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Summary

Kawasaki disease (KD) is an acute systemic vasculitis of childhood that does

not have a known cause or aetiology. The epidemiological features (existence of

epidemics, community outbreaks and seasonality), unique age distribution and

clinical symptoms and signs of KD suggest that the disease is caused by one or

more infectious environmental triggers. However, KD is not transmitted

person-to-person and does not occur in clusters within households, schools or

nurseries. KD is a self-limited illness that is not associated with the production

of autoantibodies or the deposition of immune complexes, and it rarely recurs.

Regarding the underlying pathophysiology of KD, innate immune activity (the

inflammasome) is believed to play a role in the development of KD vasculitis,

based on the results of studies with animal models and the clinical and

laboratory findings of KD patients. Animal studies have demonstrated that

innate immune pathogen-associated molecular patterns (PAMPs) can cause

vasculitis independently of acquired immunity and have provided valuable

insights regarding the underlying mechanisms of this phenomenon. To validate

this concept, we recently searched for KD-specific PAMPs and identified such

molecules with high specificity and sensitivity. These molecules have structures

similar to those of microbe-associated molecular patterns (MAMPs), as shown

by liquid chromatography-tandem mass spectrometry. We propose herein that

KD is an innate immune disorder resulting from the exposure of a genetically

predisposed individual to microbe-derived innate immune stimulants and that

it is not a typical infectious disease.
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Introduction

Kawasaki disease (KD) is an acute self-limiting systemic

vasculitis of early childhood that was first described by

Tomisaku Kawasaki in 1967 [1]. It affects predominantly

the coronary arteries and causes coronary artery abnormal-

ities in 25–30% of untreated patients [2]. After the intro-

duction of intravenous immunoglobulin (Ig), the

incidence of coronary artery lesions (CALs) decreased to

fewer than 5% [3]. Nonetheless, KD is the most common

cause of acquired childhood heart disease in developed

countries [4,5]. The incidence of KD is still increasing,

according to the most recent nationwide survey (2013–14)

in Japan [6].

Although almost 50 years have passed since its initial

description, the aetiology of KD remains unknown. KD is

usually diagnosed by clinical symptoms and signs, because

no specific diagnostic tests are available. The clinical and

epidemiological features of KD suggest strongly that the

disease results from the exposure of a genetically predis-

posed individual to an unidentified, possibly infectious

environmental trigger [5,7]. This review will focus on the

genetic, environmental and immunological aspects of KD

in an attempt to elucidate its aetiology.

KD aetiology

Genetic background

Twin studies have revealed that the concordance rates of

KD were 14�1% (11 of 78) and 13�3% (four of 30) for

monozygotic and dizygotic twins, respectively, in Japan
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[8]. In the United States, the concordance rate of KD for

monozygotic twins was 25% (one out of four) [9]. For a

single-gene disorder with complete penetrance, the

expected concordance rate should be 100% for monozy-

gotic twins, while it should be lower for dizygotic twins.

For conditions that are determined completely by environ-

mental factors, the concordance rates for monozygotic and

dizygotic twins should be essentially equal and depend

upon the shared environment in which the twins live.

Thus, these twin studies suggest that environmental factors

contribute more to the development of KD than genetic

factors among individuals with the same ethnicity.

However, a genetic predisposition to KD has been pro-

posed in various epidemiological studies. For example, the

incidence of KD is highest in Asian populations, especially

Japanese populations. The incidence among Japanese indi-

viduals is 10–15 times higher than that among Caucasians

[10]. The incidence of KD among Japanese American chil-

dren in Hawaii is as high as that among Japanese children,

while the incidence among Caucasian children in Hawaii is

as low as that among Caucasian children in the continental

United States [11,12]. The idea of genetic susceptibility to

KD is supported further by the fact that a higher relative

risk of KD exists within families [13].

Linkage analysis and genome-wide association studies

(GWASs) have identified KD susceptibility alleles for the

following genes: ITPKC, CASP3, BLK, CD40, HLA and

FCGR2A [14]. Recently identified genetic variations of

ORAI1 may explain the aforementioned Asian susceptibil-

ity to KD [15]. Although inositol 1,4,5-trisphosphate 3-

kinase C (ITPKC) was described initially as a negative

regulator of T cell activation [16], ITPKC is a ubiquitous

molecule that is present in innate and acquired immune

cells, as well as endothelial cells. ITPKC, caspase-3 (CASP3)

and calcium release-activated calcium channel protein 1

(ORAI1) may play important roles in KD development by

regulating the calcium/nuclear factor of activated T cells

(NFAT) pathway [14–16]. The candidate gene approach

showed that KD is linked to genetic variations (TGFB2,

TGFBR2 and SMAD3) in the transforming growth factor

beta (TGF-b) signalling pathway that are important in

inflammation and vascular remodelling [17]. VEGFA, KDR

and ANGPT1 have also been reported to be associated with

KD. These data suggest that dysregulation of vascular endo-

thelial growth factor (VEGF) and angiopoietins contributes

to the disruption of vascular homeostasis in KD [18,19].

Environmental factors

The clinical picture of KD supports the notion that

microbes or infectious organisms are capable of triggering

onset of the disease, as do the following facts: (a) children

are affected mainly between 6 months and 5 years of age,

and the peak age of disease onset coincides with the period

during which children are most susceptible to common

pathogens; (b) KD is characterized by an acute onset and

follows a self-limited clinical course; and (c) KD shows epi-

demics, community outbreaks and seasonality [3–5,7].

Many microbes or microbe-derived substances are

believed to cause KD, including Rickettsia-like agent, Pro-

priobacterium acnes, Leptospira spp., Streptococcus sanguis,

Staphylococcus aureus, Yersinia pseudotuberculosis, retrovi-

ruses, Epstein–Barr virus, cytomegalovirus, coronavirus,

parvovirus B19, human bocavirus, undetermined RNA

viruses and staphylococcal or streptococcal superantigens

[20,21]. Rowley et al. detected cytoplasmic inclusion bodies

containing virus-like particles in the bronchial epithelium

of a patient with acute KD, using synthetic antibodies

[20,22]. However, no causative viruses have been identified

thus far.

It is well known that approximately 10% of patients with

Y. pseudotuberculosis infection develop Kawasaki syndrome

in Japan [23] and that Kawasaki syndrome patients with

known Y. pseudotuberculosis infection show a higher tend-

ency to develop CALs [24]. In addition, epidemiological

data indicate that higher incidences of KD have been

observed in populations at high risk for Y. pseudotuberculo-

sis infection [25]. Rod�o et al. suggested that a wind-borne

environmental trigger induces KD [26,27]. However, no

such agents have been identified [7,28].

Regarding superantigens, Vb-restricted T cell expansion

or activation in patients with KD has been observed by

some researchers [29,30]. However, other research groups

failed to detect such T cell expansion [31]. Because only a

small proportion of KD patients have shown Vb-restricted

T cell activation [29–31], and there are no differences in

KD symptoms or signs between patients with and without

T cell activation (our unpublished observation),

superantigen-induced T cell activation may be an epiphe-

nomenon rather than a necessity for the development of

KD. Biofilms form as a result of interactions between

microbes and the environment and are capable of produc-

ing large amounts of various bioactive molecules, including

superantigens, through quorum-sensing mechanisms [32].

For example, when S. aureus was cultured in biofilms

adhering to tampon sacs, the level of toxic shock syndrome

(TSS) toxin-1 in these bacteria was more than 1000-fold

higher than that in bacteria cultured via conventional

methods [33]. Although TSS caused by TSS toxin-1 exhib-

its clinical features similar to those of KD [34], TSS is

characterized by superantigen-induced excessive T cell acti-

vation. In contrast, most cases of KD are characterized by

T cell suppression, as well as endothelial cell/innate

immune cell activation [35,36]. KD and TSS rarely develop

in association with isolated sepsis or bacteraemia [37], in

which bacteria grow under planktonic conditions. Thus, as

is the case for TSS, the pathogenesis of KD may be evoked

not by microbes themselves but by bioactive molecules that

are produced by microbes under biofilm-like conditions.

The pathogenesis of Kawasaki disease
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Immunological aspects

Innate immunity versus acquired immunity. The innate

immune system has both cellular and humoral compo-

nents. The cellular components include neutrophils, eosin-

ophils, monocytes, macrophages, dendritic cells, gdT cells,

natural killer cells and natural killer T cells [38]. In addi-

tion, endothelial cells function as sentinel innate immune

cells and detect foreign pathogens and endogenous danger

signals in the bloodstream [39].

The following clinical and laboratory evidence suggests

that the acute phase of KD is driven primarily by the innate

immune system: (a) the absolute neutrophil and monocyte

counts in the peripheral blood are increased [40]; (b) the

majority of the activated T lymphocytes in the peripheral

blood are gdT cells [36]; (c) the majority of the cells infil-

trating the coronary arteries and skin lesions are macro-

phages [41,42]; (d) the levels of damage-associated

molecular patterns (DAMPs), such as S100 proteins and

high mobility group box 1 (HMGB1), are elevated in the

sera of KD patients during the acute phase [43–46]; (e) KD

is sometimes associated with disorders characterized by

hyperactive innate immunity, such as periodic fever, aph-

thous stomatitis, pharyngitis and adenitis (PFAPA) syn-

drome [47] and systemic juvenile idiopathic arthritis (JIA)

[48,49]; and (f) KD patients have the highest recurrence

rate within 12 months following the first episode [50],

which may be attributed to the fact that the innate immune

system lacks immunological memory.

KD is also regarded as a condition associated with

acquired immune dysfunction that is characterized by (a)

decreased absolute CD31, CD41 and CD81 T cell counts

in the peripheral blood [40]; (b) marked suppression of T

cell receptor/CD3-induced T cell proliferation [35]; (c)

down-regulation of T cell receptor and B cell receptor sig-

nalling pathways, as shown by microarray studies

[36,51,52]; and (d) suppression of regulatory T cells during

the acute phase of the disease [53,54]. Whether T helper

type 17 (Th17) cells contribute to the development of KD

remains controversial, because a previous study showed

that the levels of Th17 cells were only slightly elevated in

the peripheral blood of KD patients [55], and inconsistent

results were obtained by two other studies [56,57]. Based

on currently available evidence KD is unlikely to have an

autoimmune cause, as it is not associated with autoanti-

body production, resolves spontaneously and rarely

recurs [5].

KD animal models. The clinical and laboratory features of

KD suggest strongly that innate immunity plays a critical

role in the development of coronary vasculitis in patients

with KD. We therefore performed in-vitro studies regarding

the proinflammatory effects of innate immune ligands to

corroborate this hypothesis, using human coronary artery

endothelial cells (HCAECs). HCAECs have been shown to

produce interleukin (IL)-6 and IL-8 when treated with

ligands for Toll-like receptors (TLR)22 and 24 and

nucleotide-binding oligomerization domain-containing

proteins (NOD)1 and 2 [58]. To validate this finding in

vivo, we injected various innate immune ligands into

wild-type C57Bl/6 mice and found that a NOD1 ligand,

FK565, was a more potent inducer of coronary arteritis

than any other ligand [58]. Similar results were also

obtained via oral administration of FK565, as shown in

Fig. 1a [58]. Using severe combined immunodeficient

(SCID) mice, we demonstrated that NOD1 ligands

induce coronary arteritis in the absence of functional T

and B cells (Fig. 1c).

FK565 is a synthetic acyltripeptide (heptanoyl-g-D-

glutamyl-meso-diamino- pimelyl- D-alanine) with a

molecular weight (MW) of 502�6. By binding to NOD1,

FK565, which harbours diaminopimelic acid within its

structure, functions as a pathogen-associated molecular

pattern (PAMP). Diaminopimelic acid is also the

active constituent of other environmental PAMPs. For

example, dipeptide g-D-glutamyl-meso-diaminopimelic

acid (iE-DAP, MW: 319�3), L-alanyl-g-D-glutamyl-meso-

diaminopimelic acid (MW: 390�39) and lauroyl-g-D-

glutamyl-meso-diaminopimelic acid (MW: 501�61) are

components of peptidoglycan in the cell walls of Gram-

negative and certain groups of Gram-positive bacteria

[58,59].

Regarding the molecular and cellular pathophysiology of

FK565-induced coronary arteritis, we propose that NOD1

ligands activate proinflammatory signals in vascular endothe-

lial cells, thereby producing large amounts of chemokines. In

response to these chemokines, monocytes in the peripheral

blood are recruited to FK565-stimulated endothelial cells and

differentiate subsequently into cardiac CD11c1 macrophages

[60]. Genetically manipulated mice lacking CD11c1 macro-

phages present with milder coronary vasculitis after adminis-

tration of FK565, indicating that CD11c1 macrophages play a

pivotal role in the pathogenesis of acute coronary arteritis

(Fig. 2). We also verified that FK565 reproducibly induces

acute coronary vasculitis in SCID and Rag1-knock-out mice

[58,60]. These data provide new insights into the pathogenic

mechanisms of vasculitis in humans and demonstrate that

innate immunity (PAMPs) can cause vasculitis independently

of acquired immunity.

To date, two other animal models of KD coronary arteri-

tis have been established. These mouse models showed that

crude microbe-associated molecular patterns (MAMPs)/

PAMPs from Lactobacillus caseii [61–65] and Candida albi-

cans [66–68] induce acute coronary vasculitis (Table 1).

Thus, these animal studies confirmed that stimulation of

innate immunity with molecules such as NOD1 ligands

induces vasculitis that mimics the coronary artery lesions

of KD. In agreement with our study, an animal study using

L. caseii cell wall extracts (LCWE) also showed that

CD11c1 dendritic cells/macrophages and vascular stromal

T. Hara et al.
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cells with cytokines (IL-1a and b) are important in the

pathogenesis of coronary arteritis [65]. In addition, a

recent study has demonstrated that the activation of endo-

thelial Nlrp3 inflammasome, a key component of the

innate immune system, may contribute to the development

of coronary arteritis induced by LCWE [69].

Searching for KD-specific molecules in humans. A seminal

study detected endothelial cell-activating antigens in skin

biopsy samples from KD patients [70]. To confirm these

findings, we searched for unknown ligands that may acti-

vate NOD1 or other vasculitis-inducing pathways. We first

prepared whole extracts and fractionated samples from the

Fig. 1. Nucleotide-binding oligomerization domain-containing protein (NOD1) ligand (FK565)-induced coronary arteritis. (a) Administration of

FK565 (100 lg/day p.o. for 2 weeks) induces coronary arteritis. This Kawasaki disease (KD) model is characterized by panarteritis with dense

inflammatory cell infiltration involving neutrophils and macrophages, but is not associated with fibrinoid necrosis. This histopathology

recapitulates the coronary artery lesions of KD. (b) Control solvent: no arteritis. (c) FK565-induced coronary arteritis in a severe combined

immunodeficient (SCID) mouse. This panel shows that FK565 also induces a milder form of coronary arteritis in SCID mice than that induced

in wild-type mice. Most of the infiltrating inflammatory cells are neutrophils and macrophages, as is the case in wild-type mice. These data show

that the coronary artery lesions of KD are mediated by the innate immune system (PAMPs) and develop independently of acquired immunity.

(d) Absence of vasculitis in a NOD1-knock-out mouse from Nishio et al. [58].

Fig. 2. Schematic representation of the molecular and cellular mechanisms underlying nucleotide-binding oligomerization domain-containing

protein (NOD1)-induced arteritis. A NOD1 ligand, FK565, activates endothelial cells which produce large amounts of chemokines, including

CCL2. In response to CCL2 and other chemokines, CCR2 (chemokine receptor)-expressing precursor cells (monocytes) in the peripheral blood

are recruited to FK565-activated endothelial cells. This process subsequently induces the differentiation of cardiac CD11c1 macrophages, which

play a pivotal role in the pathogenesis of acute coronary arteritis. MMP 5 matrix metalloproteinase.

The pathogenesis of Kawasaki disease
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sera of KD patients and found that KD sera contain bioac-

tive substances that induce production of IL-6 and IL-8 in

HCAECs [71]. However, no NOD1-activating ligands were

detected in these KD samples by cell-based reporter systems

or liquid chromatography-mass spectrometry (LC-MS)

analysis [71]. Thus, these results suggest that other innate

immune receptor(s) may be associated with the develop-

ment of KD vasculitis. Alternatively, the sensitivities of cell-

based reporter system and LC-MS analysis may not be high

enough to detect NOD1 ligands in KD serum samples.

To exclude the possibility of cytokine and chemokine

contamination in the aqueous fractions of sera from KD

patients, we analysed the lipophilic fractions of the above-

mentioned 117 samples. We detected novel molecules

between 227�1 m/z and 1487�8 m/z with a specificity of

100% and a low sensitivity ranging from 9�3 to 48�8% [71].

We defined them as ‘KD-specific molecules’. Then, we

investigated whether these KD-specific molecules had

structures similar to those of MAMPs from Y. pseudotuber-

culosis [23–25] and airborne bacteria [26,27], using liquid

chromatography-tandem mass spectrometry (LC-MS/MS).

We used various types of culture media, as well as different

temperatures, durations of shaking and incubation and

supplemental nutrients, to stimulate bacterial growth.

Lipid extracts from three bacterial culture components

(cell, supernatant and biofilm) were subjected to LC-MS/

MS analysis [71]. The serum KD-specific molecules showed

MS/MS fragmentation patterns that were similar to those

of MAMPs in the biofilm extracts from Y. pseudotuberculo-

sis and airborne bacteria; however, these patterns were not

similar to those of MAMPs in the other two extracts (cell

and supernatant). Production of MAMPs similar to serum

KD-specific molecules was enhanced markedly under

biofilm-forming conditions in the presence of butter [71].

HCAEC-stimulatory activities (IL-6 and IL-8 production

from HCAECs) also tended to be much higher in the bio-

film extracts from Y. pseudotuberculosis and airborne

bacteria in cultures supplemented with butter, as shown in

Fig. 3.

More recently, we used modified extraction and analysis

methods in a nationwide collaborative study. KD-specific

molecules were detected in the sera of affected patients

with a specificity of 100% and a sensitivity of almost 100%

(Nakashima et al. 2016, manuscript in preparation). In this

study, we confirmed that KD-specific molecules possessed

structures similar to those of MAMPs found in biofilm

Table 1. Animal models of Kawasaki disease (KD)-like vasculitis

Microbe-derived or synthetic substances Innate immunity

Acquired immunity
Important

cytokine/chemokineT cell B cell

LCWE (Lactobacillus caseii

cell wall extract) [61–65,69]

Crude PAMP

CD11c1 Macrophages/DC

Vascular stromal cells

TLR2/MyD88

Dectin-1/Syk

Nlrp3 inflammasome

superantigen111 1/– IL-1b

IL-1a

TNF-a

CAWS (Candida albicans water-

soluble fraction) [66–68]

Crude PAMP

Inflammatory monocytes 11

Th17

Regulatory T cell

1/– IL-6

NOD1 ligand (FK565) [58,60]

Pure PAMP (synthetic)

Nod1 in endothelial cells

CD11c1 macrophages

1/– 1/– CCL2

CCL 5 chemokine (C-C motif) ligand; DC 5 dendritic cells; IL 5 interleukin; MyD 5 myeloid differentiation primary response;

Nlrp3 5 nucleotide-binding, leucine-rich repeat containing family pyrin domain containing 3; NOD1 5 nucleotide-binding oligomerization

domain-containing protein; TNF 5 tumour necrosis factor; Syk 5 spleen tyrosine kinase.

Fig. 3. Human coronary artery endothelial cells (HCAECs)-

stimulatory activities of biofilm extracts from Yersinia

pseudotuberculosis. HCAECs-stimulatory activities of Y.

pseudotuberculosis extracts were measured by interleukin (IL)-6

production from HCAECs. Y. pseudotuberculosis extracts were

prepared from culture supernatants (w) or biofilms (�) of Y.

pseudotuberculosis cultured in the presence (1) or absence (–) of

butter. Medium alone, ethyl acetate alone or ethyl acetate extract

from glass slides cultured in the absence of microbes was used as a

negative control. FK565 (10 mg/ml) was used as a positive control.

Data are expressed as the fold change in induction of IL-6

production compared to positive control levels. Modified from the

data of Kusuda et al. [71].

T. Hara et al.
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extracts from Y. pseudotuberculosis and airborne bacteria

(Nakashima et al. 2016, manuscript in preparation).

A comprehensive view of KD pathogenesis in the context of

systemic vasculitides. The epidemiological features (exis-

tence of epidemics, community outbreaks and seasonality)

of KD suggest that the disease is caused by one or more

infectious environmental triggers [5,7,72]. Among other

systemic vasculitides, only IgA vasculitis exhibits seasonal-

ity in the absence of outbreaks or epidemics [73], as shown

in Table 2. The incidence of KD, as well as those of allergies

and non-infectious inflammatory bowel disease, has

increased [6,74,75], while those of infectious diseases have

decreased continuously in Japan. These facts suggest that

KD is not a typical infectious disease.

The unique age distribution (more than 80% of cases

occur between the ages of 6 months and 4 years) of KD is

reminiscent of paediatric infectious diseases [3–5,7]. How-

ever, as KD is not transmitted person-to-person and does

not occur in clusters within households, schools or nurs-

eries, it does not possess the characteristics of an infectious

disease [76]. Conversely, the peak age of IgA vasculitis

onset is between 4 and 6 years, and those of the onset of

other systemic vasculitides with possible autoimmune aeti-

ologies are much higher [77].

The clinical symptoms and signs (fever, injection of the

eyes or oropharynx, rash and cervical lymphadenopathy)

of KD mimic those of acute infections, while those of other

systemic vasculitides usually do not [77]. Innate immune

disorders, such as PFAPA syndrome [78], and

superantigen-induced diseases, such as TSS, have clinical

features that are indistinguishable from those of infectious

diseases. As superantigen-induced abT cell activation is

usually not observed in most patients with KD [30,31,36],

it is possible that KD is an innate immune disorder.

KD is a self-limited illness that is not characterized by auto-

antibody production or immune complex deposition and it

rarely recurs, which suggests that it is unlikely to be an auto-

immune disease [5]. In contrast, large-vessel vasculitides are

considered PAMP (TLR-ligands)-triggered T cell-mediated

autoimmune disorders [79–81]. The immunopathogenic pro-

cess of polyarteritis nodosa (PAN), a medium-vessel vasculitis,

is associated with both innate and acquired immunity,

although the exact pathogenic mechanisms remain unknown

[82–84]. The small vessel vasculitides (SVVs) comprise anti-

neutrophil cytoplasmic antibody (ANCA)-associated vasculi-

tis (AAV) and immune complex SVVs. In AAV, ANCAs seem

to play an indispensable role in the development of vasculitis

by activating primed neutrophils and monocytes, triggering a

subsequent inflammatory amplification loop in the vessel wall

[85,86]. Among immune complex SVVs, IgA vasculitis is con-

sidered to be a predominantly IgA-mediated immune disorder

[73,79].

The genetic background of KD differs from that of other

systemic vasculitic syndromes. GWASs have demonstrated

an association between the genes (ITPKC, CASP3 and

ORAI1) of the calcium/NFAT pathway and KD [14–16];

however, these genes do not appear to be associated with

other vasculitic syndromes [87]. Only the variant alleles of

FCGR2A [88] have been linked to susceptibility to KD and

Takayasu’s arteritis [87].

Regarding the pathophysiology of KD, T cell suppression

[35], and down-regulation of T cell receptor and B cell

receptor signalling pathways [36,51,52] in KD have not

been documented in other systemic vasculitides. Further-

more, animal models [65,69], as well as the clinical and

laboratory features (increased serum IL-1b levels, IL-1

Table 2. Kawasaki disease (KD) pathogenic features in light of those of other systemic vasculitides

KD Other systemic vasculitides

Epidemiological features Epidemics 1, community outbreaks 1

seasonality 1

No epidemics, no outbreaks

usually no seasonality

(IgA vasculitis: seasonality 1)

Clinical and laboratory features Age: mostly infants

abrupt onset

acute infection-like symptoms

self-limited/no recurrence in most cases

Autoantibodies: usually absent

immune complexes: usually absent

association with innate immune disorders,

PFAPA syndrome and systemic JIA

Common in older age

acute-chronic onset

constitutional symptoms

chronic and/or recurrent

(IgA vasculitis: usually self-limited)

autoantibodies: some 1

immune complexes: some 1

no association with PFAPA syndrome

and systemic JIA

Pathophysiological features Inhibited T cell receptor signalling pathway

Inflammasome involvement 1

hypercytokinaemia (IL-1, IL-6, TNF-a, etc.)

Detection of possible PAMPs in sera

none

Inflammasome involvement: some 1

hypercytokinaemia: some 1

no data

IL 5 interleukin; JIA 5 juvenile idiopathic arthritis; PAMPs 5 pathogen-associated molecular patterns; PFAPA syndrome 5 periodic fever, aph-

thous stomatitis, pharyngitis and adenitis syndrome; TNF 5 tumour necrosis factor.

The pathogenesis of Kawasaki disease
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signalling pathway up-regulation and anti-IL-1b treatment

effectiveness) of KD [52,89,90], suggest that the inflamma-

some (a key component of the innate immune system) is

associated with the development of KD vasculitis. Inflam-

masome activation may also be associated with the devel-

opment of other systemic vasculitides, including

autoinflammatory disease-associated systemic vasculitis

and Behçet disease [91,92]. Serum levels of a variety of

cytokines are elevated in KD [3] as well as in several other

systemic vasculitides [77,85]. In addition, we have identi-

fied possible PAMPs in KD sera with high specificity and

sensitivity by LC-MS/MS (Nakashima et al. 2016, manu-

script in preparation). Further study is necessary to identify

such molecules in other systemic vasculitides linked closely

to infections. KD is also associated with innate immune

disorders (PFAPA syndrome and systemic JIA) [47–49];

however, no other systemic vasculitides have been linked to

these innate immune disorders.

In contrast to the animal models of other systemic vas-

culitides, our KD animal model has provided new insights

regarding the mechanisms underlying the disease and

shown that PAMPs associated with innate immunity can

cause vasculitis independently of acquired immunity

[58,60]. The possible presence of PAMPs and DAMPs, such

as S100 proteins and HMGB1, in KD patient sera

[43–46,70] support the hypothesis that PAMPs/MAMPs,

together with DAMPs, activate endothelial and immune

cells co-operatively through innate immune pattern recog-

nition receptors (PRRs), as shown in Fig. 4. Recruitment of

immune cells to activated endothelial cells and destruction

of vascular structures lead to the development of KD vascu-

litis and aneurysms. These molecular scenarios may be

even more prominent in genetically predisposed individu-

als. Although vasculitis can occur independently of T cell-

and B cell-mediated immunity, acquired immunity is

undoubtedly associated with the vasculitides mediated by

the innate immune system in humans. Regarding late KD

vasculopathy [93] and the premature development of ath-

erosclerosis in patients with a prior history of KD [94], fur-

ther studies are necessary to elucidate the mechanisms

underlying these phenomena. They may result from persis-

tent exposure to small amounts of vasculitis-inducing mol-

ecules produced by endogenous microbes or from acquired

immunity-mediated vascular inflammation [95,96].

Conclusions

Based on the results of epidemiological, clinical, laboratory

and animal studies, we have concluded that KD is not an

infectious disease but an innate immune disorder. We pro-

pose that KD results from the exposure of a genetically pre-

disposed individual to PAMPs from microbes growing

under biofilm-like conditions, as well as DAMPs.
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