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Abstract: Ischemic stroke (IS) is a leading cause of death and disability worldwide. Currently, the
main therapeutic strategy involves the use of intravenous thrombolysis to restore cerebral blood flow
to prevent the transition of the penumbra to the infarct core. However, due to various limitations
and complications, including the narrow time window in which this approach is effective, less than
10% of patients benefit from such therapy. Thus, there is an urgent need for alternative therapeutic
strategies, with neuroprotection against the ischemic cascade response after IS being one of the most
promising options. In the past few decades, polyphenolic compounds have shown great potential in
animal models of IS because of their high biocompatibility and ability to target multiple ischemic
cascade signaling pathways, although low bioavailability is an issue that limits the applications of
several polyphenols. Here, we review the pathophysiological changes following cerebral ischemia
and summarize the research progress regarding the applications of polyphenolic compounds in
the treatment of IS over the past 5 years. Furthermore, we discuss several potential strategies for
improving the bioavailability of polyphenolic compounds as well as some essential issues that remain
to be addressed for the translation of the related therapies to the clinic.
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1. Introduction

Stroke is a common neurological disorder—the second leading cause of death and
the third leading cause of disability in adults worldwide—and affects approximately a
quarter of all individuals in their lifetime [1–3]. With population growth, an increase in
life expectancy, and increased exposure to risks such as hypertension, hyperglycemia,
hyperlipidemia, environmental particulate matter pollution, and high body mass index,
the prevalence of stroke is expected to further increase, thus placing a heavy burden on
both individuals and societies [1,2,4].

Based on the underlying pathology, stroke can be characterized as ischemic stroke
(IS) or hemorrhagic stroke [1]. Thrombosis, embolisms, and systemic hypoperfusion can
result in IS, which accounts for 62.4% of all stroke events [5]. When IS occurs, blood flow
in the infarcted area rapidly drops below the critical levels, and the electrical activity of
neurons ceases within seconds [5,6]. Brain tissue that is supplied entirely by the blocked
vessels will suffer irreversible neuronal damage or death within minutes of the perfusion
cut-off—this region is known as the “infarct core” [7]. Collateral circulation supply, such as
from the circle of Willis and leptomeningeal anastomoses, allows brain tissue surrounding
the infarct core to maintain cell and tissue vitality for a period of time. If the blood supply
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can be restored timely, the damage to this potentially salvageable brain region, termed
the ischemic penumbra, is reversible to some extent [2,8,9]. With the passage of time,
long-term insufficiency of glucose and oxygen supply leads to an imbalance in energy
supply and demand in the infarcted area. Subsequently, brain cells synergistically or
sequentially initiate ischemic cascade reactions, such as excitotoxicity, oxidative stress, and
inflammatory responses, which result in the transformation of the ischemic penumbra to
the infarct core [2,6,8–10].

As the transition from the penumbra to the infarct core is progressive, brain tissues can
be rescued with effective cerebral protection therapy. Currently, the main treatment strategy
in the early stages of IS is to re-establish the blood supply to the infarcted area. Although
reperfusion injury is inevitable in this process, it is essential to attempt to preserve the
penumbra tissue and restore normal neurological functions [9,11,12]. To date, intravenous
thrombolysis using alteplase, a recombinant tissue plasminogen activator (tPA), is the only
pharmacological intervention approved by the FDA for the treatment of acute IS [11,13].
tPA cleaves plasminogen to release plasmin, which subsequently degrades fibrin in the
thrombus and promotes blood flow restoration [8,11]. Studies have shown that intravenous
tPA administration until 4.5 h from stroke onset is beneficial for patients, and the earlier the
better [14,15]. After approximately 4.5 h, the risk of death due to intracranial hemorrhage
induced by intravenous tPA administration increases by 5%, far exceeding the possible
benefits [15–17]. Owing to this narrow time window and the contraindications to throm-
bolysis, tPA therapy is only suitable for fewer than 10% of stroke patients [18,19]. Therefore,
there is an urgent need to devise alternative strategies for rescuing ischemic brain tissue.

In recent years, researchers have intensively studied the pathophysiological charac-
teristics of the ischemic cascade and assessed pharmacological interventions for various
molecular events [8,10,20–22]. Polyphenols, a class of bioactive compounds found widely in
nature, have attracted much attention in this regard because of their high biosafety, multiple
therapeutic targets, and excellent therapeutic effects [23–29]. However, polyphenols often
have limited clinical applications due to issues with solubility, stability, and blood-brain
barrier (BBB) permeability [23]. In this article, we introduce the pathophysiology of the
ischemic cascade and review the literature regarding the application of polyphenols in the
treatment of IS over the past 5 years. We also summarize some emerging strategies for
improving the bioavailability and ability of polyphenols to resist IS, and finally discuss
several important issues that should be considered in the context of the future applications
of polyphenols for IS treatment.

2. Pathophysiology of IS

Once IS occurs, energy supply in regions with decreased blood supply becomes
inadequate to support normal cellular function. This is followed by an ischemic cascade
response involving a complex series of downstream cellular and molecular events [30].
Here, we summarize several key steps in the ischemic cascade response with a focus on the
mechanisms of acute neuronal injury (Figure 1).

2.1. Excitotoxicity

One of the critical events following cerebral ischemia is that Na+-K+-ATPase activity
decreases when intracellular ATP drops below 25% of normal levels. This results in the
massive inward flow of sodium, outward flow of potassium, severe disruption of intracel-
lular ion homeostasis, and presynaptic membrane depolarization [18,31]. Subsequently,
a large number of neurotransmitters, including glutamate, are released into the synaptic
gap [32]. Under conditions of energy exhaustion and ion homeostasis disruption, gluta-
mate reuptake by the excitatory amino acid transporter protein (EAAT) on neurons and
astrocytes is inhibited, leading to glutamate over-accumulation in synaptic gaps [33,34].
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Figure 1. Ischemic cascade response in the acute phase after stroke. Once blood flow is disrupted,
neuronal cells and astrocytes release large amounts of glutamate, resulting in excitotoxicity (1)
and prompting cell death. The dead cells release damage-associated molecular patterns (DAMPs),
which further stimulate microglia polarization, astrocyte activation, and release of pro-inflammatory
factors (2). Blood-derived neutrophils and macrophages migrate to the injured area (3), further
amplifying the ischemic cascade response. MMPs, matrix metalloproteinases; LFA-1, lymphocyte
function-associated antigen-1; ICAM-1, intercellular adhesion molecule-1; BBB, blood-brain barrier;
M1, M1 phenotype microglia; M2, M2 phenotype microglia.

The N-methyl-D-aspartate receptor (NMDAR) is the main ionotropic glutamate recep-
tor that enables rapid ion influx in response to glutamate stimulation [35]. In the resting
state, the channel pores of the NMDAR are blocked by extracellular magnesium, preventing
the influx of other ions. In the presence of excess glutamate, magnesium dissociates from
NMDARs; consequently, a large volume of calcium flows rapidly into the cell through NM-
DARs, triggering the activation of several calcium-dependent pathways, such as calpain
activation, mitochondrial damage, and free radical production, ultimately leading to the
initiation of neuronal death processes such as apoptosis, necrosis, and autophagy [31,36,37].
This sequence of events is described as excitotoxicity and is considered to be the main
mechanism that drives neuronal death during the hyperacute phase of IS [31,38].

2.2. Oxidative and Nitrosative Stress

Brain tissue is highly susceptible to oxidative damage owing to high oxygen consump-
tion and iron and unsaturated lipid content and relatively low endogenous antioxidant
capacity [22,39]. It is well known that oxidative and nitrosative stress is one of the down-
stream consequences of excitotoxicity. Intracellular calcium overload, especially in mito-
chondria, leads to the activation of a series of calcium-dependent protein kinases. These
kinases affect the activity of enzymes such as NADPH oxidase 2 (NOX2) and cytochrome
c oxidase (COX), which ultimately leads to the inhibition of the mitochondrial oxidative
respiratory chain and excessive production of reactive oxygen species (ROS) and reactive
nitrogen species (RNS) [40–42]. Meanwhile, the mitochondrial permeability transition
pore (mPTP), a high-conductance voltage- and Ca2+-dependent channel, is activated under
conditions of high calcium and oxidative stress and remains open for a prolonged period of
time. The opening of mPTP results in loss of mitochondrial inner membrane potential, lead-
ing to mitochondrial swelling and rupture. Large amounts of intermembrane proteins and
ROS/RNS are released into the cytosol, which ultimately leads to severe oxidative damage
and apoptosis [40,43–45]. The abnormal activation of xanthine oxidase (XOD) and NOX2
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outside mitochondria is also a major source of early ROS/RNS production [46]. Excessive
ROS/RNS production overwhelms the endogenous antioxidant system and results in nu-
cleic acid disruption, protein nitration, and oxidation, lipid peroxidation, and activation of
multiple pro-inflammatory, pro-apoptotic, and necrotic signaling pathways [22,47]. Excess
free radicals also affect the BBB, disrupting the tight junctions between cerebrovascular
endothelial cells and leading to increased BBB permeability, causing further damage to
brain tissue [48].

2.3. Inflammatory Response

Apart from excitotoxicity and oxidative stress, IS also triggers a complex innate
immune response. After severe cellular damage occurs in the ischemic region, damaged
cells release several DAMPs, including adenosine, heat shock proteins, high mobility group
box 1 (HMGB1), interleukin (IL)-33, S100 proteins, and heparan sulfate, into the intercellular
space [22,49]. DAMPs are detected by immune cells with corresponding pattern recognition
receptors (PRRs), such as the nucleotide-binding oligomerization domain, leucine-rich
repeat-containing receptors (NLRs), and toll-like receptors (TLRs), which mediate the
activation of intracellular pro-inflammatory signaling pathways [50,51].

Microglia, the resident central nervous system immune cells, are among the first cells
to respond to these danger signals [50,52]. Within minutes of an injury, microglia are
rapidly activated, undergo morphological changes, and secrete various cytokines [53,54].
Based on their activation pathways, microglia can be categorized into the M1 and M2
phenotypes [55,56]. M1 microglia exist in a pro-inflammatory state in the brain and secrete
pro-inflammatory cytokines and chemokines to recruit a variety of peripheral immune
cells, including neutrophils, monocytes, and lymphocytes, which eventually results in the
coordinated infiltration of immune cells into the brain parenchyma and aggravation of
brain damage [22,57]. M2 microglia are anti-inflammatory and release anti-inflammatory
cytokines and neurotrophic factors that contribute to brain injury repair [58,59]. Thus,
modulating the conversion of microglia from the M1 to the M2 phenotype during the acute
phase may be a key approach for the treatment of IS.

Cerebrovascular endothelial cells are also activated rapidly after IS and upregulate the
expression of a range of adhesion and procoagulant factors [60]. Neutrophils recruited from
the periphery can bind to leukocyte adhesion receptors such as P-selectin, E-selectin, and
intercellular adhesion molecule-1 (ICAM-1) on activated cerebrovascular endothelial cells
and attach to the endothelium to block capillaries and create further blockages, leading
to the “no reflow” phenomenon in the region [61–63]. Neutrophils can also participate
in thrombosis, form neutrophil extracellular traps, and release matrix metalloproteinases
(MMPs) to promote vascular inflammation and BBB disruption, exacerbating the vascular
injury and impeding revascularization [53,64–66].

2.4. Apoptosis

Among the various cell death pathways initiated after IS, apoptosis within the penum-
bra has been investigated in depth in an effort to understand how to rescue damaged neu-
rons [67]. Apoptosis can be triggered in two ways, via the mitochondria-mediated pathway,
referred to as the intrinsic apoptosis pathway, or the receptor-mediated pathway, referred
to as the extrinsic apoptosis pathway [68,69]. Depending on the underlying mechanism of
cell death, it can also be classified as caspase-dependent or caspase-independent [68].

The B-cell lymphoma-2 (Bcl-2) protein family is a major regulator of mitochondrial
outer membrane permeability and plays a key role in regulating the endogenous apoptosis
pathway [70,71]. BH3-interacting domain death agonist (BID), a pro-apoptotic member of
the Bcl-2 family, is cleaved into its truncated form (tBID) by calpain [68,72]. tBID interacts
with Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak) on the
mitochondrial membrane and promotes the formation of mPTPs, leading to the release
of several pro-apoptotic factors such as cytochrome c (Cyt c) and apoptosis-inducing fac-
tor (AIF) into the plasma [68,73,74]. Cyt c binds to apoptotic-protease-activating factor-1
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(Apaf-1) and deoxyATP in the cytoplasm to form apoptotic vesicles and subsequently acti-
vate pro-caspase-9, which further cleaves pro-caspase-3, and ultimately caspase-3 degrades
nuclear DNA to drive apoptosis [45,72,75,76]. In contrast to Cyt c, AIF is released from the
mitochondria and translocated to the nucleus within minutes, mediating significant DNA
breakage in a caspase-independent pathway of cell death [77–79].

The extrinsic apoptotic pathway is primarily triggered by the binding of ligands to death
receptors on the cell surface [69,80]. Some of the most prominent ligand/receptor combinations
include tumor necrosis factor-α (TNF-α)/TNF-receptor 1, TNF-related apoptosis-inducing
ligand (TRAIL)/TRAIL-R, and first apoptosis signal ligand (FasL)/FAS(CD95) [73,81]. Upon
specific binding of these ligands to their receptor, tumor necrosis factor receptor type-1-
associated death domain (TRADD) and Fas-associated death domain (FADD) are recruited
and initiate downstream responses [68,82]. The N-terminal region of FADD in the FasL
complex contains a death effector domain, and pro-caspase-8 is recruited through homo-
topic domain interaction to form a complex (FasL-Fas receptor-FADD and pro-caspase-8)
called the death-induced signaling complex [68,73]. This complex promotes caspase-8
activation and translocation into the cytoplasm, followed by pro-caspase-3 cleavage to
activate caspase-3 by direct or mitochondria-dependent mechanisms, which eventually
contribute to apoptosis [73,83].

2.5. Autophagy

Autophagy is generally activated in response to nutrient deficiency or metabolic
stress. It also maintains cellular homeostasis by removing damaged organelles and ex-
tra proteins [84]. Autophagy is a highly regulated process, with mechanistic targets of
rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK) being the two
important targets for its initiation [85–87].

Under nutrient-sufficient conditions, mTORC1 directly binds to and phosphorylates
two subunits of the Unc-51-like kinase 1 (ULK1) complex, autophagy-related gene 13
(ATG13) and ULK1, which keeps the ULK1 complex inactive and prevents the initiation of
autophagy [88]. However, once IS occurs, cerebral cells suffer from nutritional deficiency,
ULK1 undergoes autophosphorylation, and mTORC1 dissociates from the ULK1 complex
to relieve its suppression [88,89]. At the same time, as the intracellular AMP/ATP ratio
increases after ischemia, intracellular AMPK is activated, and the tuberous sclerosis 2
complex is further activated to inhibit mTORC1 activity indirectly [90,91]. Furthermore,
AMPK can also directly induce phosphorylation of the ULK1 complex, thus triggering
autophagy [84,92].

When the ULK1 kinase complex is activated, it continues to phosphorylate the
downstream class III phosphoinositide 3-kinase (PI3K) complex, which converts phos-
phatidylinositol into phosphatidylinositol-3 phosphate to promote membrane nucleation
and phagophore formation [87,93,94]. Upon initiation of the autophagic cascade, pro-LC3
in the cytoplasm is cleaved by Atg4 to form LC3-I, and then, under the action of Atg7
and Atg3, it conjugates with phosphatidylethanolamine to form LC3-II [87,95]. LC3-II,
together with the Atg5-Atg12-Atg16L1 complex, is involved in membrane expansion and
membrane fusion of phagophores to promote the maturation of autophagosomes [87,96,97].
Finally, mature autophagosomes fuse with lysosomes and recycle nutrients to complete the
autophagic process [97].

Under normal conditions, autophagy maintains intracellular homeostasis and fa-
cilitates cell survival through the removal and/or recycling of harmful cell components.
However, if stimulation continues to induce excessive autophagy beyond the cell’s adaptive
capacity, even essential cellular components may be destroyed, leading to cell death [68,98].
Therefore, autophagy appears to be a double-edged sword in the context of cellular self-
protection, and further investigation is necessary to obtain the information necessary for
modulating adaptive cellular autophagy.

Overall, the ischemic cascade response is a dynamic and complex process involving
multiple different cell types and response pathways, which in turn interact with and
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promote each other, further exacerbating the injury (Figure 2). Further studies are still
needed to clarify the interactions between different cascade reactions and to provide a
guiding direction for future treatment.

Figure 2. Selected molecular mechanisms involved in the pathophysiological processes of stroke.
Excitotoxicity: the impaired energy supply depolarizes presynaptic neurons, and massive glutamate
release promotes inward calcium flow. Oxidative stress: the mitochondrial oxidative respiratory
chain is inhibited, generating excess ROS/RNS and triggering a cascade of downstream responses.
Inflammatory response: neuronal immune cells respond to external stimuli via receptors such as
TLRs and IL-4R, mediating the synthesis and secretion of a series of inflammation-related proteins.
Apoptosis: apoptosis-related proteins are activated via different pathways and ultimately drive
apoptosis. Autophagy: regulated by both mTOR and AMPK proteins, the ULK1 kinase complex is
activated, promotes autophagosome maturation, and completes the autophagic process step by step.

3. Application of Polyphenols in the Treatment of IS

Polyphenol is the general term for an aromatic compound containing one or more
phenolic hydroxyl structures. They are widely found in plants in nature [99–101]—to date,
over 8000 polyphenol structures have been identified [23]. Polyphenols can be classified
into five categories according to their chemical structures: flavonoids, phenolic acids,
stilbenes, lignans, and curcumins [23]. Here, we summarize the research progress related
to these five categories of polyphenols in the context of therapeutic applications for IS over
the last 5 years.

3.1. Flavonoids

Generally, flavonoids contain two benzene rings and an epoxy heterocyclic ring as their
typical chemical backbone [102]. Flavonoids are commonly found in fruits, grains, vegeta-
bles, and flowers and are the most abundant polyphenols in nature [103]. Based on the dif-
ferent structures connecting the two benzene rings, flavonoids can be divided into six cate-
gories: flavonols, isoflavones, flavones, flavanols, flavanones, and anthocyanidins [104,105].
The therapeutic effects of various flavonoids on IS are summarized in Table 1 and their
mechanisms of action are discussed in detail in later sections.
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Table 1. Summary of studies on the anti-IS effects of flavonoids.

Polyphenolic
Compound Chemical Structure

Models and Treatments
Observed Effects Mechanisms Reference

In Vitro In Vivo

Flavonols

Quercetin
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NA
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Intragastric injection (i.g.) for 15 days before
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↑SOD1
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NA
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HT22 cell line and primary
cortical neurons
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HT22 cell line
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SD rats
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10 mg/kg
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↑Hippocalcin
↓Caspase-3
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↑Bcl-2

[110]

Hippocampal slices and
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SD rats
T-MCAO

i.p. 21 days before T-MCAO
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10 mg/kg
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Table 1. Cont.

Polyphenolic
Compound Chemical Structure

Models and Treatments
Observed Effects Mechanisms Reference

In Vitro In Vivo

Flavonols

NA

SD rats
P-MCAO

i.p. 1 h before P-MCAO
30 mg/kg

Anti-apoptosis ↓PARP
↓Caspase-3 [113]

NA

SD rats
P-MCAO

i.p. 0.5 h before P-MCAO
10 mg/kg

Downregulated glutamate
toxicity ↑PP2A subunit B [114]

BV2 cells
OGD/R

20, 40 µM

ICR mice
Hypoxic-ischemic brain injury

i.p. for 2 days after injury
50 mg/kg

Anti-inflammatory
Mitigated cognitive and
motor function deficits

↓TLR4/MyD88/NF-κB [115]

NA

SD rats
P-MCAO

i.p. 1 h before p-MCAO
50 mg/kg

Improved energy
metabolism ↑γ-Enolase [116]

Isoquercetin

Molecules 2022, 27, 4181 9 of 44 
 

 

Isoquercetin 

 

Primary 
hippocampal 

neurons 
OGD/R 

20, 40, 80 µg/mL 

SD rats 
T-MCAO 

i.g. for 3 days 
after T-MCAO 
5, 10, 20 mg/kg 

Reduced infarct 
size 

Anti-apoptosis 

↓TLR4-NF-κB 
↓p-JNK1/2 

↓p-p38 MAPK 
[117] 

  NA 

SD rats 
T-MCAO 

i.g. for 3 days 
before T-MCAO 
5, 10, 20 mg/kg 

Attenuated 
oxidative stress  
Anti-apoptosis 

↑Nrf2 
↓NOX4/ROS/

NF-κB 
[118] 

Rutin 

 

NA 

Ovariectomized 
(OVX) SD rats 

T-MCAO 
i.p. for 5 days 

before T-MCAO 
100 mg/kg 

Decreased infarct 
size Attenuated 

neuron loss 
Improved 

sensorimotor 
performance and 

recognition 
memory  

↑BDNF-TrκB 
↑NGF-TrkA [119] 

Kaempferol 

 

NA 

SD rats 
T-MCAO 

i.g. for 7 days 
after T-MCAO 

25, 50, 100 
mg/kg 

Anti-inflammatory 
Attenuated BBB 

dysfunction 

↓p-p65 
↓MMP3 

[120] 

  NA 

SD rats 
T-MCAO 

i.g. for 7 days 
before T-MCAO 
0.5, 1, 2 mg/kg 

Reduced infarct 
volume  

Anti-apoptosis 

↑p-Akt 
↑Nrf-2 

↓p-NF-κB 
[121] 

  
PC12 cell line 

OGD/R 
5, 10, 20 µM 

NA 

Ameliorated OGD-
induced 

mitochondrial 
dysfunction 

↑Sirt1 
↓p66shc 

[122] 

  

Primary cortical 
neurons 

OGD 
10 µM 

C57BL/6 mice 
T-MCAO 

i.g. for 7 days 
before T-MCAO 

50, 100, 200 
mg/kg 

 Prevented HK-II 
detachment from 

mitochondria 
Ameliorated 

mitochondrial 
dysfunction 

↑p-Akt 
↓Drp1 [123] 

  

Primary cortical 
neurons 
OGD/R 
10 µM 

NA 
Decreased 
neuronal 

ferroptosis 

↑Nrf2/SLC7A1
1/GPx4 [124] 

Icariin 

 

NA 

SD rats 
T-MCAO 

i.g. for 28 days 
after T-MCAO 

60 mg/kg 

 Promoted 
angiogenesis and 

neurogenesis  

↑PI3K/ERK1/2 
↑VEGF 
↑BDNF 

[125] 

Primary hippocampal
neurons
OGD/R

20, 40, 80 µg/mL

SD rats
T-MCAO

i.g. for 3 days after T-MCAO
5, 10, 20 mg/kg

Reduced infarct size
Anti-apoptosis

↓TLR4-NF-κB
↓p-JNK1/2
↓p-p38 MAPK

[117]

NA

SD rats
T-MCAO

i.g. for 3 days before T-MCAO
5, 10, 20 mg/kg

Attenuated oxidative stress
Anti-apoptosis

↑Nrf2
↓NOX4/ROS/NF-κB [118]
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↑NGF-TrkA [119]
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angiogenesis and 
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↑PI3K/ERK1/2 
↑VEGF 
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NA

SD rats
T-MCAO

i.g. for 7 days after T-MCAO
25, 50, 100 mg/kg

Anti-inflammatory
Attenuated BBB

dysfunction
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↓MMP3 [120]

NA

SD rats
T-MCAO

i.g. for 7 days before T-MCAO
0.5, 1, 2 mg/kg

Reduced infarct volume
Anti-apoptosis

↑p-Akt
↑Nrf-2
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PC12 cell line
OGD/R

5, 10, 20 µM
NA Ameliorated OGD-induced

mitochondrial dysfunction
↑Sirt1
↓p66shc [122]
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10 µM
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i.g. for 7 days before T-MCAO
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10 µM
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Icariin
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neurogenesis

↑PI3K/ERK1/2
↑VEGF
↑BDNF

[125]
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OGD/R

0.37, 0.74, 1.48 µM
NA Decreased ER stress

Anti-inflammatory ↓IRE1/XBP1s [126]

NA

SD rats
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i.g. for 28 days before T-MCAO
60 mg/kg

Promoted mild
hypothermia-induced

neuroprotection

↑PPARs/Nrf2
↓JAK2/STAT3/NF-κB [127]



Molecules 2022, 27, 4181 10 of 41

Table 1. Cont.

Polyphenolic
Compound Chemical Structure

Models and Treatments
Observed Effects Mechanisms Reference

In Vitro In Vivo

Flavonols

Myricetin

Molecules 2022, 27, 4181 10 of 44 
 

 

  

Primary 
microglia 
OGD/R 

0.37, 0.74, 1.48 
µM 

NA 
Decreased ER 
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Anti-inflammatory 

↓IRE1/XBP1s [126] 
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SD rats 
T-MCAO 

i.g. for 28 days 
before T-MCAO 

60 mg/kg 

Promoted mild 
hypothermia-

induced 
neuroprotection 

↑PPARs/Nrf2 
 

↓JAK2/STAT3/
NF-κB 

[127] 

Myricetin 

 

NA 

SD rats 
P-MCAO 

i.g. for 7 days 
before T-MCAO 

25 mg/kg 

Reduced infarct 
volume 

Anti-apoptosis 

↓p-p38 MAPK 
↓p-NF-κB 
↑p-Akt 

[128] 

  

Human brain 
microvessel 

endothelial cells 
(HBMECs)  

OGD/R 
10, 30, 60 µM 

NA 

Decreased 
enhancement of 

endothelial 
permeability 

Anti-inflammatory 

↑eNOS 
↑p-Akt [129] 

Isoflavones 

Puerarin 

 

NA 

SD rats 
T-MCAO 

i.p. 2 h before T-
MCAO 

50, 100 mg/kg 

Alleviated 
neurological 

deficits 
Anti-apoptosis 

↑p-Akt1/p-
GSK-3β/MCL-

1 
[130] 

  NA 

SD rats 
T-MCAO 

i.g. for 14 days 
before T-MCAO 
 50, 100 mg/kg 

Suppressed 
excessive 

autophagy 

↓AMPK 
↓ps317-ULK1 

↑mTOR 
↑ps757-ULK1 

[131] 

Genistein 

 

N9/HT22 co-
culture 
Primary 

microglia/prima
ry cortical 
neuron co-

culture 
OGD/R 
5 µg/mL 

 C57BL/6J mice 
T-MCAO 

i.p. for 14 days 
before T-MCAO 

10 mg/kg 

Anti-inflammatory 
Anti-apoptosis ↓NLRP3 [132] 

  NA 

OVX SD rats 
T-MCAO 

i.p. for 14 days 
before T-MCAO 

10 mg/kg 

Anti-oxidative 
stress 

Anti-apoptosis 

↑Nrf2 
↑NQO1 

↓Caspase-3 
[133] 

  NA 

OVX SD rats 
T-MCAO 

i.p. for 14 days 
before T-MCAO 

10 mg/kg 

Anti-apoptosis ↑PI3K-Akt-
mTOR [134] 

NA

SD rats
P-MCAO

i.g. for 7 days before T-MCAO
25 mg/kg

Reduced infarct volume
Anti-apoptosis

↓p-p38 MAPK
↓p-NF-κB
↑p-Akt

[128]

Human brain microvessel
endothelial cells (HBMECs)

OGD/R
10, 30, 60 µM

NA
Decreased enhancement of

endothelial permeability
Anti-inflammatory

↑eNOS
↑p-Akt [129]

Isoflavones

Puerarin
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OGD/R
5 µg/mL

C57BL/6J mice
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10 mg/kg

Anti-inflammatory
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NA
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10 mg/kg

Anti-oxidative stress
Anti-apoptosis

↑Nrf2
↑NQO1
↓Caspase-3

[133]
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Table 1. Cont.

Polyphenolic
Compound Chemical Structure

Models and Treatments
Observed Effects Mechanisms Reference

In Vitro In Vivo

Isoflavones

NA

OVX SD rats
T-MCAO

i.p. for 14 days before T-MCAO
10 mg/kg

Anti-apoptosis ↑PI3K-Akt-mTOR [134]

Daidzein
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Daidzein 

 

NA 

ICR mice 
T-MCAO 

i.p. 10 min after 
T-MCAO 

10, 20, 30 mg/kg 

 Alleviated neuron 
impairment 

Anti-apoptosis 

↑PI3K/Akt/mT
OR 

↑BDNF/CREB 
[135] 

Flavones 

Baicalein 

 

NA 

SD rats 
T-MCAO 

i.p. for 7 days 
after T-MCAO 

200 mg/kg 

 Promoted M2 
polarization of 

microglia 
Suppressed 

excessive 
autophagy 

↓MAPK/NF-
κB 

↑PI3K/Akt/mT
OR 

[136] 

  

SH-SY5Y cell 
line 

OGD/R 
0.1–8 µM 

SD rats 
T-MCAO 

intravenous 
injection (i.v.) 

just before 
refusion 

2.5, 5, 10 mg/kg 

Anti-oxidative 
stress 

Anti-inflammatory 

↑Nrf2 
↓NF-κB 
↓LOX-1 
↓AMPK 

[137] 

  

BV2 cell line 
LPS/IFNr 

stimulation or 
OGD/R 
45 µM 

 C57BL/6J mice 
T-MCAO 

i.g. for 3 days 
after T-MCAO 

100 mg/kg 

Anti-inflammatory 
 Promoted M2 
polarization of 

microglia 

↓TLR4/NF-κB 
↓p-STAT1 

[138] 

  

SH-SY5Y cell 
line 

OGD/R 
1, 5, 10, 15, 20 

µM 

SD rats 
T-MCAO 

i.g. for 7 days 
after T-MCAO 

100 mg/kg 

Anti-apoptosis 
Reduced infarct 

volume 

↓PARP-1 
↓Nuclear 

translocation 
of MIF and 

AIF 

[139] 

  
PC12 cell line 

OGD/R 
0.02, 0.1, 0.5 µM 

SD rats 
T-MCAO 

i.g. for 7 days 
after T-MCAO 

100 mg/kg 

Anti-oxidative 
stress 

Anti-apoptosis 

↓Calpain 1 
↓Nuclear 

translocation 
of AIF 

[140] 

Baicalin 

 

Primary 
astrocytes 

OGD/R 
1, 10 µM 

SD 
T-MCAO 

i.p. 0.5 h before 
refusion 
50 mg/kg 

Anti-excitotoxic  ↓SDH 
↑GS [141] 

Scutellarin 

 

BV2 cell line 
LPS stimulation 

0.54 µM 

SD rats 
P-MCAO 

i.p. 2 h before 
MCAO and 12, 
24, 36, 48, 60 h 
after MCAO 
100 mg/kg  

Decreased 
microglial 
activation 

Anti-inflammatory 

↓p-p38 MAPK 
↓p-JNK 

[142] 

NA

ICR mice
T-MCAO

i.p. 10 min after T-MCAO
10, 20, 30 mg/kg

Alleviated neuron
impairment

Anti-apoptosis

↑PI3K/Akt/mTOR
↑BDNF/CREB [135]

Flavones

Baicalein
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0.54 µM 

SD rats 
P-MCAO 

i.p. 2 h before 
MCAO and 12, 
24, 36, 48, 60 h 
after MCAO 
100 mg/kg  

Decreased 
microglial 
activation 

Anti-inflammatory 

↓p-p38 MAPK 
↓p-JNK 

[142] 

NA

SD rats
T-MCAO

i.p. for 7 days after T-MCAO
200 mg/kg

Promoted M2
polarization of microglia

Suppressed excessive
autophagy

↓MAPK/NF-κB
↑PI3K/Akt/mTOR [136]

SH-SY5Y cell line
OGD/R
0.1–8 µM

SD rats
T-MCAO

intravenous injection (i.v.) just before
refusion

2.5, 5, 10 mg/kg

Anti-oxidative stress
Anti-inflammatory

↑Nrf2
↓NF-κB
↓LOX-1
↓AMPK

[137]

BV2 cell line
LPS/IFNr stimulation or

OGD/R
45 µM

C57BL/6J mice
T-MCAO

i.g. for 3 days after T-MCAO
100 mg/kg

Anti-inflammatory
Promoted M2

polarization of microglia

↓TLR4/NF-κB
↓p-STAT1 [138]

SH-SY5Y cell line
OGD/R

1, 5, 10, 15, 20 µM

SD rats
T-MCAO

i.g. for 7 days after T-MCAO
100 mg/kg

Anti-apoptosis
Reduced infarct volume

↓PARP-1
↓Nuclear translocation of

MIF and AIF
[139]

PC12 cell line
OGD/R

0.02, 0.1, 0.5 µM

SD rats
T-MCAO

i.g. for 7 days after T-MCAO
100 mg/kg

Anti-oxidative stress
Anti-apoptosis

↓Calpain 1
↓Nuclear translocation

of AIF
[140]



Molecules 2022, 27, 4181 12 of 41

Table 1. Cont.

Polyphenolic
Compound Chemical Structure

Models and Treatments
Observed Effects Mechanisms Reference

In Vitro In Vivo

Flavones

Baicalin

Molecules 2022, 27, 4181 11 of 44 
 

 

Daidzein 

 

NA 

ICR mice 
T-MCAO 

i.p. 10 min after 
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10, 20, 30 mg/kg 

 Alleviated neuron 
impairment 

Anti-apoptosis 

↑PI3K/Akt/mT
OR 

↑BDNF/CREB 
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SD rats 
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polarization of 
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refusion 
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Anti-inflammatory 
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↓LOX-1 
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polarization of 

microglia 

↓TLR4/NF-κB 
↓p-STAT1 
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line 

OGD/R 
1, 5, 10, 15, 20 

µM 

SD rats 
T-MCAO 

i.g. for 7 days 
after T-MCAO 

100 mg/kg 

Anti-apoptosis 
Reduced infarct 

volume 

↓PARP-1 
↓Nuclear 

translocation 
of MIF and 

AIF 

[139] 

  
PC12 cell line 

OGD/R 
0.02, 0.1, 0.5 µM 

SD rats 
T-MCAO 

i.g. for 7 days 
after T-MCAO 

100 mg/kg 

Anti-oxidative 
stress 

Anti-apoptosis 

↓Calpain 1 
↓Nuclear 

translocation 
of AIF 

[140] 

Baicalin 

 

Primary 
astrocytes 

OGD/R 
1, 10 µM 

SD 
T-MCAO 

i.p. 0.5 h before 
refusion 
50 mg/kg 

Anti-excitotoxic  ↓SDH 
↑GS [141] 

Scutellarin 

 

BV2 cell line 
LPS stimulation 

0.54 µM 

SD rats 
P-MCAO 

i.p. 2 h before 
MCAO and 12, 
24, 36, 48, 60 h 
after MCAO 
100 mg/kg  

Decreased 
microglial 
activation 

Anti-inflammatory 

↓p-p38 MAPK 
↓p-JNK 

[142] 

Primary astrocytes
OGD/R
1, 10 µM

SD
T-MCAO

i.p. 0.5 h before refusion
50 mg/kg

Anti-excitotoxic ↓SDH
↑GS [141]

Scutellarin
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Baicalin 

 

Primary 
astrocytes 

OGD/R 
1, 10 µM 

SD 
T-MCAO 

i.p. 0.5 h before 
refusion 
50 mg/kg 

Anti-excitotoxic  ↓SDH 
↑GS [141] 

Scutellarin 

 

BV2 cell line 
LPS stimulation 

0.54 µM 

SD rats 
P-MCAO 

i.p. 2 h before 
MCAO and 12, 
24, 36, 48, 60 h 
after MCAO 
100 mg/kg  

Decreased 
microglial 
activation 

Anti-inflammatory 

↓p-p38 MAPK 
↓p-JNK 

[142] 
BV2 cell line

LPS stimulation
0.54 µM

SD rats
P-MCAO

i.p. 2 h before MCAO and 12, 24, 36, 48, 60 h
after MCAO
100 mg/kg

Decreased microglial
activation

Anti-inflammatory

↓p-p38 MAPK
↓p-JNK [142]

NA

SD rats
P-MCAO

i.p. for 7 days before P-MCAO
20, 50, 100 mg/kg

Alleviated cognitive
impairments

Anti-inflammatory
↓PARP-1/NF-κB [143]

Primary astrocytes
OGD/R

10, 50 µM

SD rats
T-MCAO

i.p. 2 h before MCAO and 12, 24, 36, 48, 60 h
after MCAO

50, 100 mg/kg

Anti-oxidative stress ↓NOX2
↑Cx43 [144]

NA

SD rats
T-MCAO

i.v. for 7 days after T-MCAO
0.33 mg/kg

Suppressed excessive
autophagy ↓LC3-II/LC3-I [145]

Luteolin
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20, 40, 80 mg/kg 

Alleviated 
neurologic deficits 

and cerebral 
edema 

Anti-inflammatory 

↑Nrf2 
↓PPARγ/NF-
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[146] 

  NA 

SD rats 
T-MCAO 

i.p. for 7 days 
after T-MCAO 

15, 30, 60 mg/kg 

Suppressed 
excessive 

autophagy 
Ameliorated 

mitochondrial 
dysfunction 

↑Sirt3/AMPK/
mTOR [147] 

Chrysin 

 

NA 

Wistar rats 
T-MCAO 

i.g. for 21 days 
before T-MCAO 

10, 30, 100 
mg/kg 

Prevented 
cognitive and 

hippocampal LTP 
impairments 

↓IL-1β 
↓TNF-α 

[148] 

  

SH-SY5Y cell 
line 
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160, 320 µM 

SD rats 
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Anti-inflammatory 
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↑PI3K/Akt/mT
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30 mg/kg 

Anti-inflammatory 
↓iNOS 
↓TNF-α [150] 

Apigenin 

 

HBMEC 
OGD/R 

2.5, 5 µM  

SD rats 
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i.p. for 14 days 
after T-MCAO 

25 mg/kg 

Suppressed 
excessive 

autophagy 
Promoted 

neovascularization 

↑Caveolin-1 
↑VEGF [151] 

NA

SD rats
T-MCAO

i.p. 0, 12 h after T-MCAO
20, 40, 80 mg/kg

Alleviated neurologic
deficits and cerebral edema

Anti-inflammatory

↑Nrf2
↓PPARγ/NF-κB [146]

NA

SD rats
T-MCAO

i.p. for 7 days after T-MCAO
15, 30, 60 mg/kg

Suppressed excessive
autophagy

Ameliorated mitochondrial
dysfunction

↑Sirt3/AMPK/mTOR [147]
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excessive 

autophagy 
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NA 
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T-MCAO 

i.g. for 21 days 
before T-MCAO 

10, 30, 100 
mg/kg 

Prevented 
cognitive and 

hippocampal LTP 
impairments 

↓IL-1β 
↓TNF-α 

[148] 

  

SH-SY5Y cell 
line 

OGD/R 
10, 20, 40, 80, 
160, 320 µM 

SD rats 
T-MCAO 

i.g. for 7 days 
after T-MCAO  
10, 20 mg/kg 

Anti-inflammatory 
Anti-apoptosis 

↑PI3K/Akt/mT
OR 

[149] 

  NA 

SD rats 
T-MCAO 

i.g. for 14 days 
before T-MCAO 

30 mg/kg 

Anti-inflammatory 
↓iNOS 
↓TNF-α [150] 

Apigenin 

 

HBMEC 
OGD/R 

2.5, 5 µM  

SD rats 
T-MCAO 

i.p. for 14 days 
after T-MCAO 

25 mg/kg 

Suppressed 
excessive 

autophagy 
Promoted 

neovascularization 

↑Caveolin-1 
↑VEGF [151] 

NA

Wistar rats
T-MCAO

i.g. for 21 days before T-MCAO
10, 30, 100 mg/kg

Prevented cognitive
and hippocampal
LTP impairments

↓IL-1β
↓TNF-α [148]

SH-SY5Y cell line
OGD/R

10, 20, 40, 80, 160, 320 µM

SD rats
T-MCAO

i.g. for 7 days after T-MCAO
10, 20 mg/kg

Anti-inflammatory
Anti-apoptosis ↑PI3K/Akt/mTOR [149]

NA

SD rats
T-MCAO

i.g. for 14 days before T-MCAO
30 mg/kg

Anti-inflammatory ↓iNOS
↓TNF-α [150]
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OGD/R
2.5, 5 µM

SD rats
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i.p. for 14 days after T-MCAO
25 mg/kg

Suppressed excessive
autophagy
Promoted

neovascularization

↑Caveolin-1
↑VEGF [151]

PC12 cell line
1.2 mM CoCl2 stimulation

0–200 µg/mL

SD rats
T-MCAO

i.p. for 7 days after T-MCAO
25 mg/kg

Ameliorated mitochondrial
dysfunction ↓ROS [152]

Flavanols

(-)-
Epigallocatechin

gallate
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polarization of 
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stimulation 

10, 20, 40 µM 
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Suppressed 

glutamate-induced 
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0.5, 1, 2, 4 µM 
NA 

Promoted 
neovascularization 

Alleviated 
apoptosis and 

autophagy 

↑VEGF 
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↑Bcl-2/Bax 

[157] 

Procyanidin 

 

BV2 cell line 
OGD 

10 µM 

SD rats 
T-MCAO 

i.p. 1 h before P-
MCAO 

20, 40, 80 mg/kg 

Ameliorated 
neurological 

deficits 
Anti-inflammatory 

↓TLR4-p38-
NF-κB-NLRP3 [158] 

Flavanones 

Naringenin 

 

Primary cortical 
neuron 
OGD/R 

20, 40, 80 µM 

SD rats 
T-MCAO 

i.p. immediately 
before T-MCAO 

20 mg/kg 

Anti-oxidative 
stress ↑Nrf2 [159] 

NA

SD rats
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i.p. immediately after T-MCAO
20 mg/kg

Anti-apoptosis ↑PI3K/Akt/eNOS [153]



Molecules 2022, 27, 4181 14 of 41

Table 1. Cont.

Polyphenolic
Compound Chemical Structure
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Flavanols

Neurosphere culture
10 ng/mL LPS stimulation

10, 20, 40 µM for 7 days

C57BL/6 mice
T-MCAO

Injection into left ventricle for 14 days
starting at 14 days post injury

2 µg

Promoted the M2
polarization of microglia
Promoted neurogenesis

↑PI3K/Akt [154]

NA

SD rats
P-MCAO

i.p. just before P-MCAO
50 mg/kg

Anti-apoptosis ↓Caspase-3
↓PARP [155]

HT22 cell line
Glutamate stimulation

10, 20, 40 µM

SD rats
P-MCAO

i.p. just before P-MCAO
50 mg/kg

Alleviated neurological
deficits

Suppressed
glutamate-induced

oxidative stress

↑Thioredoxin/ASK-1 [156]

(-)-Epicatechin
gallate

Molecules 2022, 27, 4181 13 of 44 
 

 

  

PC12 cell line 
1.2 mM CoCl2 

stimulation  
0–200 µg/mL 

SD rats 
T-MCAO 

i.p. for 7 days 
after T-MCAO 

25 mg/kg 

Ameliorated 
mitochondrial 
dysfunction 

↓ROS [152] 

Flavanols 

(-)-
Epigallocatechi

n gallate 
 

NA 

SD rats 
T-MCAO 

i.p. immediately 
after T-MCAO 

20 mg/kg 

Anti-apoptosis ↑PI3K/Akt/eN
OS 

[153] 

  

Neurosphere 
culture 

10 ng/mL LPS 
stimulation 

10, 20, 40 µM for 
7 days 

 C57BL/6 mice 
T-MCAO 

Injection into left 
ventricle for 14 
days starting at 

14 days post 
injury 
2 µg 

 Promoted the M2 
polarization of 

microglia 
Promoted 

neurogenesis 

↑PI3K/Akt [154] 

  NA 

SD rats 
P-MCAO 

i.p. just before P-
MCAO 

50 mg/kg 

Anti-apoptosis ↓Caspase-3 
↓PARP 

[155] 

  

HT22 cell line 
Glutamate 
stimulation 

10, 20, 40 µM 

SD rats 
P-MCAO 

i.p. just before P-
MCAO 

50 mg/kg 

Alleviated 
neurological 

deficits  
Suppressed 

glutamate-induced 
oxidative stress 

↑Thioredoxin/
ASK-1 

[156] 

(-)-Epicatechin 
gallate 

 

HBMEC 
OGD/R 

0.5, 1, 2, 4 µM 
NA 

Promoted 
neovascularization 

Alleviated 
apoptosis and 

autophagy 

↑VEGF 
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OGD 

10 µM 
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T-MCAO 
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MCAO 

20, 40, 80 mg/kg 
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Anti-inflammatory 

↓TLR4-p38-
NF-κB-NLRP3 [158] 

Flavanones 

Naringenin 

 

Primary cortical 
neuron 
OGD/R 

20, 40, 80 µM 

SD rats 
T-MCAO 

i.p. immediately 
before T-MCAO 

20 mg/kg 

Anti-oxidative 
stress ↑Nrf2 [159] 

HBMEC
OGD/R

0.5, 1, 2, 4 µM
NA

Promoted
neovascularization

Alleviated apoptosis
and autophagy

↑VEGF
↓LC3-I/II
↑mTOR
↑Bcl-2/Bax

[157]

Procyanidin
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Table 1. Cont.
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3.1.1. Flavonols

Quercetin (QE), a polyphenol found widely in nature, has been shown to have promis-
ing neuroprotective properties against various neurodegenerative diseases [167]. The neu-
roprotective effects of QE mainly manifest as antioxidant, anti-inflammatory, anti-excitatory,
anti-calcium overload, and anti-apoptotic effects [168]. Studies have reported that QE can
increase the activity of the antioxidant enzymes superoxide dismutase 1 (SOD1), SOD2,
catalase (CAT), and glutathione peroxidase (GPx) in ischemic brain tissue and enhance
the antioxidant effects mediated by the Sirt1/Nrf2/HO-1 pathway [107,108]. In addition,
there is evidence that QE pre-treatment can reduce the downregulation of two calmod-
ulins, parvalbumin and hippocalcin, after IS, which reduces glutamate-induced toxicity
and helps to maintain intraneuronal calcium homeostasis [110,112]. QE pre-treatment can
also inhibit neuronal apoptosis by regulating ERK/Akt pathway phosphorylation [111].
Under conditions of ischemia and hypoxia, microglia in the brain are activated and se-
crete various pro-inflammatory factors such as TNF-α, IL-1β, and IL-6, which eventually
aggravate brain tissue damage [23]. QE reduced pro-inflammatory cytokine production
in oxygen-glucose deprivation/reoxygenation (OGD/R)-treated BV2 cells and inhibited
TLR4/MyD88/NF-κB pathway signaling to protect damaged brain tissue [110]. However,
despite these beneficial effects, the use of QE in IS is still limited owing to its low oral
bioavailability and weak BBB permeability [169].

Isoquercetin (Q3G) is a monoglucoside derivative of QE with better bioavailability [170].
Oxidative stress and neuronal apoptosis after ischemia/reperfusion (IR) can be mitigated
by Q3G through inhibition of the NOX4/ROS/NF-κB pathway [118]. It can also inhibit
TLR4/NF-κB pathway activation and the phosphorylation of JNK1/2, ERK1/2, and p38
MAPK to reduce the inflammatory response and apoptosis [117].

Decreased estrogen levels are considered a key factor affecting the risk of post-
menopausal stroke [171,172]. Rutin, a disaccharide rutinose derivative of QE, has also been
reported to reduce post-cerebral ischemia by activating estrogen receptor-mediated brain-
derived neurotrophic factor (BDNF)-TrκB and nerve growth factor (NGF)-TrkA signaling
in ovariectomized rats [119].

Kaempferol (KEM), a flavonol, has been demonstrated to have anti-inflammatory and
antioxidant effects that are effective for the treatment of many diseases [173]. Evidence
shows that KEM treatment suppresses the production of chemokines such as MCP-1 and
ICAM-1 and pro-inflammatory factors such as inducible nitric oxide synthase (iNOS)
and COX-2 after stroke, reducing microglial overactivation [120]. In addition, KEM can
reduce intracellular mitochondrial damage and help maintain mitochondrial function after
ischemia and hypoxia by affecting various pathways, such as upregulating Sirt1 expression
and inhibiting p66shc acetylation or inhibiting mitochondrial Drp1 recruitment and HK-II
detachment [122,123]. Interestingly, KEM can also improve OGD/R-induced neuronal
ferroptosis by activating the Nrf2/SLC7A11/GPx4 pathway, which could emerge as a new
strategy for IS treatment [124].

Icariin (ICA), the main active ingredient in Epimedium genus plants, has a wide range of
pharmacological activities [174–176]. Studies have shown that ICA inhibits NF-κB activation
after IS by upregulating the PPARs/Nrf2 pathway and downregulating the JAK2/STAT3
pathway, thereby enhancing mild hypothermia-induced neuroprotection [127]. ICA can also
reduce endoplasmic reticulum (ER) stress and inflammatory responses by modulating
IRE1α-XBP1 pathway activation [126]. Furthermore, Liu et al. found that ICA activates the
PI3K/ERK1/2 pathway and increases VEGF and BDNF secretion by mesenchymal stem
cells, thereby promoting angiogenesis and neurogenesis after stroke [125].

3.1.2. Isoflavones

Puerarin (PUE) is an isoflavone extracted from Pueraria genus plants, and its pharma-
cological activity has been extensively investigated [177]. Pre-treatment with PUE before
IS can increase p-Akt1/p-GSK-3β/MCL-1 cascade activity to improve the survival of hip-
pocampal neurons and alleviate motor and cognitive deficits [130]. In addition, PUE could
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inhibit ischemia-induced neuronal autophagy by activating the AMPK/mTOR/ULK1
pathway, downregulating the LC3-II/LC3-I ratio, and increasing p62 expression in the
ischemic hippocampus, significantly reducing ischemic brain edema, infarct volume, and
neurological deficits [131].

Genistein (GE) and daidzein (DAZ) are the two main isoflavones in soybeans, and are clas-
sified as phytoestrogens, because of the similarities of their structures to estrogens [178,179].
Studies have shown that GE and DAZ play unique roles in the treatment of postmenopausal
cerebral ischemia. GE can reduce the production of excess ROS in ischemic regions by
increasing Nrf2 and NQO1 expression in temporary-middle cerebral artery occlusion
(T-MCAO) models of ovariectomized rats [133]. It can also modulate the PI3K/Akt/mTOR
pathway to reduce apoptosis, which could provide a new strategy for the treatment of
stroke in postmenopausal women [134]. DAZ can also inhibit neuronal apoptosis and
promote BDNF and cAMP-response element binding protein (CREB) expression by regu-
lating the PI3K/Akt/mTOR pathway, effectively stimulating neuronal regeneration after
IS [135]. Thus, these two polyphenols have great potential for the treatment of post-
menopausal stroke.

3.1.3. Flavones

Scutellaria baicalensis is a traditional Chinese medicinal plant, which widely used
to treat patients with inflammatory cardiovascular diseases such as hypertension and
atherosclerosis [180]. Baicalein (BAI) and baicalin (BG), the main components of the
S. baicalensis extract, have excellent pharmacological activities [181]. It has been demon-
strated that BAI could play anti-inflammatory and antioxidant roles by regulating the
AMPK/Nrf2 signaling pathway and suppressing the expression of inflammatory mediators
such as LOX-1, COX-2, PGE2, and NF-κB [137]. Notably, BAI treatment also inhibits STAT1
phosphorylation, promoting the conversion of ischemic penumbra microglia to the M2
type, resulting in significant reductions in infarct volume [138]. Moreover, BAI restrains the
nuclear transport of AIF and macrophage migration inhibitory factor (MIF) by downregulat-
ing the activity of calpain-1 and reducing the expression of poly (ADP-ribose) polymerase 1
(PARP-1), leading to the inhibition of ROS production and apoptosis [139,140].

BG, a glycoside derivative of BAI, displays therapeutic activities similar to those of
BAI. Studies have shown that BG can inactivate succinate dehydrogenase in astrocytes
to suppress mitochondria-derived ROS production, protect glutamine synthase from 20S
proteasomal degradation, and enhance extracellular glutamate uptake and resistance
to excitotoxicity [141].

Scutellarin (SCU) is a flavonoid extracted from the traditional Chinese herb Erigeron
breviscapus. SCU treatment can reduce infarct volume and brain water content [182].
Moreover, recent studies have shown that pre-treatment with scutellarin suppresses the
phosphorylation of p38 MAPK and JNK1/2, attenuates microglia-mediated inflammatory
responses, and effectively reduces ischemia-induced brain injury [142]. Interestingly, SCU
can also bind specifically to NOX2 and effectively inhibit its activation within astrocytes
after ischemic brain injury [144].

Luteolin (LTL) is a flavonoid polyphenol available from a variety of dietary sources [183].
LTL could upregulate Sirt3 expression and activate the AMPK/mTOR pathway in the
brains of T-MCAO rats, effectively reducing the number of activated glial cells, improv-
ing neurological function, and reducing brain infarct volume [147]. PPARγ belongs to a
receptor family of ligand-activated nuclear transcription factors that regulate the transcrip-
tion and expression of several genes and play a crucial role in neuroprotection [184,185].
LTL treatment significantly increased the expression of PPARγ and modulated the down-
stream Nrf2/NF-κB pathway in the brain of T-MCAO rats, thus reducing I/R injury in
the brain [146].
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3.1.4. Flavanols

Three flavanols have been found to contribute to neuroprotection in IS. Epigallocat-
echin gallate (EGCG) and epicatechin gallate (ECG) are the most abundant polyphenols
in tea and have been reported to have therapeutic effects on a variety of neurological
disorders [186,187]. In rat p-MCAO models, EGCG promoted thioredoxin expression and
increased its interaction with ASK-1 and demonstrated neuroprotective effects against
glutamate toxicity and ischemic brain injury [156]. PARP is a family of signature proteins
that induces apoptosis by promoting cellular AIF release [188]. Pre-treatment with EGCG
was shown to effectively reduce PARP expression in ischemic cerebral tissue and to regulate
the apoptotic cascade to reduce cell death after focal cerebral ischemia [155]. EGCG can also
inhibit the inflammatory response and apoptosis after injury by moderating the PI3K/Akt
pathway and upregulating endothelial nitric oxide synthase (eNOS), increasing the prolifer-
ation and differentiation of neural progenitor cells, and promoting neurogenesis [153,154].
ECG can significantly downregulate ROS levels in cerebrovascular endothelial cells after
OGD/R, decrease apoptotic and autophagic protein expression, and promote VEGF ex-
pression and neovascularization, and thus may provide novel avenues for the treatment
of IS [157].

3.1.5. Flavanones

Naringenin (NRG) and naringin (NG) are flavanone polyphenols found in citrus
fruits and have excellent antioxidant and anti-inflammatory effects [189]. Recent studies
have shown that NRG increases Nrf2 expression and promotes its nuclear translocation,
reduces oxidative stress, and prevents apoptosis in cortical neurons [159]. NG, a glycoside
derivative of NRG, has antioxidant and anti-apoptotic properties similar to those of NRG,
and can scavenge ONOO− and reduce excessive mitochondrial autophagy mediated by it
to improve brain damage in a rat model of T-MCAO [160].

3.1.6. Anthocyanins

Anthocyanins are a group of natural plant pigments commonly found in fruits and
vegetables [23,190]. In preclinical studies, cyanidin-3-glucoside (C3G) was found to inhibit
TLR4/NF-κB/NLRP3 signaling and block the expression of several related inflammatory
factors to reduce the inflammatory response [163]. It could also inhibit the glutamate-
mediated apoptosis of HT22 neurons by suppressing ER stress through decreasing oxidative
stress and increasing the expression of antioxidant proteins such as Nrf2, SOD, CAT, GPx,
and GST [164].

Petunidin-3-O-rutinoside (p-coumaroyl)-5-O-glucoside is an anthocyanin purified
from dried Lycium ruthenicum Murr. fruit. Studies have shown that it can significantly
minimize infarct volume and cerebral edema, inhibit NF-κB/NLRP3 pathway activation
while suppressing MMP9 activation, and promote the protection of the neurovascular
unit [165]. Moreover, it can lower SQSTM1 expression, increases the LC3B II/LC3B I ratio,
enhance autophagy, and restrict OGD-induced neural injury [166].

3.2. Phenolic Acids

Phenolic acids have a molecular structure consisting of a carboxylic group and ben-
zene rings, in addition to one or more methoxy and/or hydroxyl groups. Based on their
chemical structure, they can be divided into benzoic acid derivatives and cinnamic acid
derivatives [191]. Here, we summarize the therapeutic effects and associated mechanisms
of action of these two types of phenolic acids in IS (Table 2).
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Table 2. Summary of recent studies on the anti-IS effects of phenolic acids.

Polyphenolic
Compound Chemical Structure

Models and Treatments
Observed Effects Mechanisms Reference

In Vitro In Vivo

Cinnamic Acid Derivatives

Ferulic acid
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volume 

↓ICAM-1 
↓VCAM-1 
↑EPO 

↑HIF-1α 
↑NGF 

[196] 

  NA 

SD rats 
P-MCAO 

i.p. 2 h after P-
MCAO 

30 mg/kg 

Alleviated 
neurobehavioral 

symptoms 
Anti-apoptosis 

↓Caspase-3 
↓Caspase-7  
↓PARP 

[197] 

  NA 

Wistar rats 
T-MCAO 
i.p. 10 min 

before T-MCAO 
and 10 min after 

refusion 
10 mg/kg 

Anti-apoptosis 
↑miR-23b 
↓TAB3/NF-
κB/p53 

[198] 

  NA 

SD rats 
T-MCAO 

i.p. 7 days before 
T-MCAO 

20, 100, 500 
mg/kg 

Anti-oxidative 
stress 

↑Nrf2/NQO-
1/HO-1 

[199] 

  NA 

SD rats 
P-MCAO 

i.p. 2 h after P-
MCAO 

30 mg/kg 

Anti-inflammatory 
 Inhibited the 
activation of 

astrocytes and 
microglia 

↓NF-κB [200] 

Salvianolic acid A 

 

NA 

SD rats 
T-MCAO 

i.p. immediately 
after T-MCAO 
5, 10, 20 mg/kg 

Protect BBB 
Anti-inflammatory 

↓MMP9 
↓NF-κB p65 [201] 

  

SH-SY5Y cell 
line 

OGD/R 
0.05, 0.5, 5 µM 

SD rats 
T-MCAO 

i.v. immediately 
after T-MCAO 
5, 10, 20 mg/kg 

Improved 
neurological 

function 
Anti-apoptosis 

↑Akt/FOXO3a 
↓BIM/Caspase-

3 
[202] 

  
PC12 cell line 

OGD/R 
5 µM 

SD rats 
T-MCAO 

i.p. 0, 6 h after T-
MCAO 

20 mg/kg 

Anti-apoptosis 
Anti-inflammatory 

↑miR-499a 
↑Wnt3a/β-

catenin 
↓DDK1 

[203] 

  
HBMEC 

OGD 
1, 3, 10 µM 

SD rats 
Autologous 

thrombus stroke 
model 

i.g. for 5 days 
before stroke 

10 mg/kg 

Alleviated 
intracerebral 
hemorrhage 
Suppressed 

vascular 
endothelial 
dysfunction 

↓VEGFA-Src-
VAV2-Rac1-

PAK 
[204] 

NA

Wistar rats
T-MCAO

i.g. for 3 days before T-MCAO
15, 30, 60 mg/kg

Decreased mortality
Reduced infarct volume

↓ICAM-1
↓VCAM-1
↑EPO
↑HIF-1α
↑NGF

[196]

NA

SD rats
P-MCAO

i.p. 2 h after P-MCAO
30 mg/kg

Alleviated neurobehavioral
symptoms

Anti-apoptosis

↓Caspase-3
↓Caspase-7
↓PARP

[197]
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Table 2. Cont.

Polyphenolic
Compound Chemical Structure

Models and Treatments
Observed Effects Mechanisms Reference

In Vitro In Vivo

Cinnamic Acid Derivatives

NA

Wistar rats
T-MCAO

i.p. 10 min before T-MCAO and 10 min after
refusion

10 mg/kg

Anti-apoptosis ↑miR-23b
↓TAB3/NF-κB/p53 [198]

NA

SD rats
T-MCAO

i.p. 7 days before T-MCAO
20, 100, 500 mg/kg

Anti-oxidative stress ↑Nrf2/NQO-1/HO-1 [199]

NA

SD rats
P-MCAO

i.p. 2 h after P-MCAO
30 mg/kg

Anti-inflammatory
Inhibited the activation of
astrocytes and microglia

↓NF-κB [200]

Salvianolic acid A
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NA

SD rats
T-MCAO

i.p. immediately after T-MCAO
5, 10, 20 mg/kg

Protect BBB
Anti-inflammatory

↓MMP9
↓NF-κB p65 [201]

SH-SY5Y cell line
OGD/R

0.05, 0.5, 5 µM

SD rats
T-MCAO

i.v. immediately after T-MCAO
5, 10, 20 mg/kg

Improved neurological
function

Anti-apoptosis

↑Akt/FOXO3a
↓BIM/Caspase-3 [202]

PC12 cell line
OGD/R

5 µM

SD rats
T-MCAO

i.p. 0, 6 h after T-MCAO
20 mg/kg

Anti-apoptosis
Anti-inflammatory

↑miR-499a
↑Wnt3a/β-catenin

↓DDK1
[203]

HBMEC
OGD

1, 3, 10 µM

SD rats
Autologous thrombus stroke model

i.g. for 5 days before stroke
10 mg/kg

Alleviated intracerebral
hemorrhage

Suppressed vascular
endothelial dysfunction

↓VEGFA-Src-VAV2-Rac1-PAK [204]
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Table 2. Cont.

Polyphenolic
Compound Chemical Structure

Models and Treatments
Observed Effects Mechanisms Reference

In Vitro In Vivo

Cinnamic Acid Derivatives

NA

SD rats
T-MCAO

i.p. 15 min before T-MCAO
5, 10 mg/kg

Anti-inflammatory ↓TLRs/MyD88 [205]

NA

SD rats
autologous thrombus stroke model

i.p. for 14 days after stroke
10 mg/kg

Promoted endogenous
neurogenesis

↑Wnt3a/β-catenin
↓GSK-3β [206]

Salvianolic acid B
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Benzoic acid derivatives 

Protocatechuic 
acid 

 

NA 

Wistar rats 
T-MCAO 
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10, 30, 50 mg/kg 

Anti-apoptosis 
 Inhibited 
microglial 
activation  

↑CREB 
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C57BL/6J mice 
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i.p. 1, 12, 24, 48, 
72 h after T-

MCAO 
50, 100, 200 

mg/kg 
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microglial M1 
polarization  
Protect BBB 

↓MMP9 [210] 

Vanillic acid 

 

NA 

Wistar rats 
Transient 
bilateral 

common carotid 
artery occlusion 
and reperfusion 

(TBCCAO/R) 
i.g. for 14 days 

before 
TBCCAO/R 
100 mg/kg 

Restored spatial 
memory 

Anti-inflammatory 

↓IL-6 
↓TNF-α 
↑IL-10 
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NA

Wistar rats
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i.p. for 3 days before T-MCAO
3, 6, 12 mg/kg

Inhibited platelet activation
Anti-inflammatory
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↓CD40L

↓CD40/NF-κB
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Primary
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800 ng/mL
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12 mg/kg
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↑GP activity
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[208]

Benzoic acid derivatives

Protocatechuic
acid
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Table 2. Cont.

Polyphenolic
Compound Chemical Structure

Models and Treatments
Observed Effects Mechanisms Reference

In Vitro In Vivo

Benzoic acid derivatives

Vanillic acid
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Symbols: (↑) increase; (↓) decrease. 

3.2.1. Cinnamic Acid Derivatives 
Ferulic acid (FA), a component of Angelica sinensis and Ligusticum chuanxiong, has 

therapeutic effects against a variety of neurodegenerative diseases due to its anti-
inflammatory and antioxidant properties [213,214]. Recent studies suggest that the 
administration of FA immediately after an ischemic attack is effective in reducing cerebral 
infarction and improving neurological function, which may be attributed to its 
upregulation of the Akt/mTOR/4E-BP1/Bcl-2 anti-apoptotic pathway [193]. 

Rosmarinic acid (RA) is a caffeic acid derivative extracted from the rosemary plant 
[215,216]. Upon systemic administration, RA modulates the PI3K/Akt pathway to 
promote Nrf2/OH-1 pathway activation and protects against cerebral I/R injury via 
activation of antioxidant and anti-apoptotic pathways [195]. 

Chlorogenic acid (CA), the ester of caffeic acid and quinic acid, is considered to be 
one of the most abundant dietary polyphenols in coffee [217]. CA reduces apoptosis 
mediated by the miR-23b/TAB3/NF-κB pathway and decreases the release of 
inflammatory factors, thus acting as an anti-neuroinflammatory and anti-apoptotic agent 
[198]. Another study demonstrated that CA also regulates the expression of the apoptosis-
related proteins caspase-3, caspase-7, and PARP and protects neurons from cerebral 
ischemia [197]. CA can downregulate intercellular adhesion molecule-1 (ICAM-1) and 
vascular cell adhesion molecule-1 (VCAM-1) levels and upregulate targets such as 
erythropoietin (EPO), hypoxia-inducible factor 1α (HIF-1α), and NGF levels in brain 
tissue, which reduces neuronal death and promotes neuronal regeneration [196]. 

Salvianolic acids are a class of bioactive compounds extracted from Salvia, 
traditional Chinese herbs used to treat cardiovascular diseases [218]. Studies have shown 
that salvianolic acid A (SAA) can inhibit apoptosis and the inflammatory response by 
modulating the TLR2/4/MyD88 and FOXO3a/BIM pathways, which can have a 
neuroprotective effect [202,205]. SAA treatment can also reduce VEGFA-Src-VAV2-Rac1-
PAK pathway activation and depress MMP expression in ischemic brain tissue, 
preventing the degradation of the tight junction proteins ZO-1, claudin-5, and occludin, 
which protects the BBB from damage and reduces neuronal death [204]. Dickkopf-1 
(DKK1), one of the major members of the DKK family, blocks the Wnt/β-catenin signaling 
pathway by binding to the Wnt receptor complex low-density lipoprotein receptor-related 
protein 5/6, which in turn mediates downstream target gene transcription to protect 
against acute brain injury [219]. SAA has also been shown to modulate DKK1 to activate 
the Wnt/β-catenin signaling pathway to reduce I/R-induced brain injury by upregulating 
miR-449a levels in neuronal cells and a rat model of I/R [203]. Surprisingly, long-term 
administration of SAA also activated the Wnt3a/GSK3β/β-catenin pathway after IS to 
promote endogenous neurogenesis and inhibited apoptotic signaling to accelerate 
neurological recovery after injury [206]. 

Salvianolic acid B (SAB) is the most abundant bioactive hydrophilic compound in 
Salvia and has been designated by the Chinese Pharmacopoeia as a marker component 
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model, SAB decreased plasma levels of P-selectin and the CD40/CD40 ligand ratio, 
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p65 phosphorylation and production of pro-inflammatory mediators [207]. SAB has also 

NA

SD rats
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i.g. for 3 days after T-MCAO
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↑SOD
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↓Caspase-9

[212]
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3.2.1. Cinnamic Acid Derivatives

Ferulic acid (FA), a component of Angelica sinensis and Ligusticum chuanxiong, has ther-
apeutic effects against a variety of neurodegenerative diseases due to its anti-inflammatory
and antioxidant properties [213,214]. Recent studies suggest that the administration
of FA immediately after an ischemic attack is effective in reducing cerebral infarction
and improving neurological function, which may be attributed to its upregulation of the
Akt/mTOR/4E-BP1/Bcl-2 anti-apoptotic pathway [193].

Rosmarinic acid (RA) is a caffeic acid derivative extracted from the rosemary plant [215,216].
Upon systemic administration, RA modulates the PI3K/Akt pathway to promote Nrf2/OH-
1 pathway activation and protects against cerebral I/R injury via activation of antioxidant
and anti-apoptotic pathways [195].

Chlorogenic acid (CA), the ester of caffeic acid and quinic acid, is considered to
be one of the most abundant dietary polyphenols in coffee [217]. CA reduces apoptosis
mediated by the miR-23b/TAB3/NF-κB pathway and decreases the release of inflammatory
factors, thus acting as an anti-neuroinflammatory and anti-apoptotic agent [198]. Another
study demonstrated that CA also regulates the expression of the apoptosis-related proteins
caspase-3, caspase-7, and PARP and protects neurons from cerebral ischemia [197]. CA
can downregulate intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion
molecule-1 (VCAM-1) levels and upregulate targets such as erythropoietin (EPO), hypoxia-
inducible factor 1α (HIF-1α), and NGF levels in brain tissue, which reduces neuronal death
and promotes neuronal regeneration [196].

Salvianolic acids are a class of bioactive compounds extracted from Salvia, traditional
Chinese herbs used to treat cardiovascular diseases [218]. Studies have shown that sal-
vianolic acid A (SAA) can inhibit apoptosis and the inflammatory response by modulating
the TLR2/4/MyD88 and FOXO3a/BIM pathways, which can have a neuroprotective
effect [202,205]. SAA treatment can also reduce VEGFA-Src-VAV2-Rac1-PAK pathway acti-
vation and depress MMP expression in ischemic brain tissue, preventing the degradation
of the tight junction proteins ZO-1, claudin-5, and occludin, which protects the BBB from
damage and reduces neuronal death [204]. Dickkopf-1 (DKK1), one of the major members
of the DKK family, blocks the Wnt/β-catenin signaling pathway by binding to the Wnt
receptor complex low-density lipoprotein receptor-related protein 5/6, which in turn medi-
ates downstream target gene transcription to protect against acute brain injury [219]. SAA
has also been shown to modulate DKK1 to activate the Wnt/β-catenin signaling pathway
to reduce I/R-induced brain injury by upregulating miR-449a levels in neuronal cells and
a rat model of I/R [203]. Surprisingly, long-term administration of SAA also activated
the Wnt3a/GSK3β/β-catenin pathway after IS to promote endogenous neurogenesis and
inhibited apoptotic signaling to accelerate neurological recovery after injury [206].

Salvianolic acid B (SAB) is the most abundant bioactive hydrophilic compound in
Salvia and has been designated by the Chinese Pharmacopoeia as a marker component
of this genus [220]. SAB has been described to have potent antiplatelet activity and great
therapeutic potential for the treatment of thrombotic disorders [221]. In a T-MCAO rat
model, SAB decreased plasma levels of P-selectin and the CD40/CD40 ligand ratio, in-
hibited platelet activation and inflammatory cell recruitment, and suppressed NF-κB p65
phosphorylation and production of pro-inflammatory mediators [207]. SAB has also been
reported to increase glycogen phosphorylase activity, promote astrocyte glycogenolysis,
increases antioxidant levels, including those of NADPH and GSH, decrease intracellular
ROS levels, and increase astrocyte and neuronal survival, leading to reduced infarct size
and enhanced neurological recovery [208].

3.2.2. Benzoic Acid Derivatives

Protocatechuic acid (PA) and gallic acid (GA), natural components of green tea, are
benzoic acid derivatives with strong free-radical scavenging effects [222,223]. In a rat model
of focal cerebral ischemia, early administration of PA increased CREB expression in the
rat brain and prevented cerebral I/R injury [209]. GA was found to induce microglial
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polarization to the M2 type after mouse brain I/R injury, reduce inflammatory factor
secretion, and regulate tight junction-related protein expression to protect the BBB and
mitigate cerebral injury [210].

3.3. Lignans

Lignans are natural products formed by two or three polymerizations of different
types of phenylpropanoid groups. Their main dietary sources are oilseeds, cereals, and
legumes, and they are known to have various types of pharmacological properties, such as
anti-inflammatory and antioxidant activities, which are expected to be useful in IS [224,225].
Here, we summarize the research findings regarding the use of lignans for the treatment of
IS over the past 5 years (Table 3).

Table 3. Summary of recent studies on anti-IS effects of lignans.

Lignan Chemical Structure
Models and Treatments

Observed Effects Mechanisms Reference
In Vitro In Vivo

Magnolol
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Anti-inflammatory 
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[226] 

  NA 

SD rats 
T-MCAO 

i.p. 
immediately 

after T-
MCAO 

25 mg/kg 

Anti-inflammatory 
Anti-apoptosis 

↑Sirt1 
↑Bcl-2 
↓Bax 

↓Ac-FOXO1 
↓TNF-α 

[227] 

  

BV2/RAW264.
7 cell line 

LPS 
stimulation 
0.1–50 µM 

SD rats 
T-MCAO 
i.p. 30 min 
before T-

MCAO/2 h 
after T-
MCAO  

0.01, 0.1, 1 
mg/kg 

Anti-oxidative stress
Anti-inflammatory 

↓TNF-α 
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BMEC
OGD/R 1, 10 µM
Primary microglia
LPS stimulation

0.01, 0.1, 1, 10 µM
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T-MCAO
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NA

SD rats
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Anti-inflammatory
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BV2/RAW264.7 cell
line

LPS stimulation
0.1–50 µM

SD rats
T-MCAO
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T-MCAO/2 h after T-MCAO

0.01, 0.1, 1 mg/kg

Anti-oxidative
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Anti-inflammatory

↓TNF-α
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↓NOX
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NA

SD rats
T-MCAO

i.p. for 7 days before
T-MCAO
75 mg/kg

Anti-apoptosis ↑BDNF
↓Bax [229]
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and inflammatory factors that regulate brain injury after IS. EphA2 receptors are a class of
transmembrane receptor tyrosine kinases that facilitate the maintenance of the BBB tight
junctional architecture [234]. In the early stages of IS, magnolol has been shown to inhibit
EphA2 phosphorylation to attenuate BBB damage and reduce infarct size [226].

Schisandrins are lignans isolated from Schisandra chinensis fruit. It has been shown
that pre-treatment with schisandrin A can promote neural progenitor cell regeneration,
migration, and differentiation after cerebral ischemia by increasing cell division control
protein 42 (Cdc42) levels, which contributes to neural regeneration after IS [230].

3.4. Stilbenes

Stilbenes are a class of compounds with two aromatic ring structures connected by an
ethylene bridge, with various subclasses based on different substituents in the aromatic
ring [235]. Resveratrol, a representative astragal, has attracted extensive attention from
researchers (Table 4).

Table 4. Summary of recent studies on anti-IS effects of stilbenes.

Stilbene Chemical Structure
Models and Treatments

Observed Effects Mechanisms Reference
In Vitro In Vivo

Resveratrol
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It is a natural stilbene found abundantly in foods such as peanuts, grapes, and red
wine and has been reported to have anti-inflammatory, anti-apoptotic, and autophagy-
modulating effects through various pathways, including the JAK/ERK/STAT and PI3K/Akt/
mTOR pathways [237–239]. CD147 is a transmembrane glycoprotein that has recently been
proven to be an important immune response and inflammation mediator, as it induces
MMP9 expression in many cell types [253–255]. Timely administration of RES after in-
jury can suppress this process and thus inhibit microglial activation [236]. In addition,
RES inhibits mitochondrial respiration and sequentially activates AMPK and Sirt1, reg-
ulates acetyl coenzyme A levels to achieve mitochondrial and nuclear adaptation, and
improves glycolysis efficiency, which ultimately increases basal ATP levels and promotes
long-term ischemic tolerance [256,257]. A recent study on the gut-brain axis showed that
RES also modulates immune cell homeostasis mediated by intestinal flora—specifically,
Th1/Th2 and Treg/Th17 balance in the lamina propria of the small intestine—to suppress
inflammation [240]. Interestingly, RES also activates sonic hedgehog signaling to promote
neurogenesis and functional recovery after IS [246].

3.5. Curcumin

Curcumin (CUR) is a natural polyphenol with unsaturated aliphatic and aromatic
moieties in its main chain. It is extracted from Curcuma longa root and has been widely used
in IS treatment studies owing to its anti-inflammatory, antioxidant, and neuroprotective
effects (Table 5).
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Table 5. Summary of recent studies on anti-IS effects of curcumin.
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CUR can inhibit post-stroke apoptosis and the inflammatory response by modulating
the TLR4/p38 MAPK and MEK/ERK/CREB pathways [267,268,274]. CUR administration
also activates the PI3K/Akt/mTOR pathway and reduces downstream autophagy-related
protein expression to decrease autophagic activity and exert neuroprotective effects [267].
Orai1, a calcium-regulated protein, mediates the inward flow of calcium ions induced by
oxidative stress [275]. CUR administration inhibits Orai1-induced inward calcium flow
through upregulation of protein kinase C-θ (PKC-θ) expression, effectively maintaining BBB
integrity and function, and exhibits protective effects in brain I/R injury [262]. Interestingly,
CUR also exerted therapeutic effects in a diabetic stroke model by activating glucose trans-
porter protein 1/3 (GLUT1/3) to promote glucose uptake and anti-apoptosis effects [273].

3.6. Approaches to Improve the Bioavailability of Polyphenols in IS

Despite the widespread recognition of the beneficial effects of natural polyphenol
components in the prevention and treatment of IS, their bioavailability is limited by low
solubility, stability, and BBB permeability [276–278]. Accordingly, polyphenol modification
and polyphenol encapsulation have emerged as research hotspots as various attempts are
being made to overcome these issues.

3.6.1. Polyphenol Modification Strategies to Improve Bioavailability

Researchers have attempted to enhance the anti-stroke efficacy of polyphenolic com-
pounds by modifying their structure to obtain novel active ingredients with high stability,
bioactivity, and bioavailability and fewer adverse effects. Mrvová et al. synthesized
3′-O-(3-chloropivaloyl) quercetin, a pivaloyl ester derivative of quercetin with increased
lipophilicity and better BBB permeation efficiency, inflammation inhibition, and cell cycle
regulation than quercetin [279]. Similarly, Skandik et al. prepared semisynthetic 4-O-
(2-chloro-1,4-naphthoquinone-3-yloxy) quercetin, which has enhanced electrophilic and
lipophilic properties compared to quercetin, and is effective in reducing microglial acti-
vation after stroke by modulating Nrf2 expression at low concentrations [280]. Zhang
et al. synthesized Cur20, a CUR derivative with high hydrolytic stability and lower hy-
drolysis efficiency than CUR and can significantly promote angiogenesis by activating the
HIF-1α/VEGF/TFEB pathway to reduce brain injury after ischemia [281].

3.6.2. Polyphenol Delivery Strategies for IS Therapy

In recent years, nanotechnology-based drug delivery systems have received consid-
erable attention for their potential to improve drug stability and solubility and increase
circulation times in vivo [30,282]. Nanoparticles made from poly(lactic-co-glycolic acid)
(PLGA) are recognized as effective drug carriers because of their long circulation time, high
stability and carrier capacity, and diverse delivery routes. Ghosh et al. loaded quercetin
in PLGA nanoparticles and found that nano-quercetin showed better anti-inflammatory
and antioxidant effects than free quercetin in both young and aged rats and significantly
reduced neuronal damage [283]. Subsequently, they incorporated mitochondria-targeting
triphenylphosphine into the nanomaterials, which then exhibited even better mitochondrial
protection and antioxidant effects in the IS model [284].

Mesoporous silica nanoparticles (MSNPs) are highly attractive for drug delivery
applications owing to their excellent biocompatibility, drug-carrying capacity, and surface
functionalization properties [285]. Shen et al. developed polylactic acid (PLA)-coated
MSNP as a drug carrier for RES and showed that these could bind to the ligand peptide of
the low-density lipoprotein receptor to enhance its transcytosis across the BBB, effectively
increasing RES concentrations in the brain and reducing oxidative stress [286].

It has been shown that polysorbate-based nanoparticles adsorb ApoE from circulating
blood and are then specifically taken up into the brain by ApoE receptors at the BBB.
Kakkar et al. prepared a class of Tween80-based solid lipid nanoparticles for CUR loading
and showed that their use could increase the concentration of CUR in the brain by up to
30 times the previous concentration and effectively improve its bioavailability [287].
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Recently, the combination of microbubbles (MBs) and transcranial low-intensity fo-
cused ultrasound (LIFU) has been considered a prospective strategy for the delivery of
drugs across the BBB [288,289]. Yan et al. prepared lipid-PLGA nanobubbles loaded with
CUR that could accumulate at lesions in large quantities after the BBB was briefly disrupted
using focused ultrasound and release CUR to achieve its pharmacological effects [290].

4. Conclusions and Future Prospects

IS is a complex and constantly developing pathological process that involves various
pathways; thus, it can be difficult to treat through a single approach. Polyphenols differ
from traditional medications in that they can exert anti-stroke effects by focusing on multi-
ple targets and pathways, which is one of their advantages. Although the prevention and
therapeutic efficacy of natural polyphenol components in IS have been widely recognized,
there are still problems that limit their clinical translation.

First, the mechanism of most natural polyphenols in vivo remains unclear, and further
studies are required to confirm their application potential. Second, the dose range, time
window, and duration of administration of polyphenol components with anti-IS effects
need to be further investigated with the goal of maximizing their therapeutic effects and
minimizing possible side effects. Third, current preclinical models have tended to focus
on young, healthy rodents that have not been exposed to other medications, but in clinical
practice, stroke patients are mostly elderly individuals with underlying conditions such as
hypertension, hyperglycemia, and hyperlipidemia, and are often being administered other
medications [291,292]. In addition, although the T-MCAO model is most commonly used
in preclinical studies, only 10% of clinical patients can be treated with reperfusion, which
may affect the neuroprotective effects of polyphenols to varying degrees. Therefore, it is
necessary to further investigate the pharmacokinetic, pharmacodynamic, and toxicological
properties and interactions of polyphenols with other drugs in IS using well-simulated
clinical disease models. Fourth, in clinical trials, scales such as the modified Rankin scale,
the Barthel Index, and the National Institute of Health Stroke Scale are used for long-
term (usually 90 days), multifaceted (e.g., related to sensory, motor, and speech-related
effects) assessment of neurological recovery to evaluate treatment effects [293]. However,
in preclinical studies, the assessment measures, usually infarct size comparisons, are
short-term (usually 24 h), and the evaluation of neurological recovery is limited. This
may lead to an exaggeration of the therapeutic efficacy of polyphenols. Therefore, a
more clinically appropriate evaluation system should be developed to better evaluate the
therapeutic effects. Finally, although several strategies have been adopted to improve
the bioavailability of polyphenols, there is a need to explore more delivery strategies
based on the pathophysiological alterations in brain tissue after IS in order to achieve
targeted delivery and ischemic tissue responsive release of polyphenols and achieve better
therapeutic effects.

This article reviewed the pathogenesis of IS and the progress of research on the applica-
tion of polyphenolic components (including flavonoids, phenolic acids, astragalus, lignans,
and curcumin) in the treatment of IS. Despite their considerable therapeutic potential,
the poor stability and low bioavailability of polyphenols hinder their application in vivo.
Modification of polyphenols or application of nanoformulations to assist polyphenol ther-
apy offers great advantages in terms of conferring better bioavailability to polyphenol
components and achieving better therapeutic effects. This review provides a reference for
exploring the applications of polyphenols in IS treatment.

5. Chemical Compounds Studied in This Article

Quercetin (PubChem CID: 5280343); Isoquercetin (PubChem CID: 5280804); Rutin
(PubChem CID: 5280805); Kaempferol (PubChem CID: 5280863); Icariin (PubChem CID:
5318997); Myricetin (PubChem CID: 5281672); Puerarin (PubChem CID: 5281807); Genistein
(PubChem CID: 5280961); Daidzein (PubChem CID: 5281708); Baicalein (PubChem CID:
5281605); Baicalin (PubChem CID: 64982); Scutellarin (PubChem CID: 185617); Luteolin
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(PubChem CID: 5280445); Chrysin (PubChem CID: 5281607); Apigenin (PubChem CID:
5280443); Epigallocatechin Gallate (PubChem CID: 65064); Epicatechin gallate (PubChem
CID: 107905); Procyanidin (PubChem CID: 107876); NARINGENIN (PubChem CID: 932);
Naringin (PubChem CID: 442428); HESPERETIN (PubChem CID: 72281); Cyanidin-3-
glucoside (PubChem CID: 441667); Ferulic acid (PubChem CID: 445858); rosmarinic acid
(PubChem CID: 5281792); Chlorogenic acid (PubChem CID: 1794427); Salvianolic acid A
(PubChem CID: 5281793); Salvianolic Acid B (PubChem CID: 11629084); protocatechuic acid
(PubChem CID: 72); Gallic acid (PubChem CID: 370); vanillic acid (PubChem CID: 8468);
Rhein (PubChem CID: 10168); Magnolol (PubChem CID: 72300); Schisandrin A (PubChem
CID: 155256); Schisandrin B (PubChem CID: 108130); Sesamol (PubChem CID: 68289);
Arctigenin (PubChem CID: 64981); Resveratrol (PubChem CID: 445154); Pterostilbene
(PubChem CID: 5281727); Piceatannol (PubChem CID: 667639); Polydatin (PubChem
CID: 5281718); Curcumin (PubChem CID: 969516).
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AIF apoptosis-inducing factor
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BDNF brain-derived neurotrophic factor;
CA chlorogenic acid;
CREB CAMP-response element binding;
DAMP damage-associated molecular pattern;
EAAT excitatory amino acid transporter;
ER endoplasmic reticulum;
FA ferulic acid;
FADD Fas-associated death domain;
FasL first apoptosis signal ligand;
GA gallic acid; IS: ischemic stroke;
LIFU low-intensity focused ultrasound;
MIF migration inhibitory factor;
NGF nerve growth factor;
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PA protocatechuic acid;
PRR pattern recognition receptor;
RA rosmarinic acid;
ROS reactive oxygen species;
SAA salvianolic acid;
SD Sprague Dawley;
TLR toll-like receptor
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