlin He, Xiguang Xu.

Supervision: Hehuang Xie.

Validation: Yanting Luo, Jianlin He, Xiguang Xu.

Visualization: Yanting Luo, Jianlin He, Xiguang Xu.

Writing – original draft: Yanting Luo, Jianlin He, Xiguang Xu, Xuemei Lu, Hehuang Xie.

Writing – review & editing: Yanting Luo, Jianlin He, Xiguang Xu, Ming-an Sun, Xiaowei Wu,

Xuemei Lu, Hehuang Xie.

References
1. Smith AG. Embryo-derived stem cells: of mice and men. Annual review of cell and developmental biol-

ogy. 2001; 17:435–62. https://doi.org/10.1146/annurev.cellbio.17.1.435 PMID: 11687496

2. O’Shea KS. Self-renewal vs. differentiation of mouse embryonic stem cells. Biology of reproduction.

2004; 71(6):1755–65. https://doi.org/10.1095/biolreprod.104.028100 PMID: 15329329

3. Toyooka Y, Shimosato D, Murakami K, Takahashi K, Niwa H. Identification and characterization of sub-

populations in undifferentiated ES cell culture. Development (Cambridge, England). 2008; 135(5):909–

18.

4. Graf T, Stadtfeld M. Heterogeneity of embryonic and adult stem cells. Cell stem cell. 2008; 3(5):480–3.

https://doi.org/10.1016/j.stem.2008.10.007 PMID: 18983963

Epigenetic heterogeneity in mouse ESCs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006034 March 21, 2018 18 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006034.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006034.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006034.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006034.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006034.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006034.s011
https://doi.org/10.1146/annurev.cellbio.17.1.435
http://www.ncbi.nlm.nih.gov/pubmed/11687496
https://doi.org/10.1095/biolreprod.104.028100
http://www.ncbi.nlm.nih.gov/pubmed/15329329
https://doi.org/10.1016/j.stem.2008.10.007
http://www.ncbi.nlm.nih.gov/pubmed/18983963
https://doi.org/10.1371/journal.pcbi.1006034


5. Singh AM, Hamazaki T, Hankowski KE, Terada N. A heterogeneous expression pattern for Nanog in

embryonic stem cells. Stem cells. 2007; 25(10):2534–42. https://doi.org/10.1634/stemcells.2007-0126

PMID: 17615266

6. Singh AM, Chappell J, Trost R, Lin L, Wang T, Tang J, et al. Cell-cycle control of developmentally regu-

lated transcription factors accounts for heterogeneity in human pluripotent cells. Stem cell reports.

2013; 1(6):532–44. https://doi.org/10.1016/j.stemcr.2013.10.009 PMID: 24371808

7. Nakai-Futatsugi Y, Niwa H. Transcription Factor Network in Embryonic Stem Cells: Heterogeneity

under the Stringency. Biol Pharm Bull. 2013; 36(2):166–70. PMID: 23370346

8. Mohn F, Schubeler D. Genetics and epigenetics: stability and plasticity during cellular differentiation.

Trends in genetics: TIG. 2009; 25(3):129–36. https://doi.org/10.1016/j.tig.2008.12.005 PMID:

19185382

9. Gifford Casey A, Ziller Michael J, Gu H, Trapnell C, Donaghey J, Tsankov A, et al. Transcriptional and

Epigenetic Dynamics during Specification of Human Embryonic Stem Cells. Cell. 2013; 153(5):1149–

63. https://doi.org/10.1016/j.cell.2013.04.037 PMID: 23664763

10. Hu SH, Wan J, Su YJ, Song QF, Zeng YX, Nguyen HN, et al. DNA methylation presents distinct binding

sites for human transcription factors. Elife. 2013;2.

11. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, et al. DNA-binding factors shape the

mouse methylome at distal regulatory regions. Nature. 2011; 480(7378):490–5. https://doi.org/10.1038/

nature10716 PMID: 22170606

12. Tsankov AM, Gu H, Akopian V, Ziller MJ, Donaghey J, Amit I, et al. Transcription factor binding dynam-

ics during human ES cell differentiation. Nature. 2015; 518(7539):344–9. https://doi.org/10.1038/

nature14233 PMID: 25693565

13. Xie W, Schultz Matthew D, Lister R, Hou Z, Rajagopal N, Ray P, et al. Epigenomic Analysis of Multiline-

age Differentiation of Human Embryonic Stem Cells. Cell. 2013; 153(5):1134–48. https://doi.org/10.

1016/j.cell.2013.04.022 PMID: 23664764

14. Guo H, Zhu P, Wu X, Li X, Wen L, Tang F. Single-cell methylome landscapes of mouse embryonic stem

cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome

research. 2013; 23(12):2126–35. https://doi.org/10.1101/gr.161679.113 PMID: 24179143

15. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, et al. Single-cell genome-wide

bisulfite sequencing for assessing epigenetic heterogeneity. Nature methods. 2014; 11(8):817–20.

https://doi.org/10.1038/nmeth.3035 PMID: 25042786

16. Farlik M, Sheffield NC, Nuzzo A, Datlinger P, Schonegger A, Klughammer J, et al. Single-cell DNA

methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell reports.

2015; 10(8):1386–97. https://doi.org/10.1016/j.celrep.2015.02.001 PMID: 25732828

17. Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, et al. Base-resolution analyses of sequence and par-

ent-of-origin dependent DNA methylation in the mouse genome. Cell. 2012; 148(4):816–31. https://doi.

org/10.1016/j.cell.2011.12.035 PMID: 22341451

18. Zhao L, Sun MA, Li Z, Bai X, Yu M, Wang M, et al. The dynamics of DNA methylation fidelity during

mouse embryonic stem cell self-renewal and differentiation. Genome research. 2014; 24(8):1296–307.

https://doi.org/10.1101/gr.163147.113 PMID: 24835587

19. Ushijima T, Watanabe N, Okochi E, Kaneda A, Sugimura T, Miyamoto K. Fidelity of the methylation pat-

tern and its variation in the genome. Genome research. 2003; 13(5):868–74. https://doi.org/10.1101/gr.

969603 PMID: 12727906

20. Laird CD, Pleasant ND, Clark AD, Sneeden JL, Hassan KM, Manley NC, et al. Hairpin-bisulfite PCR:

assessing epigenetic methylation patterns on complementary strands of individual DNA molecules. Pro-

ceedings of the National Academy of Sciences of the United States of America. 2004; 101(1):204–9.

https://doi.org/10.1073/pnas.2536758100 PMID: 14673087

21. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signa-

ture uncovers early developmental enhancers in humans. Nature. 2011; 470(7333):279–83. https://doi.

org/10.1038/nature09692 PMID: 21160473

22. Calo E, Wysocka J. Modification of Enhancer Chromatin: What, How, and Why? Molecular cell. 2013;

49(5):825–37. https://doi.org/10.1016/j.molcel.2013.01.038 PMID: 23473601

23. Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of

mammalian genomes. Nature reviews Genetics. 2011; 12(1):7–18. https://doi.org/10.1038/nrg2905

PMID: 21116306

24. Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L. H3K9 and H3K14 acetylation co-

occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters

in mouse embryonic stem cells. BMC genomics. 2012; 13(1):424.

Epigenetic heterogeneity in mouse ESCs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006034 March 21, 2018 19 / 21

https://doi.org/10.1634/stemcells.2007-0126
http://www.ncbi.nlm.nih.gov/pubmed/17615266
https://doi.org/10.1016/j.stemcr.2013.10.009
http://www.ncbi.nlm.nih.gov/pubmed/24371808
http://www.ncbi.nlm.nih.gov/pubmed/23370346
https://doi.org/10.1016/j.tig.2008.12.005
http://www.ncbi.nlm.nih.gov/pubmed/19185382
https://doi.org/10.1016/j.cell.2013.04.037
http://www.ncbi.nlm.nih.gov/pubmed/23664763
https://doi.org/10.1038/nature10716
https://doi.org/10.1038/nature10716
http://www.ncbi.nlm.nih.gov/pubmed/22170606
https://doi.org/10.1038/nature14233
https://doi.org/10.1038/nature14233
http://www.ncbi.nlm.nih.gov/pubmed/25693565
https://doi.org/10.1016/j.cell.2013.04.022
https://doi.org/10.1016/j.cell.2013.04.022
http://www.ncbi.nlm.nih.gov/pubmed/23664764
https://doi.org/10.1101/gr.161679.113
http://www.ncbi.nlm.nih.gov/pubmed/24179143
https://doi.org/10.1038/nmeth.3035
http://www.ncbi.nlm.nih.gov/pubmed/25042786
https://doi.org/10.1016/j.celrep.2015.02.001
http://www.ncbi.nlm.nih.gov/pubmed/25732828
https://doi.org/10.1016/j.cell.2011.12.035
https://doi.org/10.1016/j.cell.2011.12.035
http://www.ncbi.nlm.nih.gov/pubmed/22341451
https://doi.org/10.1101/gr.163147.113
http://www.ncbi.nlm.nih.gov/pubmed/24835587
https://doi.org/10.1101/gr.969603
https://doi.org/10.1101/gr.969603
http://www.ncbi.nlm.nih.gov/pubmed/12727906
https://doi.org/10.1073/pnas.2536758100
http://www.ncbi.nlm.nih.gov/pubmed/14673087
https://doi.org/10.1038/nature09692
https://doi.org/10.1038/nature09692
http://www.ncbi.nlm.nih.gov/pubmed/21160473
https://doi.org/10.1016/j.molcel.2013.01.038
http://www.ncbi.nlm.nih.gov/pubmed/23473601
https://doi.org/10.1038/nrg2905
http://www.ncbi.nlm.nih.gov/pubmed/21116306
https://doi.org/10.1371/journal.pcbi.1006034


25. Baubec T, Colombo DF, Wirbelauer C, Schmidt J, Burger L, Krebs AR, et al. Genomic profiling of DNA

methyltransferases reveals a role for DNMT3B in genic methylation. Nature. 2015; 520(7546):243–7.

https://doi.org/10.1038/nature14176 PMID: 25607372

26. Vinogradov AE. DNA helix: the importance of being GC-rich. Nucleic acids research. 2003; 31(7):1838–

44. PMID: 12654999

27. Boyes J, Bird A. Repression of genes by DNA methylation depends on CpG density and promoter

strength: evidence for involvement of a methyl-CpG binding protein. The EMBO journal. 1992; 11

(1):327. PMID: 1310933

28. Hon GC, Rajagopal N, Shen Y, McCleary DF, Yue F, Dang MD, et al. Epigenetic memory at embryonic

enhancers identified in DNA methylation maps from adult mouse tissues. Nature genetics. 2013; 45

(10):1198–206. https://doi.org/10.1038/ng.2746 PMID: 23995138

29. Marikawa Y, Alarcón VB. Establishment of trophectoderm and inner cell mass lineages in the mouse

embryo. Molecular reproduction and development. 2009; 76(11):1019–32. https://doi.org/10.1002/mrd.

21057 PMID: 19479991

30. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the compre-

hensive functional analysis of large gene lists. Nucleic acids research. 2009; 37(1):1–13. https://doi.org/

10.1093/nar/gkn923 PMID: 19033363

31. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using

DAVID bioinformatics resources. Nature protocols. 2009; 4(1):44–57. https://doi.org/10.1038/nprot.

2008.211 PMID: 19131956

32. Hung T-H, Hsieh Ts-Ta, Chen S-F, Li M-J, Yeh Y-L. Autophagy in the Human Placenta throughout Ges-

tation. PloS one. 2013; 8(12):e83475. https://doi.org/10.1371/journal.pone.0083475 PMID: 24349516

33. Bildirici I, Longtine MS, Chen B, Nelson DM. Survival by self-destruction: A role for autophagy in the pla-

centa? Placenta. 2012; 33(8):591–8. https://doi.org/10.1016/j.placenta.2012.04.011 PMID: 22652048

34. Cavallaro S. Cracking the code of neuronal apoptosis and survival. Cell Death Dis. 2015; 6:e1963.

https://doi.org/10.1038/cddis.2015.309 PMID: 26539910

35. Polak R, Buitenhuis M. The PI3K/PKB signaling module as key regulator of hematopoiesis: implications

for therapeutic strategies in leukemia. Blood. 2012; 119(4):911–23. https://doi.org/10.1182/blood-2011-

07-366203 PMID: 22065598

36. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-deter-

mining transcription factors prime cis-regulatory elements required for macrophage and B cell identities.

Molecular cell. 2010; 38(4):576–89. https://doi.org/10.1016/j.molcel.2010.05.004 PMID: 20513432

37. Luu W, Zerenturk EJ, Kristiana I, Bucknall MP, Sharpe LJ, Brown AJ. Signaling regulates activity of

DHCR24, the final enzyme in cholesterol synthesis. J Lipid Res. 2014; 55(3):410–20. https://doi.org/10.

1194/jlr.M043257 PMID: 24363437

38. Palinski W. Maternal–Fetal Cholesterol Transport in the Placenta. Good, Bad, and Target for Modula-

tion. 2009; 104(5):569–71.

39. Diplas AI, Lambertini L, Lee M-J, Sperling R, Lee YL, Wetmur JG, et al. Differential expression of

imprinted genes in normal and IUGR human placentas. Epigenetics: official journal of the DNA Methyla-

tion Society. 2014; 4(4):235–40.

40. Boulay G, Dubuissez M, Van Rechem C, Forget A, Helin K, Ayrault O, et al. Hypermethylated in Cancer

1 (HIC1) Recruits Polycomb Repressive Complex 2 (PRC2) to a Subset of Its Target Genes through

Interaction with Human Polycomb-like (hPCL) Proteins. Journal of Biological Chemistry. 2012; 287

(13):10509–24. https://doi.org/10.1074/jbc.M111.320234 PMID: 22315224

41. Maroulakou IG, Bowe DB. Expression and function of Ets transcription factors in mammalian develop-

ment: a regulatory network. Oncogene. 2000; 19(55):6432–42. https://doi.org/10.1038/sj.onc.1204039

PMID: 11175359

42. Pardanaud L, Dieterlen-Lievre F. Expression of C-ETS1 in early chick embryo mesoderm: relationship

to the hemangioblastic lineage. Cell adhesion and communication. 1993; 1(2):151–60. PMID: 8081877

43. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell

transcriptomics applied to embryonic stem cells. Cell. 2015; 161(5):1187–201. https://doi.org/10.1016/j.

cell.2015.04.044 PMID: 26000487

44. Hu Y, Huang K, An Q, Du G, Hu G, Xue J, et al. Simultaneous profiling of transcriptome and DNA

methylome from a single cell. Genome biology. 2016; 17(1):1–11.

45. Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, et al. Single-cell triple omics sequencing reveals genetic, epi-

genetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell research. 2016; 26

(3):304–19. https://doi.org/10.1038/cr.2016.23 PMID: 26902283

46. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, et al. Parallel single-cell sequencing

links transcriptional and epigenetic heterogeneity. Nat Meth. 2016; 13(3):229–32.

Epigenetic heterogeneity in mouse ESCs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006034 March 21, 2018 20 / 21

https://doi.org/10.1038/nature14176
http://www.ncbi.nlm.nih.gov/pubmed/25607372
http://www.ncbi.nlm.nih.gov/pubmed/12654999
http://www.ncbi.nlm.nih.gov/pubmed/1310933
https://doi.org/10.1038/ng.2746
http://www.ncbi.nlm.nih.gov/pubmed/23995138
https://doi.org/10.1002/mrd.21057
https://doi.org/10.1002/mrd.21057
http://www.ncbi.nlm.nih.gov/pubmed/19479991
https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1093/nar/gkn923
http://www.ncbi.nlm.nih.gov/pubmed/19033363
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1038/nprot.2008.211
http://www.ncbi.nlm.nih.gov/pubmed/19131956
https://doi.org/10.1371/journal.pone.0083475
http://www.ncbi.nlm.nih.gov/pubmed/24349516
https://doi.org/10.1016/j.placenta.2012.04.011
http://www.ncbi.nlm.nih.gov/pubmed/22652048
https://doi.org/10.1038/cddis.2015.309
http://www.ncbi.nlm.nih.gov/pubmed/26539910
https://doi.org/10.1182/blood-2011-07-366203
https://doi.org/10.1182/blood-2011-07-366203
http://www.ncbi.nlm.nih.gov/pubmed/22065598
https://doi.org/10.1016/j.molcel.2010.05.004
http://www.ncbi.nlm.nih.gov/pubmed/20513432
https://doi.org/10.1194/jlr.M043257
https://doi.org/10.1194/jlr.M043257
http://www.ncbi.nlm.nih.gov/pubmed/24363437
https://doi.org/10.1074/jbc.M111.320234
http://www.ncbi.nlm.nih.gov/pubmed/22315224
https://doi.org/10.1038/sj.onc.1204039
http://www.ncbi.nlm.nih.gov/pubmed/11175359
http://www.ncbi.nlm.nih.gov/pubmed/8081877
https://doi.org/10.1016/j.cell.2015.04.044
https://doi.org/10.1016/j.cell.2015.04.044
http://www.ncbi.nlm.nih.gov/pubmed/26000487
https://doi.org/10.1038/cr.2016.23
http://www.ncbi.nlm.nih.gov/pubmed/26902283
https://doi.org/10.1371/journal.pcbi.1006034


47. Sun MA, Sun Z, Wu X, Rajaram V, Keimig D, Lim J, et al. Mammalian Brain Development is Accompa-

nied by a Dramatic Increase in Bipolar DNA Methylation. Scientific reports. 2016; 6:32298. https://doi.

org/10.1038/srep32298 PMID: 27585862

48. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications.

Bioinformatics. 2011; 27(11):1571–2. https://doi.org/10.1093/bioinformatics/btr167 PMID: 21493656

49. Sun MA, Velmurugan KR, Keimig D, Xie H. HBS-Tools for Hairpin Bisulfite Sequencing Data Process-

ing and Analysis. Advances in bioinformatics. 2015; 2015:760423. https://doi.org/10.1155/2015/760423

PMID: 26798339

50. Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT, Kohlbacher O, et al. Charting a dynamic DNA methyla-

tion landscape of the human genome. Nature. 2013; 500(7463):477–81. https://doi.org/10.1038/

nature12433 PMID: 23925113

51. Martuzzi M, Elliott P. Empirical Bayes estimation of small area prevalence of non-rare conditions. Stat

Med. 1996; 15(17–18):1867–73. https://doi.org/10.1002/(SICI)1097-0258(19960915)15:17<1867::AID-

SIM398>3.0.CO;2-2 PMID: 8888479

52. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to

Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995; 57(1):289–

300.

53. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, et al. The UCSC

Table Browser data retrieval tool. Nucleic acids research. 2004; 32(Database issue):D493–6. https://

doi.org/10.1093/nar/gkh103 PMID: 14681465

54. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, et al. Identification

and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature.

2007; 447(7146):799–816. https://doi.org/10.1038/nature05874 PMID: 17571346

55. Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Cell types in
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