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Background: Sepsis-associated acute kidney injury (SA-AKI) is common in critically

ill patients, which is associated with significantly increased mortality. Existing mortality

prediction tools showed insufficient predictive power or failed to reflect patients’ dynamic

clinical evolution. Therefore, the study aimed to develop and validate machine learning-

based models for real-time mortality prediction in critically ill patients with SA-AKI.

Methods: The multi-center retrospective study included patients from two distinct

databases. A total of 12,132 SA-AKI patients from the Medical Information Mart for

Intensive Care IV (MIMIC-IV) were randomly allocated to the training, validation, and

internal test sets. An additional 3,741 patients from the eICU Collaborative Research

Database (eICU-CRD) served as an external test set. For every 12 h during the ICU stays,

the state-of-the-art eXtreme Gradient Boosting (XGBoost) algorithm was used to predict

the risk of in-hospital death in the following 48, 72, and 120 h and in the first 28 days

after ICU admission. Area under the receiver operating characteristic curves (AUCs) were

calculated to evaluate the models’ performance.

Results: The XGBoost models, based on routine clinical variables updated every 12 h,

showed better performance in mortality prediction than the SOFA score and SAPS-II.

The AUCs of the XGBoost models for mortality over different time periods ranged from

0.848 to 0.804 in the internal test set and from 0.818 to 0.748 in the external test set. The

shapley additive explanation method provided interpretability for the XGBoost models,

which improved the understanding of the association between the predictor variables

and future mortality.

Conclusions: The interpretable machine learning XGBoost models showed promising

performance in real-time mortality prediction in critically ill patients with SA-AKI, which are

useful tools for early identification of high-risk patients and timely clinical interventions.
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INTRODUCTION

Sepsis is life-threatening organ dysfunction due to a dysregulated
host response to infection. It is a major cause of health loss
worldwide (1, 2). Acute kidney injury (AKI), characterized by
an abrupt increase in serum creatinine (SCr) or decrease in
urine output, is a common complication of critical illness (3–5).
AKI has been shown to be more frequent, less likely to resolve,
and associated with higher mortality in critically ill patients
with sepsis than in those without (6). Considering the critical
condition of patients with sepsis-associated AKI (SA-AKI), the
accurate prediction of their outcomes is a topic of interest.

Studies have shown that widely-used severity scores, such
as the Simplified Acute Physiology Score II (SAPS-II) and
the Sequential Organ Failure Assessment (SOFA) score, exhibit
insufficient power for outcome prediction in SA-AKI patients
(7, 8). A few prediction models for mortality in patients with
SA-AKI have been established (7, 8). However, they were limited
to small sample size or inadequate predictive performance. In
addition, the models incorporated static measurements at single
time points, typically in the early period after intensive care unit
(ICU) admission, and failed to reflect patients’ dynamic clinical
evolution. There is still a lack of feasible ways to assess the real-
time risk of death and guide individualized treatment decisions
in critically ill patients with SA-AKI.

The rapid development in big data analytics and machine
learning techniques, along with the data-rich environment in
ICU settings, provide unprecedented opportunities to establish
novel mortality prediction tools in SA-AKI patients (9–11).
Advanced machine learning methods are adept at handling high-
order interactions and fitting complex non-linear relationships,
which can be used to integrate large amounts of data from
electronic health records (EHRs). The application of data-driven
analytics by machine learning has shown promise to improve
predictive performance in medical fields (12–15).

The study aimed to develop and validate machine learning-
based models for real-time mortality prediction in critically ill
patients with SA-AKI, in an attempt to provide useful tools for
early prognostic assessment and clinical decision-making.

METHODS

Source of Data
Data were obtained from the Medical Information Mart for
Intensive Care IV (MIMIC-IV) v1.0 and the eICU Collaborative
Research Database (eICU-CRD) v2.0 (16–19). The MIMIC-IV
is a large and publicly available database containing records
from patients admitted to the ICUs of the Beth Israel Deaconess
Medical Center from 2008 to 2019. The eICU-CRD is a multi-
center telehealth database including data from more than
200,000 admissions to 335 ICUs at 208 hospitals across the
United States between 2014 and 2015. The study was an analysis
of the third-party databases with pre-existing institutional
review board approval and all protected patient information de-
identified. One of the authors has completed the Collaborative
Institutional Training Initiative course and can access the
databases (certification number 40010711).

Study Population
The study included adult patients with sepsis who developed
AKI within 48 h after ICU admission. In the MIMIC-IV, sepsis
was diagnosed based on the Sepsis-3 criteria, including suspected
infection and a SOFA score ≥ 2 (1). We identified patients with
suspected infection (antibiotics administration concomitant with
body fluid cultures) during the first 24 h after ICU admission and
calculated SOFA scores using data from the same period (20). In
the eICU-CRD, sepsis was identified according to the admission
diagnosis recorded on the Acute Physiology and Chronic Health
Evaluation IV dataset (21). AKI was defined based on the 2012
Kidney Disease: Improving Global Outcomes Clinical Practice
Guideline, using both SCr and urine output criteria (3). Baseline
SCr was defined as the minimum SCr value in the 7 days prior
to ICU admission, or the first SCr value after ICU admission if
no pre-admission SCr was available (22, 23). If the patient had
multiple ICU admissions during a hospital stay, only the first
ICU stay was included in the analysis to ensure the independence
of the data. Patients with age < 18 years old, end-stage renal
disease (identified by diagnosis codes), and ICU stay < 48 hours
were excluded.

Outcomes and Predictor Variables
The primary outcome was in-hospital mortality within 28 days
after ICU admission, censored at hospital discharge or 28 days,
whichever occurred first. Each patient’s ICU stay within 28 days
was separated into 12-hour windows, which were labeled as
“death” or “survival”. Specifically, to predict mortality in the
next 48, 72, and 120 h, the time windows in the corresponding
hours before death were labeled as “death” and the remaining
as “survival”. To predict mortality in the first 28 days after ICU
admission, all time windows were labeled as “death” in patients
who died and “survival” in patients who survived. The final
objective of the model was to predict the correct label for each
time window. Additionally, the secondary outcomes were ICU
length of stay, hospital length of stay and use of renal replacement
therapy (RRT) within the first 28 days.

The predictor variables within each time window contained
four static features (age, sex, ethnicity, and baseline SCr) and
sets of dynamic features including hours from ICU admission,
vital signs, laboratory values, and interventions. The list of
all predictor variables included for modeling is provided in
Table 1. For dynamic features, their values were time-varying and
updated on a 12-hour basis. We used the mean value of variables
measured multiple times and the lowest Glasgow Coma Scale
(GCS) score in each time window. For variables with no recorded
measurements during the 12-hour windows, their values were
carried forward from the most recent measurements.

Statistical Analysis
Statistical analyses were performed using R 4.1.2 (https://cran.
r-project.org). Continuous variables were presented as medians
with interquartile ranges and categorical variables were presented
as numbers with percentages. The schematic diagram of methods
is shown in Supplementary Figure S1. We divided the study
population in the MIMIC-IV into the training (50%), validation
(30%), and internal test (20%) sets, randomized at the patient
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level to ensure that each patient was allocated to only a subset.
We used the cohort of SA-AKI patients in the eICU-CRD as
an external test set. In the training set, the eXtreme Gradient

TABLE 1 | List of the predictor variables.

Variables Type

Demographics age, sex, ethnicity static

Length of stay hours from admission dynamic

Vital signs systolic blood pressure, diastolic blood

pressure, heart rate, respiratory rate, body

temperature, oxygen saturation, glasgow coma

scale score, urine output

dynamic

Laboratory data baseline serum creatinine static

hemoglobin, white blood cells, platelets, serum

total bilirubin, serum albumin, serum creatinine,

blood urea nitrogen, arterial pH, partial

pressure of arterial oxygen, partial pressure of

arterial carbon dioxide, serum sodium, serum

potassium, serum chloride, serum bicarbonate,

lactate, international normalized ratio, partial

thromboplastin time

dynamic

Interventions mechanical ventilation, vasopressors, renal

replacement therapy, loop diuretics

dynamic

Boosting (XGBoost) algorithm was used to establish mortality
prediction models with all predictor variables input. XGBoost,
a scalable end-to-end tree boosting system, is an optimized
implementation of the gradient boosting framework designed to
be highly efficient, flexible, and portable (24). During the training
process, it generates a series of decision trees, each of which is
generated based on the previous one to decrease the gradient
of the loss function. After that, a prediction model composed of
multiple decision trees is obtained. The XGBoost algorithm can
handle missing values by adding a default direction for them in
each tree node and learning the optimal direction from the data.
Therefore, missing values were directly input into the XGBoost
models as not available values. Supplementary Table S1 provides
the percentages of missing values in the predictor variables. For
machine learning approaches, hyperparameter tuning is required
to fit the complex relationship in the data and avoid overfitting.
The hyperparameters in the XGBoost models (learning rate,
minimum sum of instance weight, maximum tree depth, and
minimum loss reduction) andmax number of boosting iterations
were optimized on the validation set to achieve the maximum
area under the receiver operating characteristic curves (AUCs).
The xgboost package was used for XGBoost modeling. Details
on the functions and tuning parameters used for the XGBoost
algorithm can be found in Supplementary Table S2. More

FIGURE 1 | Study flow diagram. SA-AKI, sepsis-associated acute kidney injury; ICU, intensive care unit; ESRD, end-stage renal disease.
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TABLE 2 | Baseline characteristics and outcomes of SA-AKI patients in the training, validation and internal test sets.

Variables Training set

(n = 6,066)

Validation set

(n = 3,639)

Internal test set

(n = 2,427)

Age (year) 69 (58–79) 70 (59–80) 69 (59–80)

Sex, male, n (%) 3,501 (57.7) 2,089 (57.4) 1,330 (54.8)

Ethnicity, n (%)

White 4,182 (68.9) 2,505 (68.8) 1,730 (71.3)

Black 512 (8.4) 332 (9.1) 219 (9.0)

Hispanic 195 (3.2) 109 (3.0) 71 (2.9)

Asian 139 (2.3) 94 (2.6) 34 (1.4)

Other/Unknown 1,038 (17.1) 599 (16.5) 373 (15.4)

Baseline serum creatinine 1.1 (0.8–1.5) 1.0 (0.8–1.5) 1.1 (0.8–1.5)

Positive cultures*, n (%)

Respiratory culture 960 (15.8) 603 (16.6) 347 (14.3)

Blood culture 648 (10.7) 391 (10.7) 229 (9.4)

Urine culture 1,044 (17.2) 616 (16.9) 375 (15.5)

Wound culture 213 (3.5) 134 (3.7) 75 (3.1)

Fluid culture 199 (3.3) 116 (3.2) 90 (3.7)

MRSA screen 310 (5.1) 189 (5.2) 109 (4.5)

Tissue 97 (1.6) 67 (1.8) 38 (1.6)

Anaerobic culture 108 (1.8) 64 (1.8) 41 (1.7)

Fungal culture 154 (2.5) 86 (2.4) 65 (2.7)

KDIGO diagnostic criteria, n (%)

Serum creatinine 540 (8.9) 345 (9.5) 229 (9.4)

Urine output 3,467 (57.2) 2,035 (55.9) 1,368 (56.4)

Both 2,059 (33.9) 1,259 (34.6) 830 (34.2)

Outcomes

In-hospital mortality#, n (%) 1,127 (18.6) 620 (17.0) 444 (18.3)

ICU length of stay 4 (3–8) 4 (3–8) 4 (3–8)

Hospital length of stay 10 (6–16) 9 (6–16) 9 (6–16)

Use of RRT#, n (%) 562 (9.3) 325 (8.9) 224 (9.2)

MRSA, methicillin-resistant Staphylococcus aureus; KDIGO, kidney disease: improving global outcomes; ICU, intensive care unit; RRT, renal replacement therapy. Continuous variables

were presented as median (interquartile range) and categorical variables were presented as n (%).
*Positive cultures taken during the suspected infection time.
# In the first 28 days after ICU admission.

details about the XGBoost algorithm can be found at XGBoost
Documentation (https://xgboost.readthedocs.io/).

The performance of the prediction models was assessed on
the internal and the external test sets. AUC was selected as the
primary evaluation metric. Other metrics included sensitivity,
specificity, and accuracy.We reported the metrics under multiple
cutoff values, based on the local maximas of the receiver
operating characteristic curves. We compared the performance
of the XGBoost models with traditional risk scores, including the
SOFA score (25) and SAPS-II (26). We did not calculate the risk
scores in each 12-hour window for patients in the eICU-CRD
because some required variables were unavailable.

The XGBoost algorithm provides the importance of features
in predicting the outcome. We used the gain as the measure,
representing the fractional contribution of each feature to the
model output based on the total gain of this feature’s splits.
To explore the interpretability of the XGBoost models, we used
the Shapley Additive exPlanations (SHAP) method (27), which
provides consistent and locally accurate attribution values for
each feature. The influence of the predictor variables on the

outcome can be explained by the summing effects of variable
attributions in calculating the output risk for each observation.

In sensitivity analysis, we applied other frequently used
machine learning algorithms such as random forest and
support vector machine to our dataset for comparison (28, 29).
Additionally, we assessed the performance of the SOFA score,
SAPS-II and XGBoost model using data gathered in the early
period after ICU admission, i.e., the first 12 h, in predicting
in-hospital mortality in the first 28 days.

RESULTS

Baseline Characteristics and Outcomes
A total of 15,603 critically ill patients with SA-AKI were
included in our study, with 6,066 in the training set, 3,639
in the validation set, 2,427 in the internal test set, and 3,471
in the external test set (Figure 1). Baseline characteristics and
outcomes of the study population in each dataset are shown
in Table 2 and Supplementary Table S3. In the MIMIC-IV,
56.6% of SA-AKI patients were diagnosed by urine output
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FIGURE 2 | Receiver operating characteristic curves of the models for mortality in the following 48 h in the training set. (A) validation set; (B) internal test set; (C)

external test set; (D) SOFA, sequential organ failure assessment; SAPS-II, simplified acute physiology score II; XGBoost, extreme gradient boosting.

criteria, 9.2% by SCr criteria, and 34.2% by both criteria. In
the eICU-CRD, the proportions of SA-AKI patients meeting
urine output criteria, SCr criteria, and both criteria were 38.5,
40.9, and 20.5%, respectively. The overall in-hospital mortality
within 28 days was 18.6% in the training set, 17.0% in the
validation set, 18.3% in the internal test set, and 22.7% in the
external test set. For each 12 h window of the ICU stays, the
number of in-hospital deaths in the first 28 days is shown in
Supplementary Table S4. Distribution of the predictor variables

within each 12-hour window of the ICU stays is shown in
Supplementary Table S5.

Model Performance
The receiver operating characteristic curves of the models
for mortality in the following 48, 72, and 120 h and in the
first 28 days after ICU admission are shown in Figure 2 and
Supplementary Figures S2–S4. The XGBoost models showed
better discrimination than the SOFA score and SAPS-II,
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with the AUCs ranging from 0.848 to 0.804 in the internal
test set and from 0.818 to 0.748 in the external test set.
The sensitivity, specificity, and accuracy of the XGBoost
models at different cutoffs for mortality prediction in the

TABLE 3 | Performance of the XGBoost model for mortality in the following 48 h

at different cutoffs.

Cutoffs Sensitivity (%) Specificity (%) Accuracy (%)

Internal test set

0.0214 90.0 58.5 60.0

0.0280 85.0 66.6 67.4

0.0349 80.1 72.9 73.2

0.0431 75.0 78.3 78.1

0.0445* 74.3 79.1 78.9

0.0515 70.0 82.5 81.9

0.0600 65.1 85.6 84.7

0.0676 60.0 87.9 86.6

External test set

0.0214 93.2 40.9 43.8

0.0280 89.2 50.5 52.7

0.0349 85.5 57.8 59.4

0.0431 81.1 64.7 65.7

0.0515 75.8 70.4 70.7

0.0600 71.6 75.0 74.8

0.0676 69.1 78.1 77.6

0.0735* 67.4 80.3 79.5

*The cutoff value corresponding to the maximum Youden index (sensitivity +

specificity - 1).

internal and the external test sets are provided in Table 3

and Supplementary Tables S6–S8. In the internal test set, the
XGBoost model achieved a sensitivity of 80.1% and specificity
of 72.9% at the cutoff of 0.0349 for mortality in the following
48 h. The sensitivity was slightly higher, and the specificity was
lower in the external test set than in the internal test set across
different cutoffs. The calibration curves of the XGBoost models
comparing the predicted and observed probability across deciles
in the internal and the external test sets are shown in Figure 3 and
Supplementary Figures S5–S7. The XGBoost models were well-
calibrated, except that they might underestimate or overestimate
the probability at the higher risk deciles.

Model Interpretability
Figure 4 and Supplementary Figures S8–S10 illustrate the
feature importance derived from the XGBoost models. The top
five most important predictor variables in the XGBoost model
for mortality in the following 48 h were urine output, GCS score,
hours from admission, serum lactate level, and age. Figure 5 and
Supplementary Figures S11–S13 provide the SHAP summary
plots of the XGBoost models, revealing the impact of the
predictor variables onmodel output. Lower GCS score, decreased
urine output, prolonged ICU length of stay, older age, and
higher blood urea nitrogen (BUN) level were the top five factors
associated with increased risk of death in the following 48 h.

Sensitivity Analysis
In sensitivity analysis, the XGBoost models showed higher AUCs
than the random forest and the support vectormachinemodels in
the internal and the external test sets (Supplementary Table S9).
In addition, the XGBoost model using data gathered during
the first 12 h after ICU admission showed poor predictive

FIGURE 3 | Calibration curves of the XGBoost model for mortality in the following 48 h in the internal. (A) and the external; (B) test sets.
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FIGURE 4 | Feature importance derived from the XGBoost model for mortality in the following 48 h. The importance value represents the fractional contribution of

each feature to the XGBoost model based on the total gain of this feature’s splits. Higher percentage means a more important feature. GCS, glasgow coma scale;

PaCO2, partial pressure of arterial carbon dioxide; PaO2, partial pressure of arterial oxygen; INR, international normalized ratio; RRT, renal replacement therapy.

performance for in-hospital mortality in the first 28 days, with
the AUC being 0.770 (95% CI 0.747–0.794) in the internal test
set and 0.676 (95% CI 0.655–0.697) in the external test set
(Supplementary Figure S14).

DISCUSSION

In this multi-center retrospective study, we developed and
validated interpretable machine learning-based models using the
XGBoost algorithm for real-timemortality prediction in critically
ill patients with SA-AKI. The XGBoost models exhibited better
performance than traditional risk scores (including the SOFA
score and SAPS-II) or other machine learning models (including
the random forest and support vector machine models) in
predicting death in the following 48, 72, and 120 h and in

the first 28 days after ICU admission. The XGBoost models
could help identify high-risk patients in real time for early
clinical interventions.

SA-AKI is common in critically ill patients with rapid clinical
evolution and significantly higher mortality than those without
AKI or with AKI attributed to other causes (6). Reliable
prediction models are essential for clinicians to assess the risk of
death and make proper clinical decisions in critically ill patients
with SA-AKI. Generic scores, such as the SOFA score and SAPS-
II, are widely used for outcome prediction in critical care settings.
However, they have shown controversial results on predictive
performance for mortality in AKI patients (7, 8, 30–32). Recently,
several models have been proposed to predict AKI mortality in
unselected ICU patients (31, 32), but few have been validated
in patients with SA-AKI. Da Hora Passos et al. (7) proposed a
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FIGURE 5 | SHAP summary plot of the XGBoost model for mortality in the following 48 h. Higher SHAP value means a higher probability of death within the next 48 h.

Purple represents higher feature values and yellow represents lower feature values. A dot is created for each feature attribution in calculating the output risk for each

observation. GCS, glasgow coma scale; INR, international normalized ratio; RRT, renal replacement therapy; PaO2, partial pressure of arterial oxygen; PaCO2, partial

pressure of arterial carbon dioxide.

clinical score to predict 7 days mortality in a cohort of 186 SA-
AKI patients who required continuous RRT. The five-variable
score showed better performance than the generic models, with a
C-statistic of 0.82, but was limited to a single center and small
sample size. In addition, Hu et al. (8) established a prediction
model for in-hospital mortality in critically ill patients with SA-
AKI. However, the model included only static clinical variables
and showed insufficient predictive power.

Compared with the other risk prediction tools, our models
have several strengths. First, the study demonstrated the
applicability of the XGboost algorithm in mortality prediction
in critically ill patients with SA-AKI. The XGBoost models
had stronger predictive power than the traditional risk scores.
Sensitivity analysis further showed that the XGBoost models
were superior to the random forest and the support vector
machine models. XGBoost-based models have shown exciting

performance in various situations, such as volume responsiveness
in patients with oliguric AKI (14), long-term kidney outcomes in
patients with IgA nephrology (33), and mortality in ICU patients
with rhabdomyolysis (34). The reasons for the improvement
in predictive abilities observed in the XGBoost models may be
multifactorial. The XGBoost algorithm, based on the gradient
tree boosting framework, is adept at fitting non-linearities,
discontinuities and complex high-order interactions. It is also
robust to outliers in and multicollinearity among predictor
variables. Besides, the XGBoost algorithm can handle missing
values automatically, allowing the input of only available
predictor variables in its clinical application.

Second, the real-timemortality predictionmodels can provide
dynamic risk assessment and guide clinical decision-making.
Patients in the ICU environment are clinically unstable, change
rapidly between states of deterioration and improvement, and
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require continuous monitoring and interventions (35). It has
promoted the establishment of real-time prediction models in
critical care, such as models for mortality in critically ill children
(35), the development of AKI (36), and sepsis onset (37, 38).
Previously published models for mortality prediction in SA-AKI
patients included static physiological parameters gathered during
the early stages of the ICU stays. However, SA-AKI patients
with similar disease severity at the early stage of ICU admission
may exhibit different clinical outcomes due to distinct disease
trajectories and treatment responses. The real-time prediction
models can provide the risk of death updated on a 12-hour
basis, which is more accurate and allows clinicians to make
predictions dynamically.

Third, ourmodels achieved promising predictive performance
in both the internal and the external test sets, which
demonstrated their robustness and generalizability. The
predictor variables included in our model are routinely
collected and usually available in the EHRs, and their values
are rarely influenced by the examiner. Using only the most
basic and commonly measured clinical data can facilitate
the generalizability of the prediction model in other ICUs.
Our models were further validated in an external test set,
including 3,471 SA-AKI patients from a large multi-center
critical care database with significantly different distributed
features. Furthermore, automated data extraction from EHRs
and data input can save additional labor and cost and reduce the
possibility of incorrect entry in future clinical applications of the
models (35).

Fourth, the interpretability of the models was explored to
reveal the predictors for death over different time periods. Most
recently, the relationship between the evolution of SA-AKI and
mortality has been revealed. Uhel et al. (39) found that persistent
AKI, but not transient AKI, was associated with increased
mortality in critically ill septic patients. Ozrazgat-Baslanti et al.
(40) also showed that persistent AKI and the absence of renal
recovery were associated with worse clinical outcomes. Our
results further demonstrated that decreased urine output and
higher BUN level were important factors for increased real-
time risk of death, suggesting the necessity for continuous
renal function monitoring in SA-AKI patients. Additionally, the
discovery of other potentially modifiable extra-renal risk factors,
such as lower GCS score, higher lactate level, higher heart rate,
and higher respiratory rate, may help improve patient care
and outcomes.

Our study was subject to some limitations. Firstly, it
was a retrospective analysis based on the publicly accessible
databases. The diagnosis of sepsis in the eICU-CRD may
not meet the updated Sepsis-3 criteria. It remains unclear
whether the prediction model performs well for individual
prognostication and whether its clinical application can improve
patient outcomes. Secondly, although the XGBoost algorithm
can handle missing values automatically, the presence of
missing data may lead to bias. Thirdly, clinical data beyond
the ICU stays were unavailable, limiting the continuous
assessment of the risk of death for SA-AKI patients who were
transferred to the general wards or other locations. Finally, the

visualization and application of the models are still limited.
In our subsequent study, we will prospectively investigate the
effectiveness of our models and develop a web-based risk
calculator that automatically extracts data from EHRs and
performs risk calculations.

CONCLUSIONS

This study developed and externally validated interpretable
machine learning XGBoost models for real-time mortality
prediction in critically ill patients with SA-AKI. The XGBoost
models, based on routine clinical variables updated every 12 h,
showed promising performance in predicting death in the
following 48, 72, and 120 h and in the first 28 days after
ICU admission. The real-time prediction models are useful
tools for early identification of high-risk patients and timely
clinical interventions. Future studies are required to determine
the robustness and effectiveness of the prediction models in a
prospective way.

DATA AVAILABILITY STATEMENT

The datasets analyzed for this study can be found in
the MIMIC-IV (https://mimic.mit.edu/) and eICU-CRD
(https://eicu-crd.mit.edu/).

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Institutional Review Boards of the Beth
Israel Deaconess Medical Center and Massachusetts Institute
of Technology. Written informed consent for participation was
not required for this study in accordance with the National
Legislation and the Institutional Requirements.

AUTHOR CONTRIBUTIONS

S-BD designed, supervised the study, and drafted themanuscript.
X-QL performed the data extraction, analysed, interpreted the
data, and drafted the manuscript. PY and Y-XK analyzed and
interpreted the data and critically revised the manuscript. Y-HD,
TW, and XW analyzed the data and revised the manuscript
critically for important intellectual content. All authors have read
and approved the final manuscript.

FUNDING

This study was supported by National Natural Science
Foundation of China (Grant No. 81873607).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2022.853102/full#supplementary-material

Frontiers in Medicine | www.frontiersin.org 9 June 2022 | Volume 9 | Article 853102

https://mimic.mit.edu/
https://eicu-crd.mit.edu/
https://www.frontiersin.org/articles/10.3389/fmed.2022.853102/full#supplementary-material
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Luo et al. Mortality Prediction in SA-AKI

REFERENCES

1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer

M, et al. The third international consensus definitions for sepsis and septic

shock (Sepsis-3). JAMA. (2016) 315:801–10. doi: 10.1001/jama.2016.0287

2. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al.

Global, regional, and national sepsis incidence and mortality, 1990–2017:

analysis for the Global Burden of Disease Study. Lancet. (2020) 395:200–

11. doi: 10.1016/s0140-6736(19)32989-7

3. KDIGOKAKIW GROUP. KDIGO clinical practice guideline for acute kidney

injury. Kidney Int Suppl. (2012) 2:1–138. doi: 10.1038/kisup.2012.1

4. Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN,

et al. Epidemiology of acute kidney injury in critically ill patients:

the multinational AKI-EPI study. Intensive Care Med. (2015) 41:1411–

23. doi: 10.1007/s00134-015-3934-7

5. Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, et al.

Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol.

(2018) 14:607–25. doi: 10.1038/s41581-018-0052-0

6. Peters E, Antonelli M, Wittebole X, Nanchal R, Francois B, Sakr

Y, et al. A worldwide multicentre evaluation of the influence of

deterioration or improvement of acute kidney injury on clinical outcome

in critically ill patients with and without sepsis at ICU admission:

results from the intensive care over nations audit. Crit Care. (2018)

22:188. doi: 10.1186/s13054-018-2112-z

7. da Hora Passos R, Ramos JG, Mendonca EJ, Miranda EA, Dutra FR, Coelho

MF, et al. A clinical score to predict mortality in septic acute kidney injury

patients requiring continuous renal replacement therapy: the helenicc score.

BMC Anesthesiol. (2017) 17:e21. doi: 10.1186/s12871-017-0312-8

8. Hu H, Li L, Zhang Y, Sha T, Huang Q, Guo X, et al. A Prediction model for

assessing prognosis in critically ill patients with sepsis-associated acute kidney

injury. Shock. (2021) 56:564–72. doi: 10.1097/SHK.0000000000001768

9. Bailly S, Meyfroidt G, Timsit JF. What’s new in ICU in 2050:

big data and machine learning. Intensive Care Med. (2018)

44:1524–7. doi: 10.1007/s00134-017-5034-3

10. Sanchez-Pinto LN, Luo Y, Churpek MM. Big data and data science in critical

care. Chest. (2018) 154:1239–48. doi: 10.1016/j.chest.2018.04.037

11. Gutierrez G. Artificial intelligence in the intensive care unit. Crit Care. (2020)

24:101. doi: 10.1186/s13054-020-2785-y

12. Kang MW, Kim J, Kim DK, Oh KH, Joo KW, Kim YS, et al. Machine learning

algorithm to predict mortality in patients undergoing continuous renal

replacement therapy. Crit Care. (2020) 24:42. doi: 10.1186/s13054-020-2752-7

13. Meyer A, Zverinski D, Pfahringer B, Kempfert J, Kuehne T, Sündermann

SH, et al. Machine learning for real-time prediction of complications

in critical care: a retrospective study. Lancet Respir Med. (2018) 6:905–

14. doi: 10.1016/s2213-2600(18)30300-x

14. Zhang Z, Ho KM, Hong Y. Machine learning for the prediction of volume

responsiveness in patients with oliguric acute kidney injury in critical care.

Crit Care. (2019) 23:112. doi: 10.1186/s13054-019-2411-z

15. Luo X-Q, Yan P, Zhang N-Y, Luo B, Wang M, Deng Y-H, et al.

Machine learning for early discrimination between transient and persistent

acute kidney injury in critically ill patients with sepsis. Sci Rep. (2021)

11:20269. doi: 10.1038/s41598-021-99840-6

16. Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG, Badawi O. The eICU

collaborative research database, a freely available multi-center database for

critical care research. Sci Data. (2018) 5:180178. doi: 10.1038/sdata.2018.178

17. Johnson A, Bulgarelli L, Pollard T, Horng S, Celi LA, Mark R. MIMIC-IV

(version 1.0). PhysioNet. (2020). doi: 10.13026/s6n6-xd98

18. Yang J, Li Y, Liu Q, Li L, Feng A, Wang T, et al. Brief introduction of medical

database and data mining technology in big data era. J Evid Based Med. (2020)

13:57–69. doi: 10.1111/jebm.12373

19. Wu WT, Li YJ, Feng AZ, Li L, Huang T, Xu AD, et al. Data mining in clinical

big data: the frequently used databases, steps, and methodological models.Mil

Med Res. (2021) 8:44. doi: 10.1186/s40779-021-00338-z

20. Johnson AEW, Aboab J, Raffa JD, Pollard TJ, Deliberato RO,

Celi LA, et al. A comparative analysis of sepsis identification

methods in an electronic database. Crit Care Med. (2018)

46:494–9. doi: 10.1097/CCM.0000000000002965

21. Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology

and Chronic Health Evaluation (APACHE) IV: hospital mortality

assessment for today’s critically ill patients. Crit Care Med. (2006)

34:1297–310. doi: 10.1097/01.CCM.0000215112.84523.F0

22. Zhao GJ, Xu C, Ying JC, Lu WB, Hong GL, Li MF, et al. Association between

furosemide administration and outcomes in critically ill patients with acute

kidney injury. Crit Care. (2020) 24:75. doi: 10.1186/s13054-020-2798-6

23. Chaudhary K, Vaid A, Duffy A, Paranjpe I, Jaladanki S, Paranjpe M,

et al. Utilization of deep learning for subphenotype identification in sepsis-

associated acute kidney injury. Clin J Am Soc Nephrol. (2020) 15:1557–

65. doi: 10.2215/CJN.09330819

24. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining. San Francisco, Ca (2016). p. 785–94.

25. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H,

et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe

organ dysfunction/failure. On behalf of theWorking Group on Sepsis-Related

Problems of the European Society of Intensive Care Medicine. Intensive Care

Med. (1996) 22:707–10. doi: 10.1007/bf01709751

26. Le Gall JR, Lemeshow S, Saulnier F. A new simplified acute physiology score

(SAPS II) based on a European/North American multicenter study. JAMA.

(1993) 270:2957–63. doi: 10.1001/jama.270.24.2957

27. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions.

Adv Neural Inf Process Syst. (2017) 30:4765–74.

28. Breiman L. Random forests. Mach Learn. (2001) 45:5–

32. doi: 10.1023/A:1010933404324

29. Cortes C, Vapnik V. Support-vector networks. Mach Learn. (1995) 20:273–

97. doi: 10.1023/A:1022627411411

30. Demirjian S, Chertow GM, Zhang JH, O’Connor TZ, Vitale J, Paganini EP,

et al. Model to predict mortality in critically ill adults with acute kidney injury.

Clin J Am Soc Nephrol. (2011) 6:2114–20. doi: 10.2215/CJN.02900311

31. Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute

kidney injury in the ICU using random forest model. Int J Med Inform. (2019)

125:55–61. doi: 10.1016/j.ijmedinf.2019.02.002

32. Huang H, Liu Y, Wu M, Gao Y, Yu X. Development and validation

of a risk stratification model for predicting the mortality of acute

kidney injury in critical care patients. Ann Transl Med. (2021)

9:323. doi: 10.21037/atm-20-5723

33. Chen T, Li X, Li Y, Xia E, Qin Y, Liang S, et al. Prediction and risk stratification

of kidney outcomes in IgA nephropathy. Am J Kidney Dis. (2019) 74:300–

9. doi: 10.1053/j.ajkd.2019.02.016

34. Liu C, Liu X, Mao Z, Hu P, Li X, Hu J, et al. Interpretable machine learning

model for early prediction of mortality in ICU patients with rhabdomyolysis.

Med Sci Sports Exerc. (2021) 53:1826–34. doi: 10.1249/mss.0000000000002674

35. Kim SY, Kim S, Cho J, Kim YS, Sol IS, Sung Y, et al. A deep learning model

for real-time mortality prediction in critically ill children. Crit Care. (2019)

23:279. doi: 10.1186/s13054-019-2561-z

36. Le S, Allen A, Calvert J, Palevsky PM, Braden G, Patel S, et al. Convolutional

Neural Network Model for Intensive Care Unit Acute Kidney Injury

Prediction. Kidney Int Rep. (2021) 6:1289–98. doi: 10.1016/j.ekir.2021.

02.031

37. Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An

Interpretable machine learning model for accurate prediction of sepsis in

the ICU. Crit Care Med. (2018) 46:547–53. doi: 10.1097/CCM.00000000000

02936

38. Li X, Xu X, Xie F, Xu X, Sun Y, Liu X, et al. A time-phased machine learning

model for real-time prediction of sepsis in critical care. Crit Care Med. (2020)

48:e884–8. doi: 10.1097/CCM.0000000000004494

39. Uhel F, Peters-Sengers H, Falahi F, Scicluna BP, van Vught LA, Bonten

MJ, et al. Mortality and host response aberrations associated with

transient and persistent acute kidney injury in critically ill patients with

sepsis: a prospective cohort study. Intensive Care Med. (2020) 46:1576–

89. doi: 10.1007/s00134-020-06119-x

Frontiers in Medicine | www.frontiersin.org 10 June 2022 | Volume 9 | Article 853102

https://doi.org/10.1001/jama.2016.0287
https://doi.org/10.1016/s0140-6736(19)32989-7
https://doi.org/10.1038/kisup.2012.1
https://doi.org/10.1007/s00134-015-3934-7
https://doi.org/10.1038/s41581-018-0052-0
https://doi.org/10.1186/s13054-018-2112-z
https://doi.org/10.1186/s12871-017-0312-8
https://doi.org/10.1097/SHK.0000000000001768
https://doi.org/10.1007/s00134-017-5034-3
https://doi.org/10.1016/j.chest.2018.04.037
https://doi.org/10.1186/s13054-020-2785-y
https://doi.org/10.1186/s13054-020-2752-7
https://doi.org/10.1016/s2213-2600(18)30300-x
https://doi.org/10.1186/s13054-019-2411-z
https://doi.org/10.1038/s41598-021-99840-6
https://doi.org/10.1038/sdata.2018.178
https://doi.org/10.13026/s6n6-xd98
https://doi.org/10.1111/jebm.12373
https://doi.org/10.1186/s40779-021-00338-z
https://doi.org/10.1097/CCM.0000000000002965
https://doi.org/10.1097/01.CCM.0000215112.84523.F0
https://doi.org/10.1186/s13054-020-2798-6
https://doi.org/10.2215/CJN.09330819
https://doi.org/10.1007/bf01709751
https://doi.org/10.1001/jama.270.24.2957
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.2215/CJN.02900311
https://doi.org/10.1016/j.ijmedinf.2019.02.002
https://doi.org/10.21037/atm-20-5723
https://doi.org/10.1053/j.ajkd.2019.02.016
https://doi.org/10.1249/mss.0000000000002674
https://doi.org/10.1186/s13054-019-2561-z
https://doi.org/10.1016/j.ekir.2021.02.031
https://doi.org/10.1097/CCM.0000000000002936
https://doi.org/10.1097/CCM.0000000000004494
https://doi.org/10.1007/s00134-020-06119-x
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Luo et al. Mortality Prediction in SA-AKI

40. Ozrazgat-Baslanti T, Loftus TJ, Mohandas R, Wu Q, Brakenridge S,

Brumback B, et al. Clinical trajectories of acute kidney injury in surgical

sepsis: a prospective observational study. Ann Surg. [Epub ahead of print].

(2020). doi: 10.1097/SLA.0000000000004360

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Luo, Yan, Duan, Kang, Deng, Liu, Wu and Wu. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Medicine | www.frontiersin.org 11 June 2022 | Volume 9 | Article 853102

https://doi.org/10.1097/SLA.0000000000004360
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	Development and Validation of Machine Learning Models for Real-Time Mortality Prediction in Critically Ill Patients With Sepsis-Associated Acute Kidney Injury
	Introduction
	Methods
	Source of Data
	Study Population
	Outcomes and Predictor Variables
	Statistical Analysis

	Results
	Baseline Characteristics and Outcomes
	Model Performance
	Model Interpretability
	Sensitivity Analysis

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


